首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The postoperative outcome of hand flexor tendon repair remains limited by tendon adhesions that prevent normal range of motion. Recent studies using in situ hybridization techniques have implicated transforming growth factor beta-1 (TGF-beta1) in both intrinsic and extrinsic mechanisms of repair. TGF-beta1 is a growth factor that plays multiple roles in wound healing and has also been implicated in the pathogenesis of excessive scar formation. The purpose of this study was to examine the effect of neutralizing antibody to TGF-beta1 in a rabbit zone II flexor tendon wound-healing model. Twenty-two adult New Zealand White rabbits underwent complete transection of the middle digit flexor digitorum profundus tendon in zone II. The tendons were immediately repaired and received intraoperative infiltration of one of the following substances: (1) control phosphate-buffered saline; (2) 50 microg neutralizing antibody to TGF-beta1; (3) 50 microg each of neutralizing antibody to TGF-beta1 and to TGF-beta2. Eight rabbits that had not been operated on underwent analysis for determination of normal flexion range of motion at their proximal and distal interphalangeal joints, using a 1.2-N axial load applied to the flexor digitorum profundus tendon. All rabbits that had been operated on were placed in casts for 8 weeks to allow maximal tendon adhesion and were then killed to determine their flexion range of motion. Statistical analysis was performed using the Student's unpaired t test. When a 1.2-N load was used on rabbit forepaws that had not been operated on, normal combined flexion range of motion at the proximal and distal interphalangeal joints was 93+/-6 degrees. Previous immobilization in casts did not reduce the range of motion in these forepaws (93+/-4 degrees). In the experimental groups, complete transection and repair of the flexor digitorum profundus tendon with infiltration of control phosphate-buffered saline solution resulted in significantly decreased range of motion between the proximal and distal phalanges [15+/-6 degrees (n = 8)]. However, in the tendon repairs infiltrated with neutralizing antibody to TGF-beta1, flexion range of motion increased to 32+/-9 degrees (n = 7; p = 0.002). Interestingly, a combination of neutralizing antibody to TGF-beta1 and that to TGF-beta2 did not improve postoperative range of motion [18+/-4 degrees (n = 7; p = 0.234)]. These data demonstrate that (1) the rabbit flexor tendon repair model is useful for quantifying tendon scar formation on the basis of degrees of flexion between proximal and distal phalanges; (2) intraoperative infiltration of neutralizing antibody to TGF-beta1 improves flexor tendon excursion; and (3) simultaneous infiltration of neutralizing antibody to TGF-beta2 nullifies this effect. Because TGF-beta1 is thought to contribute to the pathogenesis of excessive scar formation, the findings presented here suggest that intraoperative biochemical modulation of TGF-beta1 levels limits flexor tendon adhesion formation.  相似文献   

2.
Flexor tendon repair in zone II is complicated by adhesions that impair normal postoperative gliding. Transforming growth factor-beta (TGF-beta) is a family of growth factors that has been implicated in scar formation. The TGF-beta family of proteins binds to three distinct classes of membrane receptors, termed RI, RII, and RIII. In this study, we analyzed the temporal and spatial distribution of TGF-beta receptor isoforms (RI, RII, and RIII) in a rabbit zone II flexor tendon wound healing model.Twenty-eight adult New Zealand White rabbit forepaws underwent isolation of the middle digit flexor digitorum profundus tendon in zone II. The tendons underwent transection in zone II and immediate repair. The tendons were harvested at increasing time points: 1, 3, 7, 14, 28, and 56 days postoperatively (n = 4 at each time point). The control flexor tendons were harvested without transection and repair (n = 4). Immunohistochemical analysis was used to detect the expression patterns for TGF-beta receptors RI, RII, and RIII.Immunohistochemical staining of the transected and repaired tendons demonstrated up-regulation of TGF-beta RI, RII, and RIII protein levels. TGF-beta receptor production in the experimental group (transection and repair) was concentrated in the epitenon and along the repair site. Furthermore, the TGF-beta receptor expression levels peaked at day 14 and decreased by day 56 postoperatively. In contrast, minimal receptor expression was observed in the untransected and unrepaired control tendons.These data provide evidence that (1) TGF-beta receptors are up-regulated after injury and repair; (2) peak levels of TGF-beta receptor expression occurred at day 14 and decreased by day 56 after wounding and repair; and (3) both the tendon sheath and epitenon have the highest receptor expression, and both may play critical roles in flexor tendon wound healing. Understanding the up-regulation of TGF-beta isoforms and the up-regulation of their corresponding receptors during flexor tendon wound healing provides new targets for biomolecular modulation of postoperative scar formation.  相似文献   

3.
4.
The ability of single growth factors to promote healing of normal and compromised wounds has been well described, but wound healing is a process requiring the coordinated action of multiple growth factors. Only the synergistic effect on wound healing of combinations containing at most two individual growth factors has been reported. We sought to assess the ability of a novel milk-derived growth factor-enriched preparation ?mitogenic bovine whey extract (MBWE), which contains six known growth factors, to promote repair processes in organotypic in vitro models and incisional wounds in vivo. MBWE stimulated the contraction of fibroblast-populated collagen lattices in a dose-dependent fashion and promoted the closure of excisional wounds in embryonic day 17 fetal rat skin. Application of MBWE increased incisional wound strength in normal animals on days 3, 5, 7, and 10 and reversed the decrease in wound strength observed following steroid treatment. Wound histology showed increased fibroblast numbers in wounds from normal and steroid-compromised animals. These data suggest the mixture of factors present in bovine milk exerts a direct action on the cells of cutaneous wound repair to enhance both normal and compromised healing.  相似文献   

5.
In this study, we determined the regulation and potential function of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR) during skin repair in mice. Upon skin injury, healthy mice exhibited a biphasic increase in HMGR expression and activity with elevated levels at days 3 and 13 post-wounding. In situ hybridization revealed wound margin keratinocytes as a cellular source of HMGR expression. In vitro experiments using cultured HaCaT keratinocytes uncovered epidermal growth factor (EGF), transforming growth factor (TGF)-alpha, and insulin as potent co-inducers of HMGR activity and vascular endothelial growth factor (VEGF) in the cells. Insulin-, but not EGF-mediated VEGF protein expression was functionally connected to co-induced HMGR activity, as simvastatin restrictively interfered only with insulin-induced translation of VEGF mRNA by inhibition of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation. Functional ablation of insulin-induced sterol regulatory element-binding protein (SREBP)-2 by siRNA abolished HMGR expression and insulin-triggered VEGF protein release from keratinocytes. Simvastatin also blocked proliferation of cultured keratinocytes. The observed inhibitory effects of simvastatin on keratinocyte VEGF expression and proliferation could be reversed by mevalonate, the product of HMGR enzymatic activity. In accordance, simvastatin-mediated inhibition of HMGR activity in acutely regenerating tissue of wounded mice was paralleled by a marked loss of VEGF protein expression and disturbances of normal proliferation processes in wound margin keratinocytes during skin repair.  相似文献   

6.
Poorly healing mandibular fractures and osteotomies can be troublesome complications of craniomaxillofacial trauma and reconstructive surgery. Gene therapy may offer ways of enhancing bone formation by altering the expression of desired growth factors and extracellular matrix molecules. The elucidation of suitable candidate genes for therapeutic intervention necessitates investigation of the endogenously expressed patterns of growth factors during normal (i.e., successful) fracture repair. Transforming growth factor beta1 (TGF-beta1), its receptor (Tbeta-RII), and the extracellular matrix proteins osteocalcin and type I collagen are thought to be important in long-bone (endochondral) formation, fracture healing, and osteoblast proliferation. However, the spatial and temporal expression patterns of these molecules during membranous bone repair remain unknown. In this study, 24 adult rats underwent mandibular osteotomy with rigid external fixation. In addition, four identically treated rats that underwent sham operation (i.e., no osteotomy) were used as controls. Four experimental animals were then killed at each time point (3, 5, 7, 9, 23, and 37 days after the procedure) to examine gene expression of TGF-beta1 and Tbeta-RII, osteocalcin, and type I collagen. Northern blot analysis was used to compare gene expression of these molecules in experimental animals with that in control animals (i.e., nonosteotomized; n = 4). In addition, TGF-beta1 and T-RII proteins were immunolocalized in an additional group of nine animals killed on postoperative days 3, 7, and 37. The results of Northern blot analysis demonstrated a moderate increase (1.7 times) in TGF-beta1 expression 7 days postoperatively; TGF-beta1 expression returned thereafter to near baseline levels. Tbeta-RII mRNA expression was downregulated shortly after osteotomy but then increased, reaching a peak of 1.8 times the baseline level on postoperative day 9. Osteocalcin mRNA expression was dramatically downregulated shortly after osteotomy and remained low during the early phases of fracture repair. Osteocalcin expression trended slowly upward as healing continued, reaching peak expression by day 37 (1.7 times the control level). In contrast, collagen type IalphaI mRNA expression was acutely downregulated shortly after osteotomy, peaked on postoperative days 5, and then decreased at later time points. Histologic samples from animals killed 3 days after osteotomy demonstrated TGF-beta1 protein localized to inflammatory cells and extracellular matrix within the fracture gap, periosteum, and peripheral soft tissues. On postoperative day 7, TGF-beta1 staining was predominantly localized to the osteotomized bone edges, periosteum, surrounding soft tissues, and residual inflammatory cells. By postoperative day 37, complete bony healing was observed, and TGF-beta1 staining was localized to the newly formed bone matrix and areas of remodeling. On postoperative day 3, Tbeta-RII immunostaining localized to inflammatory cells within the fracture gap, periosteal cells, and surrounding soft tissues. By day 7, Tbeta-RII staining localized to osteoblasts of the fracture gap but was most intense within osteoblasts and mesenchymal cells of the osteotomized bone edges. On postoperative day 37, Tbeta-RII protein was seen in osteocytes, osteoblasts, and the newly formed periosteum in the remodeling bone. These observations agree with those of previous in vivo studies of endochondral bone formation, growth, and healing. In addition, these results implicate TGF-beta1 biological activity in the regulation of osteoblast migration, differentiation, and proliferation during mandibular fracture repair. Furthermore, comparison of these data with gene expression during mandibular distraction osteogenesis may provide useful insights into the treatment of poorly healing fractures because distraction osteogenesis has been shown to be effective in the management of these difficult clinical cases.  相似文献   

7.
8.
The effects of coherent He-Ne laser and non-coherent light-emitting diode radiation on rat skin wound healing and functional activity of wound excudate leukocytes were compared. A comparative pathomorphological analysis showed that the He-Ne laser and light-emitting diode irradiation stimulated the transition of the inflammatory phase of the wound healing into the reparative (proliferative) and scarring phases sequentially. It was also detected that the functional activity of leucocytes changed in a dose-dependent manner. The leukocyte activity was found to be similar in the groups with laser and light-emitting diode irradiation. Thus, we can conclude that coherent laser and non-coherent light-emitting diode radiation have very close effects on wound healing and activity of wound exudate leukocytes, and coherence is not required for this activity.  相似文献   

9.
Angiogenesis plays a central role in wound healing. Among many known growth factors, vascular endothelial growth factor (VEGF) is believed to be the most prevalent, efficacious, and long-term signal that is known to stimulate angiogenesis in wounds. Whereas a direct role of copper to facilitate angiogenesis has been evident two decades ago, the specific targets of copper action remained unclear. This report presents first evidence showing that inducible VEGF expression is sensitive to copper and that the angiogenic potential of copper may be harnessed to accelerate dermal wound contraction and closure. At physiologically relevant concentrations, copper sulfate induced VEGF expression in primary as well as transformed human keratinocytes. Copper shared some of the pathways utilized by hypoxia to regulate VEGF expression. Topical copper sulfate accelerated closure of excisional murine dermal wound allowed to heal by secondary intention. Copper-sensitive pathways regulate key mediators of wound healing such as angiogenesis and extracellular matrix remodeling. Copper-based therapeutics represents a feasible approach to promote dermal wound healing.  相似文献   

10.
Increased transglutaminase activity during skin wound healing in rats   总被引:3,自引:0,他引:3  
Outer, middle and inner layers from wounded or unwounded rat dorsal skin were separated and extracted first with buffer and then with Triton X-100 and dithiothreitol. The extracts and residues were assayed for transglutaminase activity and tissue transglutaminase antigen. Transglutaminase activities in all skin layers are increased in the period 1-5 days after wounding. Most of the increased activity is in the buffer-soluble fraction in the inner skin layer though there is no corresponding increase in antigen in this fraction. This suggests that there is production of activated soluble tissue transglutaminase in the wounded inner layer. In the 3-5 day wounded outer layer the largest fraction of both activity and antigen is associated with the insoluble residue remaining after extraction with Triton X-100. On DEAE-cellulose chromatography Triton X-100 extracts of the inner layer of wounded skin showed a single major peak of activity, corresponding approximately with rabbit liver transglutaminase; the outer layer showed the same peak plus a different one, eluting at lower salt concentration, which is thought to be epidermal transglutaminase.  相似文献   

11.
Opioid activity of peptides and wound healing of the skin   总被引:1,自引:0,他引:1  
The binding of dalargin, its four analogues and FK-33824, DADLE, met-enkephalin and morphine to peripheral mu- and delta-receptors and to brain receptors has been investigated in comparison with their influence on skin wound healing in rats. It has been shown that only substances with opiate activity, including morphine, stimulated wound healing. No correlation between wound healing effect of peptides and their binding to a definite receptor has been found. Naloxone inhibited wound healing and suppressed opiate peptide-mediated healing process. It is suggested that endogenous opiate peptides are involved in the maintenance of structural homeostasis.  相似文献   

12.
Limiting microbial threats, maintenance and re-establishment of the mucosal barrier are vital for intestinal homeostasis. Antimicrobial peptides have been recognized as essential defence molecules and decreased expression of these peptides has been attributed to chronic inflammation of the human intestinal mucosa. Recently, pluripotent properties, including stimulation of proliferation and migration have been suggested for a number of antimicrobial peptides. However, it is currently unknown, whether the human beta-defensin 2 (hBD-2) in addition to its known antimicrobial properties has further effects on healing and protection of the intestinal epithelial barrier. Caco-2 and HT-29 cells were stimulated with 0.1-10 microg/ml hBD-2 for 6-72 h. Effects on cell viability and apoptosis were monitored and proliferation was quantified by bromo-deoxyuridine incorporation. Migration was quantified in wounding assays and characterized by immunohistochemistry. Expression of mucins was determined by quantitative PCR and slot-blot analysis. Furthermore, anti-apoptotic capacities of hBD-2 were studied. Over a broad range of concentrations and stimulation periods, hBD-2 was well tolerated by IECs and did not induce apoptosis. hBD-2 significantly increased migration but not proliferation of intestinal epithelial cells. Furthermore, hBD-2 induced cell line specific the expression of mucins 2 and 3 and ameliorated TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis. In addition to its known antimicrobial properties, hBD-2 might have further protective effects on the intestinal epithelium. Results of this in vitro study suggest, that hBD-2 expression may play a dual role in vivo, i.e. in impaired intestinal barrier function observed in patients with inflammatory bowel disease.  相似文献   

13.
In order to investigate the re-epithelialization process during wound healing, the hair on the back of guinea pigs was shaved and then excisional wounds were made through the entire thickness of the skin. Histological changes were observed and changes in the expression of different cytokeratin polypeptides were examined using an immunohistochemical technique. Immunohisto chemical study revealed that the proliferating and migrating keratinocytes expressed the same cytokeratins as the basal cells of normal epidermis. In addition, the entire epidermis of fairly remote areas from the edges of the wound where no thickening was observed showed a temporarily abnormal staining pattern. The suprabasal cells in the regenerating epidermis temporarily expressed cytokeratins not only specific for suprabasal cells but also specific for basal cells. The cytokeratins expressed in normal basal keratinocytes were also present in the thickened granular layers. These data indicate that the expression of cytokeratins in the epidermal keratinocytes (even in fairly remote areas from the wound edges) changes during wound healing, that the origin of the migrating keratinocytes from the remaining epidermis seems to be the basal cells in the epidermis, and that the appearance of keratohyalin granules is not related to changes in cytokeratin expression.  相似文献   

14.
Wound healing is a highly ordered process, requiring complex and coordinated interactions involving peptide growth factors of which transforming growth factor-beta (TGF-beta) is one of the most important. Nitric oxide is also an important factor in healing and its production is regulated by inducible nitric oxide synthase (iNOS). We have earlier shown that curcumin (diferuloylmethane), a natural product obtained from the plant Curcuma longa, enhances cutaneous wound healing in normal and diabetic rats. In this study, we have investigated the effect of curcumin treatment by topical application in dexamethasone-impaired cutaneous healing in a full thickness punch wound model in rats. We assessed healing in terms of histology, morphometry, and collagenization on the fourth and seventh days post-wounding and analyzed the regulation of TGF-beta1, its receptors type I (tIrc) and type II (tIIrc) and iNOS. Curcumin significantly accelerated healing of wounds with or without dexamethasone treatment as revealed by a reduction in the wound width and gap length compared to controls. Curcumin treatment resulted in the enhanced expression of TGF-beta1 and TGF-beta tIIrc in both normal and impaired healing wounds as revealed by immunohistochemistry. Macrophages in the wound bed showed an enhanced expression of TGF-beta1 mRNA in curcumin treated wounds as evidenced by in situ hybridization. However, enhanced expression of TGF-beta tIrc by curcumin treatment observed only in dexamethasone-impaired wounds at the 7th day post-wounding. iNOS levels were increased following curcumin treatment in unimpaired wounds, but not so in the dexamethasone-impaired wounds. The study indicates an enhancement in dexamethasone impaired wound repair by topical curcumin and its differential regulatory effect on TGF-beta1, it's receptors and iNOS in this cutaneous wound-healing model.  相似文献   

15.
The increasing prevalence of chronic wounds has significant financial implications for nations with advanced healthcare provision. Although the diseases that predispose to hard‐to‐heal wounds are recognized, their etiology is less well understood, partly because practitioners in wound management lack specialized diagnostic support. Prognostic indicators for healing may be inherent to wound biochemistry but remain invisible under routine clinical investigation; lactate is an example of this. In this study, lactate concentration in exudate obtained from 20 patients undergoing wound management in hospital was variable but in some cases approached or exceeded 20 mM. In vitro viability studies indicated that fibroblasts and endothelial cells tolerated low levels of lactate (1–10 mM), but cell viability was severely compromised by high lactate concentrations (=20 mM). Scratched monolayer experiments revealed that cell migration was affected earlier than viability in response to increasing lactate dose, and this was shown by immunocytochemistry to be associated with cytoskeletal disruption. A prototype enzyme‐based colorimetric assay for lactate generating a color change that was rapid in the context of clinical practise, and capable of functioning within a gel vehicle, was developed with point‐of‐care dipstick applications in mind. A randomized single‐blinded trial involving 30 volunteers and using a color chart to calibrate the assay demonstrated that lactate concentration could be reliably estimated with 5 mM precision; this suggesting that “physiological” and “pathological” lactate concentration could be distinguished. The present data suggest that a dipstick‐type colorimetric assay could comprise a viable diagnostic tool for identifying patients at‐risk from high‐wound lactate. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 917–924, 2012  相似文献   

16.
p63 expression during normal cutaneous wound healing in humans   总被引:4,自引:0,他引:4  
Noszczyk BH  Majewski ST 《Plastic and reconstructive surgery》2001,108(5):1242-7; discussion 1248-50
p63, a recently identified member of the p53 family, was shown to play a role in morphogenesis and, probably, in tumors of keratinocyte origin. Because p63 seems to be a marker of keratinocytes with a high proliferative potential, the expression of this protein was studied along with another marker of cell proliferation, Ki67, during normal epidermal regeneration in humans. Serial biopsies of human skin healing by a secondary intention were taken at various time intervals (between days 2 and 21 after the injury) and were studied immunohistochemically with the use of a 4A4 monoclonal antibody against the DeltaNp63 variant and MM1 monoclonal antibody against the Ki67 antigen. In the normal and injured skin, the expression of the DeltaNp63 protein was restricted to the epidermal keratinocytes and hair follicle keratinocytes. In the first days of the healing process, there was a dramatic down-regulation of both DeltaNp63 and Ki67 expression in the area of the epidermal tongue invading under the crust. Five days after the injury, induction of DeltaNp63 in the basal keratinocytes could be detected, followed by a gradual increase of its expression in subsequent days. Several days after complete wound closure, DeltaNp63 was still strongly expressed not only in the basal keratinocytes but also in the entire spinous layer, whereas the Ki67 expression was restricted to single cells in the basal layer. The results indicate that DeltaNp63 could be involved in the control of physiologic processes, such as cell proliferation and migration, related to epidermal repair during healing of normal skin in humans.  相似文献   

17.
18.
Altered expression of keratins during abnormal wound healing in human skin   总被引:9,自引:0,他引:9  
Prathiba V  Rao KS  Gupta PD 《Cytobios》2001,104(405):43-51
  相似文献   

19.
The role of tendon tissues in tendon healing.   总被引:3,自引:0,他引:3  
  相似文献   

20.
Cytochemical investigations of plain aseptic wounds simulated in 110 Wistar rats revealed a clear-cut dependence between the variations in the activity of alkaline and acid phosphatases in neutrophilic leukocytes, monocytes and lymphocytes of the blood and wound exudate and the stage of the healing process. Elevated activity of the blood alkaline phosphatase correlated with the term of inflammation phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号