首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
【目的】分析辣椒疫霉中RXLR型效应子PcAvh2的序列多态性,研究该效应子在辣椒疫霉生长发育和侵染阶段的转录特征及其生物学功能。【方法】本研究通过高保真扩增,分析2个烟草疫霉、1个恶疫霉和31个辣椒疫霉菌株的PcAvh2序列;提取辣椒疫霉菌丝、游动孢子囊、游动孢子、萌发休止孢和7个侵染时间点(1.5、3、6、12、24、36、72 h)的本氏烟根部总RNA,利用RT-qPCR分析PcAvh2的转录表达水平;利用PVX瞬时表达系统,分析PcAvh2是否抑制6种效应子(BAX、INF1、PsojNIP、PsCRN63、PsAvh241、R3a/Avr3a)激发的植物免疫反应;利用CaCl_2-PEG介导的原生质体稳定转化技术,沉默PcAvh2基因,分析辣椒疫霉致病力的变化。【结果】PcAvh2为典型的RXLR效应子,在辣椒疫霉群体中该效应子具有10个等位基因,而且烟草疫霉和恶疫霉中也存在该效应子。该基因在辣椒疫霉的侵染阶段上调表达,它能够抑制6种效应子激发的植物免疫反应,进一步研究发现基因沉默导致辣椒疫霉的致病力显著下降。【结论】RXLR型效应子PcAvh2是辣椒疫霉中一个重要的侵染致病因子。  相似文献   

2.
[目的]分析致病疫霉效应蛋白Pi16275的超量表达对病原菌致病性的影响,明确Pi16275的亚细胞定位,筛选Pi16275在植物中的互作靶标蛋白及靶标蛋白在抵御病原菌侵染过程中的作用,初步揭示Pi16275在病原菌侵染植物过程中的作用机制.[方法]利用农杆菌介导的烟草瞬时表达系统在烟草叶片表皮细胞中瞬时表达Pi162...  相似文献   

3.
王子迎 《微生物学报》2007,26(4):549-556
包括大豆在内的许多植物都可以产生氰化物,对侵染的病原菌产生毒害作用而阻碍其进一步扩展。采用抑制性差减杂交(suppression subtractive hybridization,SSH)的方法,筛选到一个在大豆疫霉侵染早期上调表达的、编码腈水解酶的cDNA片段;克隆了该基因的全长序列,命名为PsNIA。Southern杂交结果显示,PsNIA在大豆疫霉基因组中只有1个拷贝。系统发育分析表明,PsNIA与绿脓杆菌Pseudomonas aeruginosa的腈水解酶的序列同源性最高,且该基因编码的氨基酸序列具有腈水解酶的保守结构域。RT-PCR分析表明,该基因在大豆疫霉侵染大豆12h时可以检测到转录。  相似文献   

4.
王子迎 《菌物系统》2007,26(4):549-556
包括大豆在内的许多植物都可以产生氰化物,对侵染的病原菌产生毒害作用而阻碍其进一步扩展。采用抑制性差减杂交(suppression subtractive hybridization,SSH)的方法,筛选到一个在大豆疫霉侵染早期上调表达的、编码腈水解酶的cDNA片段;克隆了该基因的全长序列,命名为PsNIA。Southern杂交结果显示,PsNIA在大豆疫霉基因组中只有1个拷贝。系统发育分析表明,PsNIA与绿脓杆菌Pseudomonas aeruginosa的腈水解酶的序列同源性最高,且该基因编码的氨基酸序列具有腈水解酶的保守结构域。RT-PCR分析表明,该基因在大豆疫霉侵染大豆12h时可以检测到转录。  相似文献   

5.
大豆细菌性斑点病菌harpin编码基因的克隆与表达   总被引:1,自引:0,他引:1  
摘要:【方法、目的】利用PCR方法从丁香假单胞菌大豆致病变种(Pseudomonas syringae pv. glycinea)Psg12菌株中克隆到1026bp的hrp基因。将其定向插入到表达载体pGEX-4T-1上,并转化宿主菌BL21,IPTG诱导表达后,SDS-PAGE显示其表达产物为分子量为61 kDa的融合蛋白质。【结果】该蛋白质在性质与功能上类似于已发现的harpins,即富含甘氨酸、不含半胱氨酸,热稳定以及对蛋白酶K敏感,能够在烟草上引起典型的过敏性反应,过敏性反应还可被真核生物代谢抑制  相似文献   

6.
AZI1属于脂转移蛋白家族,它在拟南芥抵抗病原菌侵染过程中可能起着传递信号物质的作用。该实验以过表达和T-DNA插入突变体及野生型拟南芥植株为材料,通过RNA印迹、蛋白质免疫印迹和原位免疫组织化学方法,研究了拟南芥壬二酸诱导基因AZI1对丁香假单胞杆菌的抗性功能。结果表明:(1)AZI1基因可以被丁香假单胞杆菌、H2O2和乙烯利诱导,它可能参与水杨酸和乙烯介导的抗菌途径。(2)蛋白质免疫印迹实验结果显示,丁香假单胞杆菌侵染叶片的叶柄渗出液中存在AZI1蛋白及其同源物EARLI1,并能够与其他蛋白质形成复合体,说明AZI1有可能通过维管组织移动到个体的其他部位,与信号分子的转移有关。(3)AZI1及其同源物EARLI1主要在花序茎的木质化部位表达,过表达AZI1基因能够促进木质素的合成,提高拟南芥对丁香假单胞杆菌的抗性。  相似文献   

7.
包括大豆在内的许多植物都可以产生氰化物,对侵染的病原菌产生毒害作用而阻碍其进一步扩展。采用抑制性差减杂交(suppression subtractive hybridization,SSH)的方法,筛选到一个在大豆疫霉侵染早期上调表达的、编码腈水解酶的cDNA片段;克隆了该基因的全长序列,命名为PsNIA。Southern杂交结果显示,PsNIA在大豆疫霉基因组中只有1个拷贝。系统发育分析表明,PsNIA与绿脓杆菌Pseudomonas aeruginosa的腈水解酶的序列同源性最高,且该基因编码的氨基酸序列具有腈水解酶的保守结构域。RT-PCR分析表明,该基因在大豆疫霉侵染大豆12h时可以检测到转录。  相似文献   

8.
王子迎 《菌物学报》2007,26(4):549-556
包括大豆在内的许多植物都可以产生氰化物,对侵染的病原菌产生毒害作用而阻碍其进一步扩展。采用抑制性差减杂交(suppression subtractive hybridization,SSH)的方法,筛选到一个在大豆疫霉侵染早期上调表达的、编码腈水解酶的cDNA片段;克隆了该基因的全长序列,命名为PsNIA。Southern杂交结果显示,PsNIA在大豆疫霉基因组中只有1个拷贝。系统发育分析表明,PsNIA与绿脓杆菌Pseudomonas aeruginosa的腈水解酶的序列同源性最高,且该基因编码的氨基酸序列具有腈水解酶的保守结构域。RT-PCR分析表明,该基因在大豆疫霉侵染大豆12h时可以检测到转录。  相似文献   

9.
王子迎  王朝霞  沈洁 《激光生物学报》2009,18(4):504-508,449
对大豆疫霉野生菌株与紫外线诱导的卵孢子缺失突变株进行差异表达基冈分析,筛选到一个在大豆疫霉卵孢子形成过程中特异表达、编码CCHC型锌指蛋白的cDNA片段.克隆了该基因的全长序列,命名为PszfA1.Southern杂交结果显示,Ps-zfA1在大豆疫霉基凶组中只有2个拷贝.系统发育分析表明,Ps-zfA1与三角褐指藻Phaeodactylum tricornutum的锌指蛋白的序列同源性最高,且该基因编码的氨基酸序列具有一个CCHC型锌指蛋白典型的保守结构域.时实定量RT-PCR分析表明,该基因在大豆疫霉卵孢子形成过程中特异表达,且表达量随着产孢培养的时间延长而升高.  相似文献   

10.
作为活体营养专性寄生真菌,条形柄锈菌(小麦条锈病)在侵染过程中通过形成吸器向寄主细胞释放效应蛋白,干扰寄主的防卫反应,促进其侵染与致病。因此,条形柄锈菌效应蛋白的鉴定与功能研究对揭示其毒性机理具有重要意义。本实验室前期完成了条形柄锈菌CYR31生理小种吸器转录组分析,从中鉴定得到一个吸器特异诱导表达分泌蛋白Hasp68,利用农杆菌侵染在烟草细胞中瞬时表达该基因,能够抑制小鼠促细胞凋亡蛋白Bax诱导的细胞程序性死亡,鉴定为条形柄锈菌候选效应蛋白。Hasp68基因全长318bp,编码105_aa,N-端包含20_aa的信号肽,无保守结构域。BlastX分析表明Hasp68为条形柄锈菌特有效应蛋白,在其他真菌中无同源蛋白,且在条形柄锈菌16个菌系中呈较低的序列多态性,表明其在条形柄锈菌的进化过程中相对保守。借助荧光假单胞菌EtHAn的三型分泌系统,在小麦细胞中过表达Hasp68能够抑制由非致病细菌引起的PTI(PAMP-triggered immunity)相关胼胝质的积累;同时,也能抑制小麦与无毒条形柄锈菌互作中ETI(effector-triggered immunity)相关的活性氧爆发和过敏性坏死反应,表明效应蛋白Hasp68具有抑制寄主免疫反应的功能。利用酵母双杂交系统筛选Hasp68在小麦中的互作蛋白,发现其与组织蛋白酶B(cathepsin B)TaCTSB互作,双分子荧光技术进一步验证二者在烟草细胞中共表达存在互作,初步揭示了效应蛋白Hasp68的互作靶标。  相似文献   

11.
A gene was cloned from Pseudomonas syringae pv. glycinea that hybridized to avirulence gene D (avrD), previously cloned from P. s. pv. tomato. Unlike avrD, the hypersensitive response (HR) was not elicited when the P. s. pv. glycinea gene was reintroduced into P. s. pv. glycinea race 4 on a broad host range plasmid and the bacteria were inoculated into soybean leaves. DNA sequence data disclosed that the P. s. pv. glycinea homologue of avrD encoded a protein containing 86% identical amino acids to avrD, with substitutions distributed throughout the protein. Two ORFs immediately downstream from the avrD homologue were more similar in P. s. pv. tomato and P. s. pv. glycinea, with 98 and 99% identical amino acids. Expression of the wildtype P. s. pv. glycinea gene and recombinant genes constructed between the P. s. pv. tomato avrD gene and its P. s. pv. glycinea homologue in both Escherichia coli and P. s. pv. glycinea indicated that the P. s. pv. glycinea gene product was formed less efficiently or was less stable than was the P. s. pv. tomato protein encoded by avrD. The data indicated that the P. s. pv. glycinea homologue represents a recessive allele of the P. s. pv. tomato avrD gene which has been modified by mutation such that it does not lead to an avirulence phenotype on the normal host plant, soybean.  相似文献   

12.
13.
A gene cloned from Xanthomonas campestris pv. vesicatoria race 2, avrBs1, specified avirulence on pepper cultivars containing the resistance gene Bs1. A series of exonuclease III deletions were made on a 3.2-kbp DNA fragment that determined full avirulence activity, observed as hypersensitive response (HR) induction. The deletion products were subcloned into the broad host range cloning vector pLAFR3, conjugated into a virulent X. c. pv. vesicatoria race 1 strain, 82-8, and scored for their ability to induce a HR on a pepper cultivar (ECW10R) containing the resistance gene Bs1. A span of approximately 1.8 kbp of DNA was necessary for full induction of the HR. The nucleotide sequence revealed two open reading frames (ORFs) capable of encoding proteins of 12.3 and 49.8 kD, designated ORF1 and ORF2, respectively. Deletions into ORF1 altered the HR-inducing activity to give an intermediate phenotype. Deletions into ORF2 completely destroyed activity. When the ORF2 coding region was driven by the lacZ promoter on plasmid pLAFR3 (placD), full avirulence activity was restored, indicating that ORF2 alone can induce the HR. Antisera raised to a beta-galactosidase-ORF2 fusion protein reacted with a 50-kD protein in X. c. pv. vesicatoria race 1 (placD) transconjugants. The deduced amino acid sequence of ORF2 had approximately 47% overall homology to the carboxyl terminus of the avirulence gene, avrA, isolated from Pseudomonas syringae pv. glycinea race 6, and 86% homology over a region of 49 amino acids. P. s. pv. glycinea, however, did not induce an HR on ECW10R plants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Avirulence gene D, cloned from Pseudomonas syringae pv. tomato, caused P. s. pv. glycinea to elicit a hypersensitive defense response on certain cultivars of soybean. Nucleotide sequence data for a 5.6-kb HindIII fragment containing avrD disclosed five long open-reading frames (ORFs) occurring in tandem. The phenotype conferred by avrD was expressed in P. s. pv. glycinea solely by the first of these ORFs (933 bases) that encoded a protein of 34,115 daltons. Neither a signal peptide sequence nor significant regions of hydrophobicity were present that would indicate secretion of the protein or its membrane association. Hybridization analyses revealed that some but not all P. syringae pathovars contained DNA homologous to avrD. This included weak hybridization to all tested races of P. s. pv. glycinea, although none of them express the phenotype conferred by avrD. The avrD gene occurred on an indigenous 75-kb plasmid in several P. s. pv. tomato isolates.  相似文献   

15.
Pectate lyase (PL) is a potent cell wall-degrading enzyme known to play a role in the microbial infection of plants. We re-examined the pectolytic property of seven representative pathovars of Pseudomonas syringae. None of the 10 P. syringae pv. glycinea strains examined exhibited pectolytic activity. However, the PL gene (pel) was detected by Southern hybridization in four out of four P. syringae pv. glycinea strains examined. A P. syringae pv. glycinea pel gene was cloned, sequenced, and predicted to encode a protein sharing 70%-90% identity in amino acid sequence with PLs produced by pectolytic pseudomonads and xanthomonads. A series of amino acid and nucleotide sequence analyses reveal that (i) the predicted P. syringae pv. glycinea PL contains two regions in the amino acid sequence that may affect the formation of a beta-helix structure important for the enzyme activity, and (ii) the P. syringae pv. glycinea pel gene contains a single-base insertion, a double-base insertion, and an 18-bp deletion, which can lead to the synthesis of an inactive PL protein. The function of P. syringae pv. glycinea PL could be restored by removing the unwanted base insertions and by filling in the 18-bp deletions by site-directed mutagenesis. The altered pel sequence was also detected by polymerase chain reaction and nucleotide sequencing in the genomes of other pathovars of P. syringae, including phaseolicola and tagetis.  相似文献   

16.
A new WRKY gene was cloned from Brassica chinensis by rapid amplification of cDNA ends (RACE). The full-length cDNA of BcWRKY was 1175 bp long and contained a 924 bp open reading frame (ORF) encoding a putative W-box-binding protein of 308 amino acids. The predicted BcWRKY protein was found to have a potential bipartite nuclear localization sequence (NLS-BP) in its N-terminal region followed by a WRKY DNA-binding domain. Bioinformatic analysis revealed that BcWRKY resembled other WRKY domain-containing proteins from Arabidopsis (AtWRKY18), tobacco (WIZZ), parsley (PcWRKY4) and wild oat (ABF2). Expression of the BcWRKY gene could be induced by salicylic acid (SA), and influenced by Pseudomonas syringae pv. tomato strain DC3000 infection and wounding treatment. Our study implies that BcWRKY might have similar functions possessed by other WRKY genes such as inducing the expression of some defense-related genes and increasing plant's disease resistance ability.  相似文献   

17.
Production of the chlorosis-inducing phytotoxin coronatine in the Pseudomonas syringae pathovars atropurpurea, glycinea, maculicola, morsprunorum, and tomato has been previously reported. DNA hybridization studies previously indicated that the coronatine biosynthetic gene cluster is highly conserved among P. syringae strains which produce the toxin. In the present study, two 17-bp oligonucleotide primers derived from the coronatine biosynthetic gene cluster of P. syringae pv. glycinea PG4180 were investigated for their ability to detect coronatine-producing P. syringae strains by PCR analysis. The primer set amplified diagnostic 0.65-kb PCR products from genomic DNAs of five different coronatine-producing pathovars of P. syringae. The 0.65-kb products were not detected when PCR experiments utilized nucleic acids of nonproducers of coronatine or those of bacteria not previously investigated for coronatine production. When the 0.65-kb PCR products were digested with ClaI, PstI, and SmaI, fragments of identical size were obtained for the five different pathovars of P. syringae. A restriction fragment length polymorphism was detected in the amplified region of P. syringae pv. atropurpurea, since this pathovar lacked a conserved PvuI site which was detected in the PCR products of the other four pathovars. The 0.65-kb PCR products from six strains comprising five different pathovars of P. syringae were cloned and sequenced. The PCR products from two different P. syringae pv. glycinea strains contained identical DNA sequences, and these showed relatedness to the sequence obtained for the pathovar morsprunorum. The PCR products obtained from the pathovars maculicola and tomato were the most similar to each other, which supports the hypothesis that these two pathovars are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The responses of Arabidopsis thaliana ecotypes to the bacterial pathogen Pseudomonas syringae pv. maculicola 4326 (Psm4326) harboring cloned avirulence genes avrB and avrRpt2 from P. syringae pv. glycinea were examined. Psm4326 containing avirulent genes, avrB and avrRpt2 induced lignification and peroxidase activities in the bacteria infiltrated leaves of Col-O only and not in Mt-O, Bla-2 and Po-1. However, Arabidopsis ecotypes infiltrated with Psm4326 harboring with and without avirulent genes all showed differential induction of mRNA for peroxidase gene and lignin accumulation up to 24 h after infiltration. Only avrB gene in Col-O showed strong corelationship between peroxidase mRNA expression as well as lignification gradually up to 36 h after infiltration. These results extend previous observations that avirulence genes from pathogens of one host plant can be recognized by non-host plants and provide the genetic framework for analysis of the plant-specific response to the bacterial avirulent gene products in A. thaliana.  相似文献   

19.
The ability of Pseudomonas syringae pv. phaseolicola to cause halo blight of bean is dependent on its ability to translocate effector proteins into host cells via the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To identify genes encoding type III effectors and other potential virulence factors that are regulated by the HrpL alternative sigma factor, we used a hidden Markov model, weight matrix model, and type III targeting-associated patterns to search the genome of P. syringae pv. phaseolicola 1448A, which recently was sequenced to completion. We identified 44 high-probability putative Hrp promoters upstream of genes encoding the core T3SS machinery, 27 candidate effectors and related T3SS substrates, and 10 factors unrelated to the Hrp system. The expression of 13 of these candidate HrpL regulon genes was analyzed by real-time polymerase chain reaction, and all were found to be upregulated by HrpL. Six of the candidate type III effectors were assayed for T3SS-dependent translocation into plant cells using the Bordetella pertussis calmodulin-dependent adenylate cyclase (Cya) translocation reporter, and all were translocated. PSPPH1855 (ApbE-family protein) and PSPPH3759 (alcohol dehydrogenase) have no apparent T3SS-related function; however, they do have homologs in the model strain P. syringae pv. tomato DC3000 (PSPTO2105 and PSPTO0834, respectively) that are similarly upregulated by HrpL. Mutations were constructed in the DC3000 homologs and found to reduce bacterial growth in host Arabidopsis leaves. These results establish the utility of the bioinformatic or candidate gene approach to identifying effectors and other genes relevant to pathogenesis in P. syringae genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号