首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
黄河上游灌区稻田N2O排放特征   总被引:4,自引:0,他引:4  
黄河上游灌区稻田高产区过量施肥现象十分突出,氮肥过量施用引起土壤氮素盈余,导致N2O排放量增大,由此引起的温室效应引起广泛关注。采用静态箱-气相色谱法研究黄河上游灌区稻田不同施肥处理下N2O排放特征。试验设置5个施肥处理,包括常规氮肥300 kg/hm2下单施尿素和有机肥配施2个处理,分别用N300和N300-OM代表;优化氮肥240 kg/hm2下单施尿素和有机肥配施2个处理,分别用N240和N240-OM代表;对照不施氮肥用N0代表。试验结果得出,灌区水稻生长季稻田土壤N2O排放主要集中在水稻分蘖前及水稻生长的中后期,稻田氮肥施用、灌水及土壤温度的变化对N2O排放通量影响较大,不同处理水稻各生育阶段N2O累积排放量与稻田土壤耕层NO-3-N含量动态变化显著相关。稻田N2O排放不是黄河上游灌区稻田氮素损失的主要途径,但灌区稻田N2O排放的增温潜势较大;稻田氮肥过量施用会显著增加N2O排放量,在相同氮素水平下,有机肥配施会显著增加稻田土壤N2O的排放量(P<0.01)。优化施氮能有效减少灌区稻田水稻生长季N2O排放量。稻田不同处理的水稻整个生长季土壤N2O排放总量为2.69-3.87 kg/hm2,肥料氮通过N2O排放损失的百分率仅为0.43%-0.64%。在灌区习惯灌水和高氮肥300 kg/hm2时,N300-OM处理的稻田N2O排放量达3.87 kg/hm2,在100 a时间尺度上的全球增温潜势(GWPs)为20.76×107 kg CO2/hm2;优化施氮240 kg/hm2水平下,N240和N240-OM处理的N2O累计排放量较N300-OM处理,分别降低了1.18 kg/hm2和0.57 kg/hm2,在100 a尺度上每年由稻田N2O排放引起的GWPs分别降低了6.33×107 kg CO2/hm2和3.06×107 kg CO2/hm2。  相似文献   

2.
限水灌溉冬小麦冠层氮分布与转运特征及其对供氮的响应   总被引:2,自引:0,他引:2  
以高产冬小麦品种周麦18为材料,在大田春灌1水条件下,设置不同供氮水平和氮肥运筹处理试验,研究并探讨了在华北地区限水灌溉条件下氮肥施用对冬小麦冠层叶片氮素时空分布与转运及氮肥利用的影响。结果表明,冬小麦适量施氮可显著增产,2008-2009年以施氮量180 kg/hm2时(N21)产量最高,为8749 kg/hm2;2009-2010年以施氮量270 kg/hm2时(N32)产量最高,但施氮量210 kg/hm2(N22)处理与N32处理产量无显著差异,分别为8340 kg/hm2和8558 kg/hm2。氮肥利用效率和氮肥偏生产力均随施氮量增加而降低;氮肥利用率与氮肥农学效率均随施氮量的增加呈先升后降的趋势,分别在N21和N22处理时最高。冠层叶片氮素含量和积累量随叶层层次自上而下降低而下降,垂直梯度分明,各时期冠层叶片氮素垂直梯度随施氮量的增加总体呈先增大后减小的趋势。冠层叶片氮素转运量、转运率和对籽粒的贡献率均呈现为:第1层>第2层>第3层>第4层。相关分析表明,冠层叶片氮素梯度与叶片氮素转运率呈显著正相关关系(R2=0.722*),与贡献率呈极显著正相关关系(R2=0.975**)。适量施氮(120-210 kg/hm2)增大了叶层间氮素垂直分布梯度,促进了氮素在植株内的运移分配,有利于叶片氮素向外转运,提高了叶片氮素转运量和对籽粒贡献率,保持了较高的氮素利用率。施氮过多(330 kg/hm2)减小了叶层间氮素垂直分布梯度,减弱了氮素在植株内的再利用,叶片氮素转运不畅,导致叶片氮素转运量和对籽粒贡献率下降,氮素利用率显著降低。连续两年试验结果显示,通过适量氮肥调控可以增大冠层叶片氮素垂直梯度,有利于叶片中的氮素输出,促进氮素的再分配、再利用,从而提高氮素利用率,并可获得较高的籽粒产量和蛋白质含量。  相似文献   

3.
不同灌水上限和施肥量对温室番茄产量与品质的影响   总被引:5,自引:0,他引:5  
以番茄品种‘英石大红’为材料,在滴灌施肥种植条件下进行日光温室栽培试验;灌水上限设3个水平,即土壤相对含水量分别为田间最大持水量的70%(W1)、80%(W2)、90%(W3),灌水下限统一设定为田间最大持水量的50%;N、P、K施肥设3个水平,分别为低肥F1 [N(228 kg/hm2)、P2O5(132 kg/hm2)、K2O(300 kg/hm2)]、中肥F2 [N(285 kg/hm2)、P2O5(165 kg/hm2)、K2O(375 kg/hm2)]和高肥F3 [N(342 kg/hm2)、P2O5(198 kg/hm2)、K2O(450 kg/hm2)],以大水漫灌(8165 m3/hm2)、当地推荐施肥量(342 kg/hm2 N、198 kg/hm2 P2O5、450 kg/hm2 K2O) 组成共同水肥对照(CK),探讨不同灌水上限和施肥量处理组合对番茄产量、品质和干物质量的影响,以筛选日光温室栽培番茄的最佳灌水上限和施肥量组合。结果显示:(1)在水肥一体化条件下,番茄植株的地上部干鲜重、地下部干鲜重、根冠比除F3W1处理外均显著高于传统水肥CK。(2)番茄果实产量在不同灌溉上限和施肥量处理下表现各异,其中在F2W2处理下番茄果实单果重、经济产量、生物产量达到最高,且与CK差异显著。(3)在同一灌水上限条件下,在一定范围内增加施肥量可以显著提高番茄果实的可溶性糖、维生素C、可溶性蛋白、番茄红素含量,而番茄果实有机酸和硝酸盐含量随施肥量的增加而不断增加;在同一施肥量条件下,番茄果实有机酸含量随着灌水上限的上调而不断减少,而番茄果实硝酸盐含量却随着灌水上限的上调而不断增加。研究发现,在滴灌施肥条件下合理控制温室番茄的灌水量与施肥量能够显著增加番茄产量以及番茄果实中可溶性糖、维生素C、可溶性蛋白、番茄红素、有机酸等含量,降低硝酸盐含量,增加干物质积累量;在灌水上限为田间最大持水量的80%、灌水量为3 686.691 m3/hm2,施肥量为285 kg/hm2 N、165 kg/hm2 P2O5、375 kg/hm2 K2O是最佳水肥处理组合,且番茄产量可以比传统水肥处理显著增加15.03%,果实品质同时得到有效改善。  相似文献   

4.
为了分析干旱环境下地下水埋深变化对胡杨(Populus euphratica oliv.)光合作用的影响,对塔里木河下游3个地下水埋深(4.91,6.93m和8.44m)环境下胡杨叶片的气体交换日变化、光响应曲线、PN-Ci曲线以及叶绿素荧光特性等进行了比较研究。研究结果表明:当地下水埋深从4.91m增加到6.93m和8.44m,胡杨光合速率(PN)(10:00),初始荧光(F0)、最大荧光(Fm)、以及PSⅡ实际光化学效率(ΩPSⅡ)、电子传递速率(ETR)、非光化学猝灭系数(NPQ)和正午叶水势(Ψmidday)等都发生了明显变化,其中胡杨NPQ增加了109% 127%,ΩPSⅡ,ETRΨmidday分别减小了24% 29%,17% 22%和31.6% 45.6%,表明胡杨受到的干旱胁迫程度在增加;而当地下水埋深在6.93 8.44m之间时,上述参数无显著变化,表明胡杨很可能处于相同干旱胁迫程度;并且在地下水埋深4.91 8.44m范围内,最大光化学效率(Fv/Fm),表观量子效率(φ),Rubisco羧化速率(Vcmax), 等参数都未发生明显变化,表明即使地下水埋深增加到8.44m,此时的干旱胁迫程度也未超过胡杨的耐受能力,其光合能力也未受到不可逆转的伤害。  相似文献   

5.
Cd2+胁迫对银芽柳PSⅡ叶绿素荧光光响应曲线的影响   总被引:2,自引:0,他引:2  
钱永强  周晓星  韩蕾  孙振元  巨关升 《生态学报》2011,31(20):6134-6142
以盆栽银芽柳为材料,利用MINI-IMAGING-PAM荧光成像测定系统,研究了Cd2+胁迫下叶片叶绿素荧光参数的变化及其光响应曲线。结果表明,初始荧光Fo与最大荧光Fm随着Cd2+浓度的增大而呈现先升后降的趋势,Fo与Fm在200 mg/LCd2+处理4周时达到最高值,400 mg/LCd2+处理则显著下降;PSⅡ最大光化学效率(Fv/Fm)与PSⅡ潜在光化学效率(Fv/Fo)显著受 Cd2+胁迫抑制,但随Cd2+浓度的增加呈先降后升的变化趋势。Cd2+胁迫下各叶绿素荧光参数的光响应结果表明,PSⅡ实际光量子效率Y(Ⅱ)、荧光淬灭系数(qP)随光化光强度的增加呈下降趋势,而同光强下高浓度Cd2+ 使Y(Ⅱ)与(qP) 显著降低;PSⅡ调节性能量耗散的量子产额Y(NPQ)、非光化学淬灭系数(qN)与表观电子传递速率(ETR)则随着光强增加呈上升趋势,同光强下高浓度Cd2+处理显著提高Y(NPQ)qN 与ETR。Cd2+胁迫下,PSⅡ非调节性能量耗散的量子产额Y(NO)稳定在较低水平,同光强下Y(NO)随Cd2+浓度增加略有提高。说明,银芽柳通过调节PSⅡ反应中心开放程度与活性,对Cd2+胁迫表现出较强的耐性,高浓度Cd2+胁迫导致PSⅡ反应中心关闭或不可逆失活,表现出光抑制。  相似文献   

6.
采用开顶式气室盆栽培养小麦,设计2个大气CO2浓度、2个光照强度和2个氮水平的组合处理,通过测定小麦叶片光合速率-胞间CO2浓度响应曲线和叶绿素荧光参数,来测算小麦叶片光化学速率、光合电子传递速率以及叶绿体磷酸丙糖利用效率(TPU)等参数,研究施氮量和光强对高大气CO2浓度下小麦旗叶光合能量传递与分配的影响,以阐明全球气候变化下植物光合能量分配对光合作用适应性下调的作用机制及其氮素调控。结果表明,大气CO2浓度升高后小麦叶片的光呼吸电子传递速率(J0)和Rubisco氧化速率(V0)显著下降;光合电子流的光化学传递速率(JC)、Rubisco羧化速率(VC)和TPU则明显升高,而且施氮后变化幅度加大;小麦叶片JC/JF(PSⅡ反应中心总电子流速率)和TPU/VC显著增加,经过PSⅡ反应中心的电子流更多地进入碳同化过程,表现较高的光合速率(Pn)。遮荫提高了叶片光化学速率和PSⅡ反应中心总电子流速率(JF),这一作用在低氮叶片尤为突出,但使得J0V0明显升高,并显著降低JC/JF,所以Pn明显下降。正常光照条件下,增施氮素可提高小麦叶片的JFJCVCTPU,并使高大气CO2浓度下J0V0较正常大气CO2浓度处理显著降低,有效地提高了植物叶片对光能的利用效率;遮荫后高大气CO2浓度下小麦叶片JCVCTPUJC/JFTPU/VC显著高于正常大气CO2浓度处理,而且这一变化不受氮素水平的显著调节。因此,氮素在高大气CO2浓度下对小麦叶片光合能量利用的调节因光强而异,正常光照下可显著改善小麦叶片对光合能量的利用状况,而遮荫后这一作用减弱。  相似文献   

7.
氮素形态对杉木幼苗侧根生长和叶片光合特性的影响   总被引:3,自引:0,他引:3  
以3月龄的杉木实生苗为试验材料,分析了不同氮素形态——硝态氮(NO3- N)、铵态氮(NH4+ N)和硝酸铵(NH4NO3)(氮素浓度均为3 mmol·L-1)对杉木幼苗侧根生长、叶片光合气体交换参数和叶绿素荧光参数的影响,以揭示杉木幼苗对不同形态氮的偏好性,以及不同形态氮肥下杉木幼苗侧根生长和光合生理的响应特征,为杉木苗期氮肥管理提供理论依据。结果显示:(1)不同氮素形态对杉木幼苗地上部和侧根生物量具有显著影响,其中NH4+ N处理下幼苗地上部和侧根生物量最大,NO3- N处理次之,而NH4NO3处理最小。(2)NH4+ N和NO3- N处理下杉木幼苗总根长、根系总表面积和根系总体积均显著高于NH4NO3处理(P<0.05),且NH4+ N处理又显著高于NO3- N处理,但不同氮形态处理间侧根数量差异不显著。(3)NH4+ N处理下杉木幼苗叶片净光合速率、气孔导度和蒸腾速率明显高于NO3- N和NH4NO3处理,但NO3- N和NH4NO3处理之间无明显差异。(4)NH4+ N处理下杉木叶片初始荧光强度低于NO3- N处理,而最大荧光强度、可变荧光强度和PSⅡ潜在活性却高于全硝氮和硝铵氮处理。上述结果表明,NH4+ N处理不仅有利于杉木幼苗侧根生长发育,且其叶片具有较强的光合能力,较高的PSⅡ中心稳定性、光化学活性以及电子传递效率,从而更有利于植株生长。因此,从根系生长和光合特性来看,杉木幼苗对铵态氮具有偏好性。  相似文献   

8.
遮荫对两个基因型玉米叶片解剖结构及光合特性的影响   总被引:9,自引:0,他引:9  
杜成凤  李潮海  刘天学  赵亚丽 《生态学报》2011,31(21):6633-6640
以耐荫性不同的玉米品种郑单958(ZD958,耐荫性较强)和豫玉22(YY22,耐荫性较弱)为材料,研究了苗期50%遮荫对玉米叶片形态结构和光合特性的影响。结果表明:形态结构上,苗期遮荫处理后,玉米叶片变薄,单位面积叶绿体数目减少,基粒数、基粒厚度和片层数增加,但是YY22的叶绿体大部分发育不良,肿胀呈球形,基粒片层和基质片层出现不同程度的松散;而ZD958大部分叶绿体结构良好,各部分发育基本正常。光合特性上,弱光胁迫使玉米叶片叶绿素含量升高,净光合速率(Pn)、PSⅡ最大光化学量子产量(Fv/Fm)和实际光化学效率(ΦPS)降低,胞间CO2浓度(Ci)和非光化学猝灭(NPQ)增加,但是YY22的Pn、Fv/FmΦPS显著下降,CiNPQ显著升高;而ZD958的Fv/FmΦPS下降幅度较小,且NPQ增加亦不显著。研究结果提示,弱光胁迫对玉米叶片形态结构和光合特性影响较大,且存在基因型差异,耐荫性较强的品种对弱光环境的适应性较强。  相似文献   

9.
遮荫对濒危植物崖柏光合作用和叶绿素荧光参数的影响   总被引:5,自引:0,他引:5  
崖柏(Thuja sutchuenensis)是我国特有的极度濒危植物。目前尚缺乏从光合生理角度对其濒危机制开展讨论与研究。光是影响植物生存和生长发育最重要的环境因子之一,且有可能成为植物种群自然更新的主要限制因子。因此,通过人工遮荫方式,探讨了3种光环境下(L0全光,L1-50%全光,L2-25%全光)崖柏幼苗的光合能力及叶绿素荧光参数的差异。结果表明,遮荫导致了叶片表观量子效率和最大净光合速率增加。随着生长光强的降低,崖柏幼苗的暗呼吸速率、光补偿点和光饱和点均有所下降。叶绿素荧光参数方面,遮荫导致了PSⅡ原初光能转换效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)、PSⅡ有效光量子产量(Fv'/Fm')和非光化学猝灭系数(NPQ)增加;但随着生长光强减弱,崖柏幼苗叶片的光化学猝灭系数(PQ)和电子传递速率(ETR)逐渐降低。同时,遮荫也造成了叶片叶绿素含量(Chla+Chlb)的显著增加。结果表明,崖柏对光具有较强的耐受范围(尤其是低光)和内在调节机制,初步判定崖柏林下光照的不足不会成为崖柏自然更新的决定性限制因子。  相似文献   

10.
黄土高原冬小麦地N2O排放   总被引:1,自引:0,他引:1  
从2007年7月1日到2009年6月30日对黄土高原冬小麦地氧化亚氮(N2O)排放采用静态箱气相色谱法进行了为期2a 的监测。设置2个处理,有小麦田(有小麦生长),无小麦田(出芽初期拔去麦苗)。研究结果表明有小麦田、无小麦田N2O排放量年际变化不大。有小麦田年均的N2O 排放量为2.05 kg · N2O · hm-2 · a-1,无小麦田年均的N2O 排放量为2.28 kg · N2O · hm-2 · a-1 。在冻融交替期,施肥后、翻地后和降雨后无小麦田和有小麦田N2O排放明显增加,N2O的季节变化受到这些短期事件的显著影响;有小麦田N2O排放与地温(P<0.01),气温(P<0.01)和WFPS(P<0.05)显著相关,而无小麦田N2O排放与这些环境土壤因子都不相关;有小麦田和无小麦田两个处理土壤的WFPS通常都低于60%,可以推断在本地区,硝化反应是N2O的重要生成源。  相似文献   

11.
Ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) have contrasting responses to soil mineral N availability and clover has the ability to fix atmospheric N(2) symbiotically. It has been hypothesized that these differences are the key to understanding grass-clover coexistence and vegetative dynamics in pastures. However, the whole plant response of clover and ryegrass to mineral N availability has not been fully characterized and inter-cultivar variability in the N-handling dynamics of clover has not been assessed. A detailed experimental study to address these issues was undertaken. For all clover cultivars and ryegrass, mass specific mineral N uptake rates (of whole plants) were similar saturating functions of mineral N availability. For all clover cultivars total N assimilation rates, whole plant C : N ratios and root : shoot ratios were independent of mineral N availability. Clover growth rates were also independent of mineral N availability except for a slight (<10%) reduction at very low N availability levels. Specific N(2) fixation rate (whole plant) was precisely controlled to ensure fixation balanced the deficit between mineral N uptake and the total N assimilation required to maintain constant whole plant C : N ratio. There was always a deficit between N uptake and the total N assimilation required to maintain C : N ratio. Consequently, some N(2) fixation remained engaged even at high mineral N availability levels. All inter-cultivar variation in N(2) fixation dynamics could be attributed to variations in growth rate. Clover mass specific growth rate declined as plant size increased. Ryegrass specific growth rate, whole plant C : N ratio and root : shoot ratio were dependent on N availability. Increased N availability led to increased growth rate and decreased C : N and root : shoot ratios. Specific growth rate was also dependent on plant size, growth rate declining as plant size increased. It is concluded that clover inter-cultivar variation in field performance is unlikely to be a consequence of variation in N-handling characteristics. Inter-cultivar differences in growth rate are likely to be a much more important source of variation.  相似文献   

12.
Background and Aims The green orchid Goodyera repens has been shown to transfer carbon to its mycorrhizal partner, and this flux may therefore be affected by light availability. This study aimed to test whether the C and N exchange between plant and fungus is dependent on light availability, and in addition addressed the question of whether flowering and/or fruiting individuals of G. repens compensate for changes in leaf chlorophyll concentration with changes in C and N flows from fungus to plant.Methods The natural abundances of stable isotopes of plant C and N were used to infer changes in fluxes between orchid and fungus across natural gradients of irradiance at five sites. Mycorrhizal fungi in the roots of G. repens were identified by molecular analyses. Chlorophyll concentrations in the leaves of the orchid and of reference plants were measured directly in the field.Key Results Leaf δ13C values of G. repens responded to changes in light availability in a similar manner to autotrophic reference plants, and different mycorrhizal fungal associations also did not affect the isotope abundance patterns of the orchid. Flowering/fruiting individuals had lower leaf total N and chlorophyll concentrations, which is most probably explained by N investments to form flowers, seeds and shoot.Conclusions The results indicate that mycorrhizal physiology is relatively fixed in G. repens, and changes in the amount and direction of C flow between plant and fungus were not observed to depend on light availability. The orchid may instead react to low-light sites through increased clonal growth. The orchid does not compensate for low leaf total N and chlorophyll concentrations by using a 13C- and 15N-enriched fungal source.  相似文献   

13.
Environmental conditions affect grain yield in maize (Zea mays L.) mainly by altering the kernel number per plant (KNP). This number is determined during a critical period of about 2 weeks around silking. The objectives of this study were to assess how the rate and timing of nitrogen (N) fertilizer applications affect biomass partitioning and KNP in two genotypes with different N use efficiency, and to compare kernel set of these genotypes under varying regimes of carbohydrate and N availability during the critical period for kernel set. In the first field experiment, plant density and the rate of N supply per plant were varied independently. In the second field experiment, N availability was controlled via the application of N fertilizer, and carbohydrate availability was controlled by shading or thinning at silking. In both experiments, low rates of N supply reduced KNP more strongly in the non-efficient genotype when compared to the efficient genotype. The genotypic differences in kernel set were neither associated with N uptake into the above-ground biomass at maturity, nor above-ground biomass at silking. In the non-efficient genotype, application of N fertilizer at silking increased KNP. This increase was not associated with an increase in plant growth but with increased partitioning of biomass towards the reproductive organs during the critical period for kernel set. The genotype which had been selected for its high N use efficiency also showed higher kernel set at high plant density and shading during flowering when compared to the non-efficient genotype. Under conditions of restricted resource availability per plant, plant and ear growth rates during the critical period of about 14 days after onset of flowering declined compared with non-limiting conditions. However, these growth rates were less reduced in the efficient genotype. Pooling treatments of different plant density and different available N, each hybrid showed linear responses of KNP to plant growth rate and to ear growth rate. Furthermore, in the efficient genotype KNP was reduced to a lesser extent in response to decreasing growth rates. We conclude that higher kernel set of the efficient genotype compared to the non-efficient genotype under stressful conditions was associated with low sensitivity of plant growth and dry matter distribution towards reproductive organs to low assimilate availability during the critical period of kernel set, and particularly with low sensitivity of kernel set to decreasing plant and ear growth rates.  相似文献   

14.
A holistic view of nitrogen acquisition in plants   总被引:1,自引:0,他引:1  
Nitrogen (N) is the mineral nutrient required in the greatest amount and its availability is a major factor limiting growth and development of plants. As sessile organisms, plants have evolved different strategies to adapt to changes in the availability and distribution of N in soils. These strategies include mechanisms that act at different levels of biological organization from the molecular to the ecosystem level. At the molecular level, plants can adjust their capacity to acquire different forms of N in a range of concentrations by modulating the expression and function of genes in different N uptake systems. Modulation of plant growth and development, most notably changes in the root system architecture, can also greatly impact plant N acquisition in the soil. At the organism and ecosystem levels, plants establish associations with diverse microorganisms to ensure adequate nutrition and N supply. These different adaptive mechanisms have been traditionally discussed separately in the literature. To understand plant N nutrition in the environment, an integrated view of all pathways contributing to plant N acquisition is required. Towards this goal, in this review the different mechanisms that plants utilize to maintain an adequate N supply are summarized and integrated.  相似文献   

15.
Question: How does responsiveness to water and Nitrogen (N) availability vary across the compositional and functional diversity that exists in a mesic California annual grassland plant community? Location: Northern California annual grassland. Methods: A mesocosm system was used to simulate average annual precipitation totals and dry and wet year extremes observed in northern California mesic grasslands. The effects of precipitation and N availability on biomass and fecundity were measured on three different vegetation types, a mixed grass forb community, and a forb and a grass monoculture. The treatment effects on plant community composition were examined in the mixed species community. Results: While growth and seed production of the three vegetation types was inherently different, their responses to variation in precipitation and N were statistically similar. Plant density, shoot biomass, and seed production tended to increase with greater water availability in all vegetation types, with the exception of a consistent growth reduction in high precipitation (1245 mm) plots in the first year of the study. Shoot biomass responded positively to N addition, an effect that increased with greater water availability. Nitrogen addition had little effect on plant density or seed production. In the mixed grass‐forb community, biomass responsiveness to water and N treatments were consistently driven by the shoot growth of Avena barbata, the dominant grass species. Conclusions: Vegetation responses to changes in precipitation and N availability were consistent across a range of composition and structural diversity in this study. Plant growth and seed production were sensitive to both increased and decreased precipitation totals, and the magnitude of these responses to N availability varied depending on soil moisture conditions. Our results suggest the impacts of changing precipitation regimes and N deposition on annual productivity of California grasslands may be predictable under different climate scenarios across a range of plant communities.  相似文献   

16.
Frass deposition to soil is an important pathway by which herbivorous insects impact decomposition and soil nutrient availability. However, little is known about how frass quality influences ecosystem properties. Here, we examined the effects of frass quality on the decomposition process, soil nitrogen (N) availability, and plant growth, using frass of Mamestra brassicae (L.) that fed on fertilized or unfertilized Brassica rapa L. var. perviridis Bailey. The frass quality was largely dependent on the host plant quality. Frass excreted by larvae that fed on the fertilized plants had higher N than that of larvae that fed on the unfertilized plants. The decomposition rate of the frass did not differ between N-rich and N-poor frass, except during the early decomposition period. The inorganic N concentration decreased during decomposition in both frass types. However, difference in the initial inorganic N concentration led to different consequences regarding soil N availability. Furthermore, addition of frass to the soil differently influenced the growth of B. rapa plants depending on the frass quality: plant biomass was increased by N-rich frass addition but decreased by N-poor frass addition, compared to the biomass without frass addition. These results indicate that frass quality is an important factor in determining the impact of herbivorous insects on nutrient dynamics, and that frass positively or negatively influences soil N availability and plant growth, depending on its quality.  相似文献   

17.
Plants of Cirsium vulgare (Savi) Ten. were cultivated under five different nitrogen regimes in order to investigate the effects of nitrogen supply on the storage processes in a biennial species during its first year of growth. External N supply increased total biomass production without changing the relationship between ‘productive plant compartments’ (i.e. shoot plus fine roots) and ‘storage plant compartments’ (i.e. structural root dry weight, which is defined as the difference between tap root biomass and the amount of stored carbohydrates and N compounds). The amount of carbohydrates and N compounds stored per unit of structural tap root dry weight was not affected by external N availability during the season, because high rates of N supply increased the concentration of N compounds whilst decreasing the carbohydrate concentration, and low rates of N supply had the opposite effect. Mobilization of N from senescing leaves was not related to the N status of the plants. The relationship between nitrogen compounds stored in the tap root and the maximum amount of nitrogen in leaves was an increasing function with increasing nitrogen supply. We conclude that the allocation between vegetative plant growth and the growth of storage structures over a wide range of N availability seems to follow predictions from optimum allocation theory, whereas N storage responds in a rather plastic way to N availability.  相似文献   

18.
We assayed the interaction on the availability of plant nutrient and species of host plant on the performance of two species of Pieris butterfly. The results indicated that constant application of different levels of fertilizers to the four different host plants resulted to an increase in their content of plant nutrients. The chemical analysis showed that the added nutrients increased foliar nitrogen and water contents, but there was no effect on the level of glucosinolates. Larvae that fed on highly-nutritious foliage increased their growth rates and showed a shorter development period. The results of feeding trials revealed that the 4th-instar larvae, which had fed on host plants with higher levels of fertilization had a shorter duration of development, less consumption rate, higher growth rate and food processing efficiency. To summarize, this research revealed that both the availability of plant nutrient and species of host plant can strongly influence the physiology and foliar chemistry of host plants. Moreover, the changes of phytochemical in the host plants may play an important role in affecting the performance (growth and food utilization efficiency) of both species of Pieris butterflies.  相似文献   

19.
Increases in nitrogen (N) availability can favor fast-growing invasive species over slow-growing native species. One way to reduce N availability is to add labile carbon (C) to the soil, which can lead to microbial immobilization of plant available N. This method has been used, with widely varying degrees of success, to both study and control plant invasions. One reason that C addition might not work as expected is that N is not always the limiting resource for plant growth. For example, if plant growth is limited by water, changes in N availability might have little effect on invasion. Here I ask whether effects of C addition on N availability, resident plant biomass, and invasion depend on water availability in semi-arid mixedgrass prairie. Six invasive species were seeded into plots treated with a factorial combination of water (ambient or added) and N (+C, control or +N). Carbon addition reduced capture of mineral N by resin probes (by an average of 73%), and reduced biomass of resident species (from 336 g m−2 to 203 g m−2), both with and without added water. In contrast, because there was little invasion in ambient-water plots, C addition reduced invasion only in added-water plots. Given added water, C addition reduced biomass of Centaurea diffusa by 95%, and prevented invasion by Gypsophila paniculata and Linaria dalmatica. Mechanisms by which C addition reduced invasion varied by species, with added C reducing the growth of individual C. diffusa plants, but reducing numbers of G. paniculata and L. dalmatica individuals.  相似文献   

20.
《植物生态学报》2016,40(7):679
Aims Soil nitrogen (N) availability is the most limiting factor for terrestrial plant growth, and global N deposition can improve the soil N availability. Fast growth may be a general trait of successful invaders, so learning how N addition affected the growth and competitive ability of three Centaurea stoebe populations is conductive to forecasting the plant invasion risk under N deposition. Methods We conducted an experiment simulating N deposition at Chengdu, in which three populations from the invasive forb C. stoebe and one native species Poa pratensis were subjected to two treatments: N addition and ambient. In our study, C. stoebe populations and P. pratensis were planted alone or together, and we determined plant height, leaf area and biomass. Important findings In the absence of competition, N addition promoted the growth of C. stoebe populations, thereby improving their invasive potential to a certain extent. So under the condition of competition, we found that N addition obviously enhanced the competitive effects of C. stoebe on P. pratensis, particularly interspecific root competition. The competitive ability of different populations performed similarly in response to N addition. These results preliminarily suggest that N deposition may increase the potential invasion risks of C. stoebe populations by improving their competitive ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号