首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A deficiency of vitamin D results in muscle weakness as well as rickets in children and osteomalacia in the adult. To study the basis for this weakness, severe vitamin D deficiency was produced in rats as revealed by a low level or absence of 25-hydroxyvitamin D3 in the serum. Vitamin D deficiency was achieved by feeding purified diets to weanlings for 16 weeks. Muscle force, peak contraction (P), time-to-half contraction (T1/2), time-to-peak contraction (TP), and time-to-half recovery (T1/2r) were measured. A significant reduction in muscle force was found when vitamin D deficiency was accompanied by hypophosphatemia. Within 2 days of correcting the hypophosphatemia, muscle strength was normalized. When serum calcium and serum phosphorus were maintained in the normal range in vitamin D-deficient rats, muscle weakness did not develop. Further, hypocalcemia together with vitamin D deficiency did not produce muscle weakness. These results strongly suggest that muscle weakness noted in rachitic patients is the result of the hypophosphatemia of vitamin D deficiency.  相似文献   

2.
Circulating 25-hydroxyvitamin D [25(OH)D] is generally considered the means by which we define nutritional vitamin D status. There is much debate, however, with respect to what a healthy minimum level of circulation 25(OH)D should be. Recent data using various biomarkers such as intact parathyroid hormone (PTH), intestinal calcium absorption, and skeletal density measurements suggest this minimum level to be 80 nmol (32 ng/mL). Surprisingly, the relationship between circulating vitamin D3 and its metabolic product—25(OH)D3 has not been studied. We investigated this relationship in two separate populations: the first, individuals from Hawaii who received significant sun exposure; the second, subjects from a lactation study who received up to 6400 IU vitamin D3/day for 6 months.

Results (1) the relationship between circulating vitamin D3 and 25(OH)D in both groups was not linear, but appeared saturable and controlled; (2) optimal nutritional vitamin D status appeared to occur when molar ratios of circulating vitamin D3 and 25(OH)D exceeded 0.3; at this point, the Vmax of the 25-hydroxylase appeared to be achieved. This was achieved when circulating 25(OH)D exceeded 100 nmol.

We hypothesize that as humans live today, the 25-hydroxylase operates well below its Vmax because of chronic substrate deficiency, namely vitamin D3. When humans are sun (or dietary) replete, the vitamin D endocrine system will function in a fashion as do these other steroid synthetic pathways, not limited by substrate. Thus, the relationship between circulating vitamin D and 25(OH)D may represent what “normal” vitamin D status should be.  相似文献   


3.
Circulating 25-hydroxyvitamin D [25(OH)D] is generally considered the means by which we define nutritional vitamin D status. There is much debate, however, with respect to what a healthy minimum level of circulation 25(OH)D should be. Recent data using various biomarkers such as intact parathyroid hormone (PTH), intestinal calcium absorption, and skeletal density measurements suggest this minimum level to be 80 nmol (32 ng/mL). Surprisingly, the relationship between circulating vitamin D3 and its metabolic product—25(OH)D3 has not been studied. We investigated this relationship in two separate populations: the first, individuals from Hawaii who received significant sun exposure; the second, subjects from a lactation study who received up to 6400 IU vitamin D3/day for 6 months.Results (1) the relationship between circulating vitamin D3 and 25(OH)D in both groups was not linear, but appeared saturable and controlled; (2) optimal nutritional vitamin D status appeared to occur when molar ratios of circulating vitamin D3 and 25(OH)D exceeded 0.3; at this point, the Vmax of the 25-hydroxylase appeared to be achieved. This was achieved when circulating 25(OH)D exceeded 100 nmol.We hypothesize that as humans live today, the 25-hydroxylase operates well below its Vmax because of chronic substrate deficiency, namely vitamin D3. When humans are sun (or dietary) replete, the vitamin D endocrine system will function in a fashion as do these other steroid synthetic pathways, not limited by substrate. Thus, the relationship between circulating vitamin D and 25(OH)D may represent what “normal” vitamin D status should be.  相似文献   

4.
5.
We have synthesized a novel vitamin D receptor agonist VS-105 ((1R,3R)-5-((E)-2-((3αS,7αS)-1-((R)-1-((S)-3-hydroxy-2,3-dimethylbutoxy)ethyl)-7α-methyldihydro-1H-inden-4(2H,5H,6H,7H,7αH)-ylidene)ethylidene)-2-methylenecyclohexane-1,3-diol). Preparation of a-ring phenylphosphine oxide 11, followed by Wittig–Horner coupling of 11 with the protected 25-hydroxy Grundmann’s ketone 22 generated the precursor 12. Deprotection of the TBDMS groups of 12 produced the target compound VS-105. The biological profiles of VS-105 were evaluated using in vitro assays (VDR receptor binding, VDR reporter gene and HL-60 differentiation) in comparison to calcitriol (the endogenous hormone) or paricalcitol. Furthermore, the PTH suppressing potency and hypercalcemic side effects of VS-105 were evaluated in the 5/6 nephrectomized uremic rats in comparison to paricalcitol. Combining various changes at 20-epi, 22-oxa, 24-methyl, and 2-methylene yielded VS-105 that not only is highly potent in inducing functional responses in vitro, but also effectively suppresses PTH in a dose range that does not affect serum calcium in the 5/6 nephrectomized uremic rats.  相似文献   

6.
Several studies have demonstrated that excess of vitamin D3 is toxic particularly to vascular tissues. A notable pathological feature is arterial calcification. The nature of the toxic metabolite in hypervitaminosis D and the pathogenesis of arterial calcification are not clearly understood. The present study was undertaken to explore whether arterial calcification is a sequel of increased calcium uptake by arterial smooth muscle mediated by up regulation of vitamin D receptor in the cells in response to elevated circulating levels of vitamin D3 in serum. The experimental study was performed in 20 New Zealand white female rabbits aged 6 months. Animals in the test group were injected 10,000 IU of cholecalciferol intramuscularly twice a week for one month. Six control animals were given intra-muscular injections of plain cottonseed oil. Animals were sacrificed and aortas were examined for pathological lesions, 1,25-dihyroxyvitamin D3 (1,25(OH)2 D3) receptor levels and 45Ca uptake in smooth muscle cells. Serum samples collected at intervals were assayed for levels of 25-OH-D3 and calcium. The results showed that in animals given injections of cholecalciferol, serum levels of 25-OH-D3 were elevated. In four of these animals calcification and aneurysmal changes were seen in the aorta. Histological lesions comprised of fragmentation of elastic fibers as well as extensive loss of elastic layers. 1,25(OH)2 D3 receptor levels were up regulated and 45Ca uptake enhanced in aortas of animals which were given excessive vitamin D3. The evidences gathered suggest that excess vitamin D is arteriotoxic and that the vitamin induces arterial calcification through up regulation of 1,25(OH)2D3 receptor and increased calcium uptake in smooth muscle cells of the arteries.  相似文献   

7.
8.
1,25-Dihydroxyvitamin D3 administration to vitamin D-deficient rats suppresses accumulation of 1,25-dihydroxy-[3α-3H]vitamin D3 and stimulates accumulation of 24,25-dihydroxy-[3α-33H]vitamin D3 from 25-hydroxy-[3α-3H]vitamin D3 equally well in the presence and absence of parathyroid glands. These results demonstrate that this regulatory action is not mediated by the parathyroid glands and support conclusions from invitro studies that this represents a direct action of 1,25-dihydroxyvitamin D3.  相似文献   

9.
The purpose of this study was to identify if circulating interleukin (IL)-6 and γ-tocopherol (γT) fluctuate with vitamin D status in subjects with an underlying knee joint injury or disease. We hypothesized that low vitamin D associates with an increase in plasma γT while serum IL-6 remains unchanged in subjects with an underlying knee joint trauma or disease. Fifty-four subjects scheduled to undergo primary, unilateral anterior cruciate ligament reconstructive surgery (ACL; n = 27) or total knee arthroplasty (TKA; n = 27) were studied. Circulating γT, α-tocopherol (αT), lipids (cholesterol and triglycerides), IL-6, and 25-hydroxyvitamin D (25(OH)D) were measured in fasting blood samples obtained prior to surgery. Subjects were classified as vitamin D deficient, insufficient, or sufficient if they had a serum 25(OH)D concentration <50, 50–75, or >75 nM, respectively. The majority (57%) of the subjects possessed a serum 25(OH)D less than 50 nM. Circulating cholesterol, triglycerides, and IL-6 were not significantly (all p > 0.05) different between vitamin D status groups. However, lipid corrected αT was significantly (p < 0.05) decreased and both lipid- and non-lipid-corrected plasma γT concentrations were significantly (both p < 0.05) increased with low serum 25(OH)D (i.e., <50 nM). A significant (p < 0.05) multi-variate analysis revealed that an increase in plasma γT per lipids was significantly (p < 0.05) predicted by a decrease in serum 25(OH)D but not by a decrease in plasma αT per lipids. We conclude that low vitamin D associates with an increase in plasma γT but not IL-6 in subjects with an underlying joint injury or disease.  相似文献   

10.
11.
12.
13.
Evidence from both physiological experiments and randomized trials demonstrates that elevating vitamin D status above levels prevailing in the North American and European adult populations improves calcium absorption and reduces fall risk and osteoporotic fractures. Additionally observational data suggest that raising vitamin D status protects against various cancers and autoimmune disorders as well. Hence a strong case can be made for immediate improvement in vitamin D status of the general population.  相似文献   

14.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), has diverse effects in a variety of tissues and cell types, including skin. Since 1,25(OH)2D3 affects both fibroblast and keratinocytes, we evalauated the effect of 1,25(OH)2D3 or wound healing. We investigated the effect of the topically applied 1,25(OH)2D3 or vehicle on the healing of cutaneous wounds in rats in a blinded manner. Wound areas were measured by planimetry technique. Healing was expressed as the percentage of the original wound area that was healed. 1,25(OH)2D3 at concentrations between 5 and 50 ng/day caused a dose-dependent acceleration of healing. Time course and specificity studies indicated that 1,25(OH)2D3 specifically promoted healing between 1–5 days after wounding as compared with vitamin D (0.5 μg/day), which showed no significant improvement over control. Our results suggest that 1,25(OH)2D3 and its analogues may be a new class of compounds that could be developed to enhance wound healing. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Objectives:A positive association between levels of blood 25-hydroxyvitamin D (25[OH]D), an index of vitamin D status, and physical balance has been reported from cross-sectional studies, but longitudinal studies are rare. The present study aimed to test the hypothesis that low serum 25(OH)D levels are longitudinally associated with impaired postural sway over a 6-year follow-up period in older women.Methods:The present cohort consisted of 392 community-dwelling Japanese women aged ≥69 years. Baseline examinations included serum 25(OH)D and physical performance tests, including postural sway velocity. Standing postural sway was evaluated by measuring gravity-center sway velocity. Follow-up physical performance tests were conducted 6 years later.Results:Mean subject age and serum 25(OH)D levels were 73.3 years (SD 3.7) and 61.0 nmol/L (SD 16.9), respectively. No significant association was found between 25(OH)D levels and changes in postural sway velocity (adjusted P for trend=0.72). Women with 25(OH)D <30 nmol/L tended to have lower Δpostural sway velocity than those with 25(OH)D ≥30 nmol/L (mean, -0.59 vs 0.37 cm/s, respectively; adjusted P=0.13).Conclusions:Vitamin D levels are not longitudinally associated with impaired postural sway in older women. Further longitudinal studies are needed to corroborate the results of this study.  相似文献   

16.
1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the biologically active form of vitamin D, is widely recognized as a modulator of the immune system as well as a regulator of mineral metabolism. The objective of this study was to determine the effects of vitamin D status and treatment with 1,25(OH)(2)D(3) on diabetes onset in non-obese diabetic (NOD) mice, a murine model of human type I diabetes. We have found that vitamin D-deficiency increases the incidence of diabetes in female mice from 46% (n=13) to 88% (n=8) and from 0% (n=10) to 44% (n=9) in male mice as of 200 days of age when compared to vitamin D-sufficient animals. Addition of 50 ng of 1,25(OH)(2)D(3)/day to the diet prevented disease onset as of 200 days and caused a significant rise in serum calcium levels, regardless of gender or vitamin D status. Our results indicate that vitamin D status is a determining factor of disease susceptibility and oral administration of 1,25(OH)(2)D(3) prevents diabetes onset in NOD mice through 200 days of age.  相似文献   

17.
Sterling TM  Nemere I 《Steroids》2007,72(2):151-157
Cell culture techniques providing retention of the polarized enterocyte morphology has allowed, for the first time, comparison of parathyroid hormone (PTH)- and 25-hydroxyvitamin D(3) [25(OH)D(3)]-induced (45)Ca uptake with membrane trafficking events discerned using confocal microscopy. Treatment of cells with 65 pM bPTH(1-34) promoted enhanced (45)Ca uptake between 1 and 10 min after peptide. The protein kinase A (PKA) antagonist, RpcAMP inhibited hormone-mediated uptake. At the microscopic level, cells labeled with the endocytic tracking dye FM1-43 revealed increased punctate staining 50-550s after hormone. Pretreatment of cells with RpcAMP abolished this pattern of staining. The calcium indicator dye fluo-3 AM revealed faint punctate labeling in controls, with increased bands of punctate labeling in the apical region of the cells after peptide hormone, and ultimately the basal region. Parallel studies conducted with the metabolite 25(OH)D(3) resulted in a slower stimulation of (45)Ca uptake 5-10 min after steroid, which was also inhibited by preincubation with RpcAMP. Cells labeled with FM1-43 and then treated with steroid showed no change in distribution of fluorescence during the 10 min incubation period. Confocal microscopy with fluo-3 revealed intense apical fluorescence--that after steroid --streamed to a perinuclear position, and ultimately the basal area. Uniformly diffuse staining, which would indicate cytoplasmic calcium transport, was observed only in controls. Membrane trafficking and compartmentalized calcium appear to be integral to agonist mediated cation transport.  相似文献   

18.
19.
20.
Objectives: Ecological, in vitro, and in vivo studies demonstrate a link between vitamin D and prostate tumor growth and aggressiveness. The goal of this study was to investigate whether plasma concentration of vitamin D is associated with survivorship and disease progression in men diagnosed with prostate cancer. Materials and methods: We conducted a population-based cohort study of 1476 prostate cancer patients to assess disease recurrence/progression and prostate cancer-specific mortality (PCSM) risks associated with serum levels of 25(OH) vitamin D [25(OH)D]. Results: There were 325 recurrence/progression and 95 PCSM events during an average of 10.8 years of follow-up. Serum levels of 25(OH)D were not associated with risk of recurrence/progression or mortality. Clinically deficient vitamin D levels were associated with an increased risk of death from other causes. Conclusions: We did not find evidence that serum vitamin D levels measured after diagnosis affect prostate cancer prognosis. Lower levels of vitamin D were associated with risk of non-prostate cancer mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号