首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GIPC is a PDZ protein located on peripheral endosomes that binds to the juxtamembrane region of the TrkA nerve growth factor (NGF) receptor and has been implicated in NGF signaling. We establish here that endogenous GIPC binds to the C terminus of APPL, a Rab5 binding protein, which is a marker for signaling endosomes. When PC12(615) cells are treated with either NGF or antibody agonists to activate TrkA, GIPC and APPL translocate from the cytoplasm and bind to incoming, endocytic vesicles carrying TrkA concentrated at the tips of the cell processes. GIPC, but not APPL, dissociates from these peripheral endosomes prior to or during their trafficking from the cell periphery to the juxtanuclear region, where they acquire EEA1. GIPC's interaction with APPL is essential for recruitment of GIPC to peripheral endosomes and for TrkA signaling, because a GIPC PDZ domain mutant that cannot bind APPL or APPL knockdown with small interfering RNA inhibits NGF-induced GIPC recruitment, mitogen-activated protein kinase activation, and neurite outgrowth. GIPC is also required for efficient endocytosis and trafficking of TrkA because depletion of GIPC slows down endocytosis and trafficking of TrkA and APPL to the early EEA1 endosomes in the juxtanuclear region. We conclude that GIPC, following its recruitment to TrkA by APPL, plays a key role in TrkA trafficking and signaling from endosomes.  相似文献   

2.
Tyrosinase and tyrosinase-related proteins (TRPs) are a family of melanosomal membrane proteins involved in mammalian pigmentation. Whereas the melanogenic functions of TRPs are localized in their amino-terminal domains that reside within the lumen of melanosomes, the sorting and targeting of these proteins to melanosomes is mediated by signals in their cytoplasmic domains. To identify proteins that interact with the cytoplasmic tail of gp75 (TRP-1), the most abundant melanosomal membrane protein, we performed yeast two-hybrid screening of a melanocyte cDNA library. Here, we show that the cytoplasmic domain of gp75 interacts with a PDZ domain-containing protein. The gp75-interacting protein is identical to GIPC, an RGS (regulator of G protein signaling)/GAIP-interacting protein, and to SEMCAP-1, a transmembrane semaphorin-binding protein. Carboxyl-terminal amino acid residues, Ser-Val-Val, of gp75 are necessary and sufficient for interaction of gp75 with the single PDZ domain in GIPC. Although endogenous and transfected GIPCs bind efficiently to transiently expressed gp75, only a small amount of GIPC is found associated with gp75 at steady state. Using a strategy to selectively synchronize the biosynthesis of endogenous gp75, we demonstrate that only newly synthesized gp75 associates with GIPC, primarily in the juxtanuclear Golgi region. Our data suggest that GIPC/SEMCAP-1 plays a role in biosynthetic sorting of proteins, specifically gp75, to melanosomes.  相似文献   

3.
The neurotrophin receptor TrkA plays critical roles in the nervous system by recruiting signaling molecules that activate pathways required for the growth and survival of neurons. Here, we report APPL1 as a TrkA-associated protein. APPL1 and TrkA co-immunoprecipitated in sympathetic neurons. We have identified two routes through which this association can occur. APPL1 was isolated as a binding partner for the TrkA-interacting protein GIPC1 from rat brain lysate by mass spectrometry. The PDZ domain of GIPC1 directly engaged the C-terminal sequence of APPL1. This interaction provides a means through which APPL1 may be recruited to TrkA. In addition, the APPL1 PTB domain bound to TrkA, indicating that APPL1 may associate with TrkA independently of GIPC1. Isolation of endosomal fractions by high-resolution centrifugation determined that APPL1, GIPC1, and phosphorylated TrkA are enriched in the same fractions. Reduction of APPL1 or GIPC1 protein levels suppressed nerve growth factor (NGF)-dependent MEK, extracellular signal-regulated kinase, and Akt activation and neurite outgrowth in PC12 cells. Together, these results indicate that GIPC1 and APPL1 play a role in TrkA function and suggest that a population of endosomes bearing a complex of APPL1, GIPC1, and activated TrkA may transmit NGF signals.  相似文献   

4.
PDZ proteins coordinate assembly of protein complexes that participate in diverse biological processes. GIPC is a multifunctional PDZ protein that interacts with several soluble and membrane proteins. Unlike most PDZ proteins, GIPC contains single PDZ domain and the mechanisms by which GIPC mediates its actions remain unclear. We investigated the possibility that in lieu of multiple PDZ domains, GIPC forms multimers. Here, we demonstrate that GIPC can bind to itself and that the PDZ domain is involved in GIPC-GIPC interaction. Gel filtration, sucrose gradient centrifugation and chemical cross-linking showed that whereas bulk of cytosolic GIPC was present as monomer, oligomers with an estimated molecular mass corresponding to GIPC homotrimer were readily detectable in the membrane fraction. Modeling of GIPC PDZ domain showed feasibility of trimerization. Immunogold electron microscopy showed that GIPC is present in clusters near vesicles. Our data suggest that oligomers of GIPC mediate its functions in melanocytes.  相似文献   

5.
Lysophosphatidic acid (LPA) mediates diverse cellular responses through the activation of at least six LPA receptors – LPA1–6, but the interacting proteins and signaling pathways that mediate the specificity of these receptors are largely unknown. We noticed that LPA1 contains a PDZ binding motif (SVV) identical to that present in two other proteins that interact with the PDZ protein GIPC. GIPC is involved in endocytic trafficking of several receptors including TrkA, VEGFR2, lutropin and dopamine D2 receptors. Here we show that GIPC binds directly to the PDZ binding motif of LPA1 but not that of other LPA receptors. LPA1 colocalizes and coimmunoprecipitates with GIPC and its binding partner APPL, an activator of Akt signaling found on APPL signaling endosomes. GIPC depletion by siRNA disturbed trafficking of LPA1 to EEA1 early endosomes and promoted LPA1 mediated Akt signaling, cell proliferation, and cell motility. We propose that GIPC binds LPA1 and promotes its trafficking from APPL-containing signaling endosomes to EEA1 early endosomes and thus attenuates LPA-mediated Akt signaling from APPL endosomes.  相似文献   

6.
NGF initiates the majority of its neurotrophic effects by promoting the activation of the tyrosine kinase receptor TrkA. Here we describe a novel interaction between TrkA and GIPC, a PDZ domain protein. GIPC binds to the juxtamembrane region of TrkA through its PDZ domain. The PDZ domain of GIPC also interacts with GAIP, an RGS (regulators of G protein signaling) protein. GIPC and GAIP are components of a G protein-coupled signaling complex thought to be involved in vesicular trafficking. In transfected HEK 293T cells GIPC, GAIP, and TrkA form a coprecipitable protein complex. Both TrkA and GAIP bind to the PDZ domain of GIPC, but their binding sites within the PDZ domain are different. The association of endogenous GIPC with the TrkA receptor was confirmed by coimmunoprecipitation in PC12 (615) cells stably expressing TrkA. By immunofluorescence GIPC colocalizes with phosphorylated TrkA receptors in retrograde transport vesicles located in the neurites and cell bodies of differentiated PC12 (615) cells. These results suggest that GIPC, like other PDZ domain proteins, serves to cluster transmembrane receptors with signaling molecules. When GIPC is overexpressed in PC12 (615) cells, NGF-induced phosphorylation of mitogen-activated protein (MAP) kinase (Erk1/2) decreases; however, there is no effect on phosphorylation of Akt, phospholipase C-gamma1, or Shc. The association of TrkA receptors with GIPC and GAIP plus the inhibition of MAP kinase by GIPC suggests that GIPC may provide a link between TrkA and G protein signaling pathways.  相似文献   

7.
M-SemF is a membrane-associated, neurally enriched member of the semaphorin family of axon guidance signals. We considered whether the cytoplasmic domain of M-SemF might possess a signaling function and/or might control the distribution of M-SemF on the cell surface. We identify a PDZ-containing neural protein as an M-SemF cytoplasmic domain-associated protein (SEMCAP-1). SEMCAP-2 is a closely related nonneuronal protein. SEMCAP-1 has recently also been identified as GIPC, by virtue of its interaction with the RGS protein GAIP in vitro (De Vries, L., Lou, X., Zhao, G., Zheng, B., and Farquhar, M. G. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12340-12345). Expression studies support the notion that SEMCAP-1(GIPC) interacts with M-SemF, but not GAIP, in brain. Lung SEMCAP-2 and SEMCAP-1(GIPC) are potential partners for both GAIP and M-SemF. The protein interaction requires the single PDZ domain of SEMCAP-1(GIPC) and the carboxyl-terminal four residues of M-SemF, ESSV. While SEMCAP-1(GIPC) also interacts with SemC, it does not interact with other proteins containing a class I PDZ binding motif, nor does M-SemF interact with other class I PDZ proteins. Co-expression of SEMCAP-1(GIPC) induces the redistribution of dispersed M-SemF into detergent-resistant aggregates in HEK293 cells. Thus, SEMCAP-1(GIPC) appears to regulate the subcellular distribution of M-SemF in brain, and SEMCAPs could link M-SemF to G protein signal transduction pathways.  相似文献   

8.
Several viral proteins expressed by DNA or RNA transforming viruses have the particular property of binding via their C-terminal end to various cellular proteins with PDZ domains. This study is focused on the PDZ protein TIP-2/GIPC, which was originally identified in two-hybrid screens performed with two different baits: the human T-cell leukemia virus type 1 Tax oncoprotein and the regulator of G signaling RGS-GAIP. Further studies have shown that TIP-2/GIPC is also able to associate with the cytoplasmic domains of various transmembrane proteins. In this report we show that TIP-2/GIPC interacts with the E6 protein of human papillomavirus type 18 (HPV-18). This event triggers polyubiquitination and proteasome-mediated degradation of the cellular protein. In agreement with this observation, silencing of E6 by RNA interference in HeLa cells causes an increase in the intracellular TIP-2/GIPC level. This PDZ protein has been previously found to be involved in transforming growth factor beta (TGF-beta) signaling by favoring expression of the TGF-beta type III receptor at the cell membrane. In line with this activity of TIP-2/GIPC, we observed that depletion of this protein in HeLa cells hampers induction of the Id3 gene by TGF-beta treatment and also diminishes the antiproliferative effect of this cytokine. Conversely, silencing of E6 increases the expression of Id3 and blocks proliferation of HeLa cells. These results support the notion that HPV-18 E6 renders cells less sensitive to the cytostatic effect of TGF-beta by lowering the intracellular amount of TIP-2/GIPC.  相似文献   

9.
Adiponectin, an adipokine secreted by the white adipose tissue, plays an important role in regulating glucose and lipid metabolism and controlling energy homeostasis in insulin-sensitive tissues. A decrease in the circulating level of adiponectin has been linked to insulin resistance, type 2 diabetes, atherosclerosis, and metabolic syndrome. Adiponectin exerts its effects through two membrane receptors, AdipoR1 and AdipoR2. APPL1 is the first identified protein that interacts directly with adiponectin receptors. APPL1 is an adaptor protein with multiple functional domains, the Bin1/amphiphysin/rvs167, pleckstrin homology, and phosphotyrosine binding domains. The PTB domain of APPL1 interacts directly with the intracellular region of adiponectin receptors. Through this interaction, APPL1 mediates adiponectin signaling and its effects on metabolism. APPL1 also functions in insulin-signaling pathway and is an important mediator of adiponectin-dependent insulin sensitization in skeletal muscle. Adiponectin signaling through APPL1 is necessary to exert its anti-inflammatory and cytoprotective effects on endothelial cells. APPL1 also acts as a mediator of other signaling pathways by interacting directly with membrane receptors or signaling proteins, thereby playing critical roles in cell proliferation, apoptosis, cell survival, endosomal trafficking, and chromatin remodeling. This review focuses mainly on our current understanding of adiponectin signaling in various tissues, the role of APPL1 in mediating adiponectin signaling, and also its role in the cross-talk between adiponectin/insulin-signaling pathways.  相似文献   

10.
Different cDNA libraries were screened by the yeast two-hybrid system using as a bait the cytoplasmic sequence of integrin alpha6A or alpha6B subunits. Surprisingly, the same PDZ domain-containing protein, TIP-2/GIPC, was isolated with either of the variants, although their sequences are different. Direct interaction assays with the cytoplasmic domain of the integrin alpha1--7 subunits revealed that in addition to alpha6A and alpha6B, TIP-2/GIPC reacted also with alpha5, but not other alpha integrin subunits. The specificity of the interaction was confirmed by in vitro protein binding assays with purified peptides corresponding to integrin cytoplasmic domains. Further analysis with either truncation fragments of TIP-2/GIPC or mutated integrin cytoplasmic domains indicated that the interaction occurs between the PDZ domain of TIP-2/GIPC and a consensus PDZ domain-binding sequence, SDA, present at the C-terminus of the integrin alpha5 and alpha6A subunits. The integrin alpha6B subunit terminates with a different sequence, SYS, which may represent a new PDZ domain-binding motif.  相似文献   

11.
Cultured human melanocytes derived from different skin types responded to frequent treatment with ultraviolet (UV) light with increased melanin synthesis, decreased proliferation, and morphologic signs of aging. These effects were augmented by increased frequency of irradiation with 15.5 mJ/cm2 UV light. Stimulation of melanogenesis by UV light involved an increase in tyrosinase activity, without any change in the amounts of either tyrosinase or tyrosinase-related protein (TRP)-1, and a decrease in the amount of TRP-2, as determined by Western blot analysis. These results are different from the mechanisms by which other melanogenic agents, such as cholera toxin and isobutyl methylxanthine, stimulated melanogenesis, whereby the amounts of tyrosinase, TRP-1 and TRP-2 were increased. The decrease in the amount of TRP-2 might be significant in that it might alter the properties of the newly synthesized melanin. The UV irradiation protocol that was followed blocked melanocytes in G2-M phase of the cell cycle without compromising cellular viability. Following three rounds of UV irradiation, melanocytes could recover from the growth arrest and resume proliferation. Treatment with 0.1 μM α-melanocyte stimulating hormone (α-MSH) postirradiation enhanced the melanogenic effect of UV light and stimulated the melanocytes to proliferate. The effects of α-MSH on the UV induced responses and their implications on photocarcinogenesis are being further investigated. Analyzing the mechanisms by which UV light exposure affects normal melanocytes might lead to a better understanding of how these cells undergo malignant transformation, and why individuals with different skin types differ in their susceptibility to skin cancers.  相似文献   

12.
APPL1 is a newly identified adiponectin receptor-binding protein that positively mediates adiponectin signaling in cells. Here we report that APPL2, an isoform of APPL1 that forms a dimer with APPL1, can interacts with both AdipoR1 and AdipoR2 and acts as a negative regulator of adiponectin signaling in muscle cells. Overexpression of APPL2 inhibits the interaction between APPL1 and AdipoR1, leading to down-regulation of adiponectin signaling in C2C12 myotubes. In contrast, suppressing APPL2 expression by RNAi significantly enhances adiponectin-stimulated glucose uptake and fatty acid oxidation. In addition to targeting directly to and competing with APPL1 in binding with the adiponectin receptors, APPL2 also suppresses adiponectin and insulin signaling by sequestrating APPL1 from these two pathways. In addition to adiponectin, metformin also induces APPL1-APPL2 dissociation. Taken together, our results reveal that APPL isoforms function as an integrated Yin-Yang regulator of adiponectin signaling and mediate the cross-talk between adiponectin and insulin signaling pathways in muscle cells.  相似文献   

13.
Beta1-adrenergic receptors, expressed at high levels in the human heart, have a carboxyl-terminal ESKV motif that can directly interact with PDZ domain-containing proteins. Using the beta1-adrenergic receptor carboxyl terminus as bait, we identified the novel beta1-adrenergic receptor-binding partner GIPC in a yeast two-hybrid screen of a human heart cDNA library. Here we demonstrate that the PDZ domain-containing protein, GIPC, co-immunoprecipitates with the beta1-adrenergic receptor in COS-7 cells. Essential for this interaction is the Ser residue of the beta1-adrenergic receptor carboxyl-terminal ESKV motif. Our data also demonstrate that beta1-adrenergic receptor stimulation activates the mitogen-activated protein kinase, ERK1/2. beta1-adrenergic receptor-mediated ERK1/2 activation was inhibited by pertussis toxin, implicating Gi, and was substantially decreased by the expression of GIPC. Expression of GIPC had no observable effect on beta1-adrenergic receptor sequestration or receptor-mediated cAMP accumulation. This GIPC effect was specific for the beta1-adrenergic receptor and was dependent on an intact PDZ binding motif. These data suggest that GIPC can regulate beta1-adrenergic receptor-stimulated, Gi-mediated, ERK activation while having no effect on receptor internalization or Gs-mediated cAMP signaling.  相似文献   

14.
We used published peptide library data to identify PDZ recognition sequences in integrin alpha subunit cytoplasmic domains and found that the alpha(6)A and alpha(5) subunits contain a type I PDZ binding site (TSDA*) (asterisk indicates the stop codon). The alpha(6)A cytoplasmic domain was used for screening a two-hybrid library to find interacting proteins. The bulk of the captured cDNAs (60%) coded for TIP-2/GIPC, a cytoplasmic protein with one PDZ domain. The interaction of TIP-2/GIPC with different integrin subunits was tested in two-hybrid and in vitro binding assays. Surprisingly, TIP-2/GIPC bound strongly to the C terminus of both alpha(6)A and alpha(6)B, although the alpha(6)B sequence (ESYS*) is not suggestive of a PDZ binding site because of its polar C-terminal residue. For high affinity interaction with TIP-2/GIPC, at least one of the residues at positions -1 and -3 must be negatively charged. An aliphatic residue at position 0 increases the affinity of but is not required for this interaction. The alpha(5) integrin subunit also bound to TIP-2/GIPC. The alpha(6) integrin and TIP-2/GIPC co-localize in retraction fibers in carcinoma cells plated on laminin, a finding suggesting a functional interaction in vivo. Our results demonstrate that both splice variants of alpha(6) integrin contain a conserved PDZ binding site that enables interaction with TIP-2/GIPC. The binding site in alpha(6)B defines a new subclass of type I PDZ interaction site, characterized by a non-aliphatic residue at position 0.  相似文献   

15.
16.
GM130 and GRASP65 are Golgi peripheral membrane proteins that play a key role in Golgi stacking and vesicle tethering. However, the molecular details of their interaction and their structural role as a functional unit remain unclear. Here, we present the crystal structure of the PDZ domains of GRASP65 in complex with the GM130 C-terminal peptide at 1.96-Å resolution. In contrast to previous findings proposing that GM130 interacts with GRASP65 at the PDZ2 domain only, our crystal structure of the complex indicates that GM130 binds to GRASP65 at two distinct sites concurrently and that both the PDZ1 and PDZ2 domains of GRASP65 participate in this molecular interaction. Mutagenesis experiments support these structural observations and demonstrate that they are required for GRASP65-GM130 association.  相似文献   

17.
Human adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1 (APPL1) and adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 2 (APPL2) are homologous effectors of the small guanosine triphosphatase RAB5 that interact with a diverse set of receptors and signaling proteins and are proposed to function in endosome-mediated signaling. Herein, we investigated the membrane-targeting properties of the APPL1 and APPL2 Bin/Amphiphysin/Rvs (BAR), pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains. Coimmunoprecipitation and yeast two-hybrid studies demonstrated that full-length APPL proteins formed homooligomers and heterooligomers and that the APPL minimal BAR domains were necessary and sufficient for mediating APPL-APPL interactions. When fused to a fluorescent protein and overexpressed, all three domains (minimal BAR, PH and PTB) were targeted to cell membranes. Furthermore, full-length APPL proteins bound to phosphoinositides, and the APPL isolated PH or PTB domains were sufficient for in vitro phosphoinositide binding. Live cell imaging showed that full-length APPL-yellow fluorescent protein (YFP) fusion proteins associated with cytosolic membrane structures that underwent movement, fusion and fission events. Overexpression of full-length APPL-YFP fusion proteins was sufficient to recruit endogenous RAB5 to enlarged APPL-associated membrane structures, although APPL1 was not necessary for RAB5 membrane targeting. Taken together, our findings suggest a role for APPL proteins as dynamic scaffolds that modulate RAB5-associated signaling endosomal membranes by their ability to undergo domain-mediated oligomerization, membrane targeting and phosphoinositide binding.  相似文献   

18.
Helix-8 (Hx8) is a structurally conserved amphipathic helical motif in class-A GPCRs, adjacent to the C-terminal sequence that is responsible for PDZ-domain-recognition. The Hx8 segment in the dopamine D2 receptor (D2R) constitutes the C-terminal segment and we investigate its role in the function of D2R by studying the interaction with the PDZ-containing GIPC1 using homology models based on the X-ray structures of very closely related analogs: the D3R for the D2R model, and the PDZ domain of GIPC2 for GIPC1–PDZ. The mechanism of this interaction was investigated with all-atom unbiased molecular dynamics (MD) simulations that reveal the role of the membrane in maintaining the helical fold of Hx8, and with biased MD simulations to elucidate the energy drive for the interaction with the GIPC1–PDZ. We found that it becomes more favorable energetically for Hx8 to adopt the extended conformation observed in all PDZ–ligand complexes when it moves away from the membrane, and that C-terminus palmitoylation of D2R enhanced membrane penetration by the Hx8 backbone. De-palmitoylation enables Hx8 to move out into the aqueous environment for interaction with the PDZ domain. All-atom unbiased MD simulations of the full D2R–GIPC1-PDZ complex in sphingolipid/cholesterol membranes show that the D2R carboxyl C-terminus samples the region of the conserved GFGL motif located on the carboxylate-binding loop of the GIPC1–PDZ, and the entire complex distances itself from the membrane interface. Together, these results outline a likely mechanism of Hx8 involvement in the interaction of the GPCR with PDZ-domains in the course of signaling.  相似文献   

19.
Many G protein-coupled receptors possess carboxyl-terminal motifs ideal for interaction with PDZ scaffold proteins, which can control receptor trafficking and signaling in a cell-specific manner. To gain a panoramic view of beta1-adrenergic receptor (beta AR) interactions with PDZ scaffolds, the beta1AR carboxyl terminus was screened against a newly developed proteomic array of PDZ domains. These screens confirmed beta1AR associations with several previously identified PDZ partners, such as PSD-95, MAGI-2, GIPC, and CAL. Moreover, two novel beta1AR-interacting proteins, SAP97 and MAGI-3, were also identified. The beta1AR carboxyl terminus was found to bind specifically to the first PDZ domain of MAGI-3, with the last four amino acids (E-S-K-V) of beta1AR being the key determinants of the interaction. Full-length beta1AR robustly associated with full-length MAGI-3 in cells, and this association was abolished by mutation of the beta1AR terminal valine residue to alanine (V477A), as determined by co-immunoprecipitation experiments and immunofluorescence co-localization studies. MAGI-3 co-expression with beta1AR profoundly impaired beta1AR-mediated ERK1/2 activation but had no apparent effect on beta1AR-mediated cyclic AMP generation or agonist-promoted beta1AR internalization. These findings revealed that the interaction of MAGI-3 with beta1AR can selectively regulate specific aspects of receptor signaling. Moreover, the screens of the PDZ domain proteomic array provide a comprehensive view of beta1AR interactions with PDZ scaffolds, thereby shedding light on the molecular mechanisms by which beta1 AR signaling and trafficking can be regulated in a cell-specific manner.  相似文献   

20.
Wu H  Feng W  Chen J  Chan LN  Huang S  Zhang M 《Molecular cell》2007,28(5):886-898
Multiple PDZ domain scaffold protein Par-3 and phosphoinositides (PIPs) are required for polarity in diverse cell types. We show that the second PDZ domain of Par-3 binds to phosphatidylinositol (PI) lipid membranes with high affinity. We further demonstrate that a large subset of PDZ domains in mammalian genomes are capable of binding to PI lipid membranes, indicating that lipid binding is the second most prevalent interaction mode of PDZ domains known to date. The biochemical and structural basis of Par-3 PDZ2-mediated membrane interaction is characterized in detail. The membrane binding capacity of Par-3 PDZ2 is critical for epithelial cell polarization. Interestingly, the lipid phosphatase PTEN directly binds to the third PDZ domain of Par-3. The concatenation of the PIP-binding PDZ2 and the lipid phosphatase PTEN-binding PDZ3 endows Par-3 as an ideal scaffold protein for integrating PIP signaling events during cellular polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号