首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, we demonstrate that adenine reduced Na+-ATPase activity in isolated basolateral membrane (BLM) of proximal tubule in a dose-dependent manner. Adenine metabolism was ruled out by TLC analysis of the potential [3H]adenine derived-metabolites. Specific binding of [3H]adenine to isolated BLM was observed in a dose-dependent manner with Kd and Bmax of 242.6 ± 27.6 nM and 2749.9 ± 104.9 fmol mg−1, respectively. Adenine increased the [35S]GTPγS specific binding and it was completely abolished by 10−6 M GDPβS (G protein inhibitor) but it was not modified by DPCPX, DMPX and MRS1523, selective antagonists for A1, A2 and A3 receptors, respectively. Furthermore, the inhibitory effect of adenine on the Na+-ATPase activity was blocked by 10−6 M GDPβS, 1 μg/ml pertussis toxin (Gi protein inhibitor), 10−6 M foskolin (adenylyl cyclase activator) and 10−8 M cAMP. These data demonstrate that adenine inhibits the proximal tubule Na+-ATPase activity through the Gi protein-coupled receptor.  相似文献   

2.
Clinical and experimental data show an increase in sodium reabsorption on the proximal tubule (PT) in essential hypertension. It is well known that there is a link between essential hypertension and renal angiotensin II (Ang II). The present study was designed to examine ouabain-insensitive Na+-ATPase activity and its regulation by Ang II in spontaneously hypertensive rats (SHR). We observed that Na+-ATPase activity was enhanced in 14-week-old but not in 6-week-old SHR. The addition of Ang II from 10− 12 to 10− 6 mol/L decreased the enzyme activity in SHR to a level similar to that obtained in WKY. The Ang II inhibitory effect was completely reversed by a specific antagonist of AT2 receptor, PD123319 (10− 8 mol/L) indicating that a system leading to activation of the enzyme in SHR is inhibited by AT2-mediated Ang II. Treatment of SHR with losartan for 10 weeks (weeks 4-14) prevents the increase in Na+-ATPase activity observed in 14-week-old SHR. These results indicate a correlation between AT1 receptor activation in SHR and increased ouabain-insensitive Na+-ATPase activity. Our results open new possibilities towards our understanding of the pathophysiological mechanisms involved in the increased sodium reabsorption in PT found in essential hypertension.  相似文献   

3.
In this work, the metabolism of adenosine by isolated BLM associated-enzymes and the implications of this process for the cAMP-signaling pathway are investigated. Inosine was identified as the major metabolic product, suggesting the presence of adenosine deaminase (ADA) activity in the BLM. This was confirmed by immunoblotting and ADA-specific enzyme assay. Implications for the enzymatic deamination of adenosine on the receptor-modulated cAMP-signaling pathway were also investigated. We observed that inosine induced a 2-fold increase in [35S] GTPγS binding to the BLM and it was inhibited by 10−6 M DPCPX, an A1 receptor-selective antagonist. Inosine (10−7 M) inhibited protein kinase A activity in a DPCPX-sensitive manner. Molecular association between ADA and Gαi-3 protein-coupled A1 receptor was demonstrated by co-immunoprecipitation assay. These data show that adenosine is deaminated by A1 receptor-associated ADA to inosine, which in turn modulates PKA in the BLM through A1 receptor-mediated inhibition of adenylyl cyclase.  相似文献   

4.
Previous data showed that prostaglandin E2 (PGE2) mediates the inhibitory effect of bradykinin (BK) on proximal tubule (PT) Na+-ATPase activity. The aim of this work was to investigate the molecular mechanisms involved in the effect of PGE2 on PT Na+-ATPase. We used isolated basolateral membrane (BLM) from pig PT, which expresses several components of different signaling pathways. The inhibitory effect of PGE2 on PT Na+-ATPase activity involves G-protein and the activation of protein kinase A (PKA) because: (1) PGE2 increased [35S]GTPγS binding; (2) GDPβS abolished the inhibitory effect of PGE2; (3) PGE2 increased PKA activity; (4) the inhibitory effect of PGE2 was abolished by PKA inhibitor peptide. We observed that the PKA-mediated inhibitory effect of PGE2 on PT Na+-ATPase activity requires previous activation of protein kinase C. In addition, we observed that PGE2 stimulates Ca2+-independent phospholipase A2 activity representing an important positive feedback to maintain the inhibition of the enzyme. These results open new perspectives to understanding the mechanism involved in the effect of PGE2 on proximal tubule sodium reabsorption.  相似文献   

5.
The purpose of the present study was the characterization of the receptors participating in the regulatory mechanism of glial Na+/K+-ATPase by serotonin (5-HT) in rat brain. The activity of the Na+ pump was measured in four brain regions after incubation with various concentrations of serotoninergic agonists or antagonists. A concentration-dependent increase in enzyme activity was observed with the 5-HT1A agonist R (+)-2-dipropylamino-8-hydroxy-1,2,3, 4-tetrahydronaphthalene hydrobromide (8-OH-DPAT) in homogenates or in glial membrane enriched fractions from cerebral cortex and in hippocampus. Spiperone, a 5-HT1A antagonist, completely inhibited the response to 8-OH-DPAT but had no effect on Na+/K+-ATPase activity in cerebellum where LSD, a 5-HT6 agonist, elicited a dose-dependent response similar to that of 5-HT. In brainstem, a lack of reponse to 5-HT and other agonists was confirmed. Altogether, these results show that serotonin modulates glial Na+/K+-ATPase activity in the brain, apparently not through only one type of 5-HT receptor. It seems that the receptor system involved is different according to the brain region. In cerebral cortex, the response seems to be mediated by 5-HT1A as well as in hippocampus but not in cerebellum where 5-HT6 appears as the receptor system involved.  相似文献   

6.
Angiotensin increased microsomal (Na+K+)-activated ATPase from rat hypothalamus, mucosa of colon and bovine adrenal cortex but not brain cortex. Angiotensin did not change significantly Mg2+-ATPase in these tissues. Enhancement by angiotensin was evident at concentrations of 10−8 − 10−12 M. In bovine adrenal cortex angiotensin increased ATPase activity in the outer and not in the inner layer. Angiotensin increased ATPase activity with Na+ above 20 mM and K+ above 5 mM present simultaneously, but not with either ion alone.  相似文献   

7.
In a previous paper we showed that bradykinin (BK), interacting with its B2 receptor, inhibits proximal tubule Na+-ATPase activity but does not change (Na+ + K+)ATPase activity. The aim of this paper was to investigate the molecular mechanisms involved in B2-mediated modulation of proximal tubule Na+-ATPase by BK. To abolish B1 receptor-mediated effects, all experiments were carried out in the presence of (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Leu), des-Arg9-[Leu8]-BK (DALBK), a specific antagonist of B1 receptor. A dual effect on the Na+-ATPase activity through the B2 receptor was found: short incubation times (1-10 min) stimulate the enzyme activity; long incubation times (10-60 min) inhibit it. The stimulatory effect of BK is mediated by activation of phosphoinositide-specific phospholipase C β (PI-PLCβ)/protein kinase C (PKC); its inhibitory action is mediated by Ca2+-independent phospholipase A2 (iPLA2). Prior activation of the PI-PLCβ/PKC pathway is required to activate the iPLA2-mediated inhibitory phase. These results reveal a new mechanism by which BK can modulate renal sodium excretion: coupling between B2 receptor and activation of membrane-associated iPLA2.  相似文献   

8.
Rat C6 glioma cells were cultured for 4 days in MEM medium supplemented with 10% bovine serum and Na+,K+-ATPase activity was determined in homogenates of harvested cells. Approximately 50% of enzyme activity was attained at 1.5 mM K+ and the maximum (2.76±0.13 mol Pi/h/mg protein) at 5 mM K+. The specific activity of Na+,K+-ATPase was not influenced by freezing the homogenates or cell suspensions before the enzyme assay. Ten minutes' exposure of glioma cells to 10–4 or 10–5 M noradrenaline (NA) remained without any effect on NA+,K+-ATPase activity. Neither did the presence of NA in the incubation medium, during the enzyme assay, influence the enzyme activity. The nonresponsiveness of Na+,K+-ATPase of C6 glioma cells to NA is consistent with the assumption that (+) form of the enzyme may be preferentially sensitive to noradrenaline. Na+,K+-ATPase was inhibited in a dose-dependent manner by vanadate and 50% inhibition was achieved at 2×10–7 M concentration. In spite of the fact that Na+,K+-ATPase of glioma cells was not responsive to NA, the latter could at least partially reverse vanadate-induced inhibition of the enzyme. Although the present results concern transformed glial cells, they suggest the possibility that inhibition of glial Na+,K+-ATPase may contribute to the previously reported inhibition by vanadate of Na+,K+-ATPase of the whole brain tissue.  相似文献   

9.
Prostagladin A2, which prevents intestinal ulcers produced by administration of nonsteroidal antiinflammatory compounds such as indomethacin, inhibited the Na+,K+-ATPase activity in basolateral plasma membrane of rat intestine significantly. Prostaglandin A2 inhibited mainly the Na+-dependent phosphorylation step in the overall reaction of Na+,K+-ATPase. This decrease of the Na+,K+-ATPase activity by prostaglandin A2 was due to the decrease of Vmax of the enzyme and of the affinity of the enzyme for Na+. It was also suggested that the presence of both Δ5,6 and Δ10,11 structure of prostaglandin A2 may be necessary for the inhibition of the Na+,K+-ATPase activity.  相似文献   

10.
Recently, our group described an AT1-mediated direct stimulatory effect of angiotensin II (Ang II) on the Na+-ATPase activity of proximal tubules basolateral membranes (BLM) [Am. J. Physiol. 248 (1985) F621]. Data in the present report suggest the participation of a protein kinase C (PKC) in the molecular mechanism of Ang II-mediated stimulation of the Na+-ATPase activity due to the following observations: (i) the stimulation of protein phosphorylation in BLM, induced by Ang II, is mimicked by the PKC activator TPA, and is completely reversed by the specific PKC inhibitor, calphostin C; (ii) the Na+-ATPase activity is stimulated by Ang II and TPA in the same magnitude, being these effects abolished by the use of the PKC inhibitors, calphostin C and sphingosine; (iii) the Na+-ATPase activity is activated by catalytic subunit of PKC (PKC-M), in a similar and nonadditive manner to Ang II; and (iv) Ang II stimulates the phosphorylation of MARCKS, a specific substrate for PKC.  相似文献   

11.
The effect of L-arginine on the Na+,K+-ATPase activity in rat aorta endothelium was studied at its physiological concentrations in the range of 10–6-10–3 M. The enzyme activity was 35.5% increased by low concentrations of L-arginine (10–5 M) and its activity was 32.3-37.1% decreased at the L-arginine concentrations of 10–4-10–3 M. A similar inhibition (by 34.5-42.8%) was also found in the presence of a NO-donor nitroglycerol (10–4-10–3 M). An optical isomer of L-arginine, D-arginine, at the concentrations of 10–5 M also increased the enzyme activity by 37.1%, but its inhibiting effect was much less pronounced and was 15.7% at the D-arginine concentration of 10–3 M. An inhibitor of NO-synthase, L-NAME (NG-nitroarginine, methyl ester), failed to inhibit Na+,K+-ATPase. However, the presence of L-NAME abolished the inhibition of Na+,K+-ATPase by high concentrations of L-arginine. Thus, the effect of L-arginine on the endothelial Na+-pump depended on its concentration, and it is suggested that the enzyme inhibition by high concentrations of L-arginine should be associated with activation of the endogenous synthesis of NO.  相似文献   

12.
Angiotensin II (Ang II) stimulates the proximal tubule Na+-ATPase through the AT1 receptor/phosphoinositide phospholipase Cβ (PI-PLCβ)/protein kinase C (PKC) pathway. However, this pathway alone does not explain the sustained effect of Ang II on Na+-ATPase activity for 30 min. The aim of the present work was to elucidate the molecular mechanisms involved in the sustained effect of Ang II on Na+-ATPase activity. Ang II induced fast and correlated activation of Na+-ATPase and PKC activities with the maximal effect (115%) observed at 1 min and sustained for 30 min, indicating a pivotal role of PKC in the modulation of Na+-ATPase by Ang II. We observed that the sustained activation of PKC by Ang II depended on the sequential activation of phospholipase D and Ca2+-insensitive phospholipase A2, forming phosphatidic acid and lysophosphatidic acid, respectively. The results indicate that PKC could be the final target and an integrator molecule of different signaling pathways triggered by Ang II, which could explain the sustained activation of Na+-ATPase by Ang II.  相似文献   

13.
Halenaquinol, a natural cardioactive pentacyclic hydroquinone from the sponge Petrosia seriata, was found to be a powerful inhibitor of the rat brainstem and of the rat brain cortex Na+, K+-ATPases and the rabbit muscle sarcoplasmic reticulum Ca2+-ATPase with I50 values of 7.0×10−7, 1.3×10−6 and 2.5×10−6 M, respectively. Halenaquinol also inhibited K+-phosphatase activity of the rat brain cortex Na+, K+-ATPase with an I50 value of 3×10−6 M. Ouabain-insensitive Mg2+-ATPase activity of the microsomal fraction of the rat brain cortex was weakly inhibited by halenaquinol. Inhibition was irreversible, dose- and time-dependent. Naphthohydroquinone fragment in structures of halenaquinol, related natural and model compounds was very important for an inhibiting effect.  相似文献   

14.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 μM ATP and 50 μM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 μM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+-ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 μM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

15.
The in vitro influence of potassium ion modulations, in the concentration range 2 mM–500 mM, on digoxin-induced inhibition of porcine cerebral cortex Na+/K+-ATPase activity was studied. The response of enzymatic activity in the presence of various K+ concentrations to digoxin was biphasic, thereby, indicating the existence of two Na+/K+-ATPase isoforms, differing in the affinity towards the tested drug. Both isoforms showed higher sensitivity to digoxin in the presence of K+ ions below 20 mM in the medium assay. The IC50 values for high/low isoforms 2.77 × 10? 6 M / 8.56 × 10? 5 M and 7.06 × 10? 7 M /1.87 × 10? 5 M were obtained in the presence of optimal (20 mM) and 2 mM K+, respectively. However, preincubation in the presence of elevated K+ concentration (50 – 500 mM) in the medium assay prior to Na+/K+-ATPase exposure to digoxin did not prevent the inhibition, i.e. IC50 values for both isoforms was the same as in the presence of the optimal K+ concentration. On the contrary, addition of 200 mM K+ into the medium assay after 10 minutes exposure of Na+/K+-ATPase to digoxin, showed a time-dependent recovery effect on the inhibited enzymatic activity. Kinetic analysis showed that digoxin inhibited Na+/K+-ATPase by reducing maximum enzymatic velocity (Vmax) and Km, implying an uncompetitive mode of interaction.  相似文献   

16.
Capsazepine (CPZ) inhibits Na+,K+-ATPase-mediated K+-dependent ATP hydrolysis with no effect on Na+-ATPase activity. In this study we have investigated the functional effects of CPZ on Na+,K+-ATPase in intact cells. We have also used well established biochemical and biophysical techniques to understand how CPZ modifies the catalytic subunit of Na+,K+-ATPase. In isolated rat cardiomyocytes, CPZ abolished Na+,K+-ATPase current in the presence of extracellular K+. In contrast, CPZ stimulated pump current in the absence of extracellular K+. Similar conclusions were attained using HEK293 cells loaded with the Na+ sensitive dye Asante NaTRIUM green. Proteolytic cleavage of pig kidney Na+,K+-ATPase indicated that CPZ stabilizes ion interaction with the K+ sites. The distal part of membrane span 10 (M10) of the α-subunit was exposed to trypsin cleavage in the presence of guanidinum ions, which function as Na+ congener at the Na+ specific site. This effect of guanidinium was amplified by treatment with CPZ. Fluorescence of the membrane potential sensitive dye, oxonol VI, was measured following addition of substrates to reconstituted inside-out Na+,K+-ATPase. CPZ increased oxonol VI fluorescence in the absence of K+, reflecting increased Na+ efflux through the pump. Surprisingly, CPZ induced an ATP-independent increase in fluorescence in the presence of high extravesicular K+, likely indicating opening of an intracellular pathway selective for K+. As revealed by the recent crystal structure of the E1.AlF4 -.ADP.3Na+ form of the pig kidney Na+,K+-ATPase, movements of M5 of the α-subunit, which regulate ion selectivity, are controlled by the C-terminal tail that extends from M10. We propose that movements of M10 and its cytoplasmic extension is affected by CPZ, thereby regulating ion selectivity and transport through the K+ sites in Na+,K+-ATPase.  相似文献   

17.
Na+, K+-ATPase is inhibited by neurotensin, an effect which involves the peptide high affinity receptor (NTS1). Neurotensin effect on cerebral cortex synaptosomal membrane Na+, K+-ATPase activity of rats injected i.p. with antipsychotic clozapine was studied. Whereas 3.5 × 10−6 M neurotensin decreased 44% Na+, K+-ATPase activity in the controls, the peptide failed to modify enzyme activity 30 min after a single 3.0, 10.0 and 30.0 mg/kg clozapine dose. Neurotensin decreased Na+, K+-ATPase activity 40 or 20% 18 h after 3.0 or 5.6 mg/kg clozapine administration, respectively, and lacked inhibitory effect 18 h after 17.8 and 30.0 mg/kg clozapine doses. Results indicated that the clozapine treatment differentially modifies the further effect of neurotensin on synaptosomal membrane Na+, K+-ATPase activity according to time and dose conditions employed. Taken into account that clozapine blocks the dopaminergic D2 receptor, findings obtained favor the view of an interplay among neurotensinergic receptor, dopaminergic D2 receptor and Na+, K+-ATPase at synaptic membranes.  相似文献   

18.
Stress-induced arrest of ventilatory motor pattern generation is tightly correlated with an abrupt increase in extracellular potassium concentration ([K+]o) within the metathoracic neuropil of the locust, Locusta migratoria. Na+/K+-ATPase inhibition with ouabain elicits repetitive surges of [K+]o that coincide with arrest and recovery of motor activity. Here we show that ouabain induces repetitive [K+]o events in a concentration-dependent manner. 10−5 M, 10−4 M, and 10−3 M ouabain was bath-applied in semi-intact locust preparations. 10−4 M and 10−3 M ouabain reliably induced repetitive [K+]o events whereas 10−5 M ouabain had no significant effect. In comparison to 10−4 M ouabain, 10−3 M ouabain increased the number and hastened the time to onset of repetitive [K+]o waves, prolonged [K+]o event duration, increased resting [K+]o, and diminished the absolute value of [K+]o waves. Recovery of motor patterning following [K+]o events was less likely in 10−3 M ouabain. In addition, we show that K+ channel inhibition using TEA suppressed the onset and decreased the amplitude of ouabain-induced repetitive [K+]o waves. Our results demonstrate that ventilatory circuit function in the locust CNS is dependent on the balance between mechanisms of [K+] accumulation and [K+] clearance. We suggest that with an imbalance in favour of accumulation the system tends towards a bistable state with transitions mediated by positive feedback involving voltage-dependent K+ channels.  相似文献   

19.
Na+/K+-ATPase plays a key role in the transport of Na+ throughout the nephron, but ageing appears to be accompanied by changes in the regulation and localization of the pump. In the present study, we examined the effect of in vitro cell ageing on the transport of Na+ and K+ ions in opossum kidney (OK) cells in culture. Cells were aged by repeated passing, and Na+/K+-ATPase activity and K+ conductance were evaluated using electrophysiological methods. Na+K+-ATPase α1– and β1-subunit expression was quantified by Western blot techniques. Na+/H+ exchanger activity, changes in membrane potential, cell viability, hydrogen peroxide production and cellular proliferation were determined using fluorimetric assays. In vitro cell ageing is accompanied by an increase in transepithelial Na+ transport, which results from an increase in the number of Na+/K+-ATPase α1- and β1-subunits, in the membrane. Increases in Na+/K+-ATPase activity were accompanied by increases in K+ conductance as a result of functional coupling between Na+/K+-ATPase and basolateral K+ channels. Cell depolarization induced by both KCl and ouabain was more pronounced in aged cells. No changes in Na+/H+ exchanger activity were observed. H2O2 production was increased in aged cells, but exposure for 5 days to 1 and 10 μM of H2O2 had no effect on Na+/K+-ATPase expression. Ouabain (100 nM) increased α1-subunit, but not β1-subunit, Na+/K+-ATPase expression in aged cells only. These cells constitute an interesting model for the study of renal epithelial cell ageing.  相似文献   

20.
The activity of a partially purified bovine heart Na+,K+-ATPase is inhibited by DL- and L- palmitylcarnitine (I50=44–48μM). Palmitylcarnitine with a I50 of 25μM also markedly inhibits K+-phosphatase activity. Palmityl-CoA decreases Na+,K+-ATPase activity, but to a lesser extent (I50=80μM). Both palmitic acid and hexanoic acid produce 10 to 15% inhibition of activity at concentrations of 70μM and 3–5mM, respectively. These free fatty acids protect the enzyme against inhibition by 40μM palmitylcarnitine. However, at 50μM palmitylcarnitine, the protective effect by hexanoic acid is no longer apparent. Addition of 40μM palmitylcarnitine to the Na+,K+-ATPase in the presence of varying concentrations of palmityl-CoA produces an additive inhibition of enzyme activity, suggesting two different sites on the enzyme susceptible to inhibition by the two ester forms of the fatty acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号