首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism of aldehyde to carboxylic acid conversion catalyzed by P450 enzymes via a series of reactions was studied systematically for the first time with density functional theory calculations. A two-state reactivity mechanism has been proposed, which can be adopted for many aldehyde oxidation reactions catalyzed by P450 enzymes. The mechanism involves initial hydrogen abstraction as the rate-limiting step and this is followed by steps of oxygen rebound without barriers owing to the quick recombination of the resultant radical species. Meanwhile, in an attempt to explore whether there exist some rules for the hydroxylation of aldehyde substrates by P450, the transition state barriers of the rate-limiting step for a series of aldehyde hydroxylation reactions have been compared. A predictive pattern of extended barrier/bond energy correlation for different hydroxylations of aldehyde substrates by P450 has been established, which was further confirmed to be a reliable reactivity scale by experimental results. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
We developed a system for bioconverting diverse compounds using P450s produced in Escherichia coli. Vectors for the expressing various P450 cDNAs quickly and easily in E. coli were developed by using several restriction enzyme sites. Three types of P450 (2C2, 2C29, and 2D22) were produced using these plasmids. Substrates were directly added to the incubation medium and metabolized. To obtain pure product from the medium, we first tried production of P450 in synthetic medium. The amount of another P450 2C43 produced in the synthetic medium was similar to the amount produced in Luria broth (LB) medium. Next, estradiol, a steroid, was added as a substrate, incubated, and the metabolite was extracted and analyzed by high-performance liquid chromatography. The metabolite extracted from synthetic medium was purer than that obtained from LB medium. Three P450s (2C29, 2C2, and 2A4) metabolized testosterone at different positions. P450 2C29 metabolized 7-ethoxycoumarin, androstendione, and dehydroepiandrosterone in this medium. P450s produced in the synthetic medium may be useful for producing various modified compounds for high-throughput screening.  相似文献   

3.
细胞色素P450是广泛存在于哺乳动物微粒体和线粒体内的一类亚铁血红素—硫醇盐蛋白的超家族。它参与内源性物质和包括药物、环境化合物在内的外源性物质的代谢。其代谢机理引起人们的极大关注,同时也存在诸多挑战。通过对不同底物代谢机理的研究有助于人们深入认识P450的结构及其催化机理,还可以为物质的体内代谢提供理论指导。本文主要对P450的催化氧化机制,二甲基亚硝胺在细胞色素P450作用下的代谢机理研究进展及P450的活性氧化物等方面的研究进行了综述。  相似文献   

4.
This review considers reactions of enzymes with the cyclopropanoid radical/cation diagnostic probes norcarane, 1,1-dimethylcyclopropane, and 1,1-diethylcyclopropane as elaborated by the use of 18O2 and 18OH2 to trace the origin of O-atoms incorporated during catalysis. The reactions of soluble and integral membrane diiron enzymes are summarized and compared to results obtained from cytochrome P450 studies. Norcarane proved to be an excellent substrate for the diiron enzyme toluene 4-monooxygenase and its engineered isoforms, with kcat and coupling between NADH utilization and total hydroxylated products comparable to that determined for toluene, the natural substrate. Results obtained with toluene 4-monooxygenase show that the un-rearranged and radical-rearranged alcohol products have a high percentage of O-atom incorporation (>80-95%) from O2, while the cation-derived ring-expansion products have O-atom incorporation primarily derived from solvent water. Mechanistic possibilities accounting for this difference are discussed.  相似文献   

5.
From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-pi-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and M?ssbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-pi-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-pi-cation radical, which makes it extremely difficult to trap compound I.  相似文献   

6.
We have examined the 5-exo-hydroxylation of camphor by cytochrome P450 in [18O] water/buffer solution. In the NADHO2-dependent reaction of the reconstituted multienzyme system, no 18O-label is observed in the product alcohol. Similarly, in the m-chloroperbenzoic acid or cumene hydroperoxide supported reactions with ferric P450, solvent oxygen is not incorporated into hydroxycamphor. When the analagous reaction is carried out using iodosobenzene as the exogenous oxidant, however, the alcoholic oxygen of the product is derived entirely from the solvent. These results cannot be explained by equilibration of the iodosobenzene oxygen with solvent water before reacting with P450, and suggest a unique mechanism for iodosobenzene-supported P450 oxygenations. We propose two distinct mechanistic activities for cytochrome P450: a hydroxylase, and an oxene transferase, with the former encompassing the classic oxygenase as well as “peroxygenase” reactions.  相似文献   

7.
Using UV-Vis, resonance Raman, and EPR spectroscopy we have studied the properties of the oxygenated ferrous cytochrome P450 from Sulfolobus solfataricus, (CYP119). The recently determined crystal structure of CYP119 is compared with other available structures of P450s, and detailed structural and spectroscopic analyses are reported. With several structural similarities to CYP102, such as in-plane iron position and a shorter iron-proximal ligand bond, CYP119 shows low-spin conformation preference in the ferric form and partially in the ferrous form at low temperatures. These structural features can explain the fast autoxidation of the oxyferrous complex of CYP119. Finally, we report the first UV-Vis and EPR spectra of the cryoradiolytically reduced oxygenated intermediate of CYP119. The primary reduced intermediate, a hydroperoxo-ferric complex of CYP119, undergoes a 'peroxide shunt' pathway during gradual annealing at 170-195 K and returns to the low-spin ferric form.  相似文献   

8.
Cytochrome P450BM3 has long been regarded as a promising candidate for use as a biocatalyst, owing to its excellent efficiency for the hydroxylation of unactivated C–H bonds. However, because of its high substrate specificity, its possible applications have been severely limited. Consequently, various approaches have been proposed to overcome the enzyme's natural limitations, thereby expanding its substrate scope to encompass non-native substrates, evoking chemoselectivity, regioselectivity and stereoselectivity and enabling previously inaccessible chemical conversions. Herein, these approaches will be classified into three categories: (1) mutagenesis including directed evolution, (2) haem substitution with artificial cofactors and (3) use of substrate mimics, ‘decoy molecules’. Herein, we highlight the representative work that has been conducted in above three categories for discussion of the future outlook of P450BM3 in green chemistry.  相似文献   

9.
Cytochrome P450 (P450)-dependent p-hydroxylation of aniline and o-deethylation of 7-ethoxycoumarin were examined in rat liver microsomes in the presence of radical scavengers. The addition of beta-carotene, a quencher of singlet oxygen species ((1)O(2)), suppressed the aniline hydroxylation, while the addition of sodium azide (NaN(3)) ((1)O(2) quencher) enhanced the reaction. No other reactive oxygen scavengers or chelating agents such as superoxide dismutase, catalase, dimethylsulfoxide, or deferoxamine altered the reaction. In contrast, the microsomal o-deethylation of 7-ethoxycoumarin was suppressed by the addition of NaN(3). (1)O(2) was detectable during the reaction of microsomes and NADPH by ESR spin-trapping when 2,2,6,6-tetramethyl-4-piperidone (TMPD) was used as a spin trap, and the (1)O(2) was quenched by the additions of beta-carotene, NaN(3), aniline, and 7-ethoxycoumarin. The enhancement effect of NaN(3) in the hydroxylation of aniline appeared to be due to the conformational change of P450 protein, which in turn enhances the binding of aniline to P450 in terms of the spectral dissociation constant (K(s)). In contrast, (1)O(2) appeared to be active in the o-deethylation of 7-ethoxycoumarin. On the basis of the results, the involvement of (1)O(2) in P450-dependent substrate oxygenations is proposed.  相似文献   

10.
Fluoro substitution of benzo[a]pyrene (BP) has been very useful in determining the mechanism of cytochrome P450-catalyzed oxygen transfer in the formation of 6-hydroxyBP (6-OHBP) and its resulting BP 1,6-, 3,6-, and 6,12-diones. We report here the metabolism of 1-FBP and 3-FBP, and PM3 calculations of charge densities and bond orders in the neutral molecules and radical cations of BP, 1-FBP, 3-FBP, and 6-FBP, to determine the mechanism of oxygen transfer for the formation of BP metabolites. 1-FBP and 3-FBP were metabolized by rat liver microsomes. The products were analyzed by HPLC and identified by NMR. Formation of BP 1,6-dione and BP 3,6-dione from 1-FBP and 3-FBP, respectively, can only occur by removal of the fluoro ion from C-1 and C-3, respectively, via one-electron oxidation of the substrate. The combined metabolic and theoretical studies reveal the mechanism of oxygen transfer in the P450-catalyzed formation of BP metabolites. Initial abstraction of a pi electron from BP by the [Fe(4+)=O](+)(*) of cytochrome P450 affords BP(+)(*). This is followed by oxygen transfer to the most electropositive carbon atoms, C-6, C-1, and C-3, with formation of 6-OHBP (and its quinones), 1-OHBP, and 3-OHBP, respectively, or the most electropositive 4,5-, 7,8-, and 9,10- double bonds, with formation of BP 4,5-, 7,8-, or 9,10-oxide.  相似文献   

11.
25-Hydroxy-Grundmann’s ketone is a key building block in the chemical synthesis of vitamin D3 and its derivatives through convergent routes. Generally, the chemical synthesis of this compound involves tedious procedures and results in a mixture of several products. Recently, the selective hydroxylation of Grundmann’s ketone at position C25 by cytochrome P450 (CYP) 154E1 from Thermobifida fusca YX was described. In this study a recombinant whole-cell biocatalyst was developed and applied for hydroxylation of Grundmann’s ketone. Biotransformation was performed by Escherichia coli cells expressing CYP154E1 along with two redox partner systems, Pdx/PdR and YkuN/FdR. The system comprising CYP154E1/Pdx/PdR showed the highest production of 25-hydroxy-Grundmann’s ketone and resulted in 1.1 mM (300 mg L−1) product concentration.  相似文献   

12.
Liver microsomes from phenobarbital-treated rats of four inbred strains expressing distinct allelic variants of cytochrome P450IIB1 were analyzed. The Wistar Munich (WM) strain exhibited 5- to 10-fold lower androstenedione 16 beta-hydroxylase activity (a specific P450IIB1 marker) than the Lewis, Wistar Kyoto, and Wistar Furth strains. The androstenedione 16 beta-hydroxylase in the WM liver microsomes was refractory to inactivation by N-(2-p-nitrophenethyl)chlorofluoroacetamide, a selective P450IIB1 inactivator in the other three strains. Purified P450IIB1-WM was insensitive to the inactivator and exhibited 5-fold lower androstenedione 16 beta-hydroxylase, testosterone 16-hydroxylase, and 7-ethoxycoumarin deethylase activities but the same benzphetamine demethylase activity and slightly higher androstenedione 16 alpha-hydroxylase activity than a P450IIB1 purified from outbred Sprague-Dawley rats, which appears to correspond to the form in Lewis rats. The stereoselectivity of androstenedione 16-hydroxylation catalyzed by P450IIB1-WM (16 beta-OH:16 alpha-OH = 1.4) is thus distinct from that (16 beta-OH:16 alpha-OH = 12-15) of other P450IIB1 preparations described. A cDNA encoding P450IIB1-WM was cloned and sequenced, revealing a single amino acid substitution (Gly-478----Ala) compared with the published sequence (Fujii-Kuriyama, Y., Mizukami, Y., Kawajiri, K., Sogawa, K., and Muramatsu, M. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 2793-2797). Heterologous expression of P450IIB1 and P450IIB1-WM confirmed the striking difference in androstenedione metabolite profiles, strongly implicating the involvement of Ala-478 in defining the distinctive catalytic properties of P450IIB1-WM.  相似文献   

13.
14.
Human cytochrome P450 1A1, which is present in lungs, plays an important role in the metabolic activation of chemical carcinogens, and in particular, is thought to be linked to lung cancer. The mechanism of carcinogenesis is related to the enzyme's ability to oxidize highly toxic compounds, such as polycyclic aromatic hydrocarbons (PAHs), to their carcinogenic derivatives. In order to better understand P450 1A1 function, a homology model of this enzyme has been constructed. The model has been based on the structure of P450 2C5, the first mammalian P450 to be crystallized. The coordinates of the model have been calculated using a consensus strategy, and the resulting structure has been evaluated with the ProStat and Profiles-3D programs. P450 1A1 substrates, such as benzo[a]pyrene, ethoxyresorufin and methoxyresorufin, were then docked into the active site of the model, and key amino acid residues able to interact with the substrate, have been identified. The analysis of enzyme-substrate interactions indicated that hydrophobic interactions are mainly responsible for binding of these substrates in the active site. Moreover, the non-bond enzyme-substrate interaction energy for ethoxyresorufin was lower than that for methoxyresorufin, which is consistent with higher activity of 1A1 towards the former substrate. Key residue Val-382 may play an important role in these interactions. Additionally, we performed binding free energy calculations for the three substrates. The obtained values were similar to those observed experimentally, which suggests that this approach might be useful for prediction of binding constants.  相似文献   

15.
Melatonin, an endogenous hormone, is used as an antioxidant drug in doses quite higher than the endogenous circulating levels of this hormone. Hepatic endoplasmic reticulum contains the cytochrome P450 (CYP450) system, which catalyzes one biotransformation pathway of melatonin; this organelle is also one of the main sources of reactive oxygen species in cells. Therefore, we proposed that the antioxidant activity of this hormone may have a biological relevance in the organelle where it is biotransformed. To evaluate this postulate, we used Fe3+/ascorbate, an oxygen free radical generating system that leads to lipid peroxidation, loss of protein-thiol content, and activation of UDP-glucuronyltransferase in rat liver microsomes. We found that mM concentrations of melatonin prevented all these oxidative phenomena. We also found that Fe3+/ascorbate leads to structural alterations in the CYP450 monooxygenase, the enzyme that binds the substrate in the CYP450 system catalytic cycle, probably through direct oxidation of the protein, and also inhibited p-nitroanisole O-demethylation, a reaction catalyzed by the CYP450 system. Notably, melatonin prevented both phenomena at μM concentrations. We provide evidence suggesting that melatonin may be oxidized by oxygen free radicals. Thus, we postulate that melatonin may be acting as an oxygen free radical scavenger, and Fe3+/ascorbate-modified melatonin would be directly protecting the CYP450 system through an additional specific mechanism. Pharmacological relevance of this phenomenon is discussed.  相似文献   

16.
The non-heme diiron enzyme xylene monooxygenase (XylM) has been shown to hydroxylate hydrocarbons via a hydrogen abstraction-carbon radical recombination mechanism (oxygen rebound). Using the radical clock bicyclo[4.1.0]heptane (norcarane) in a whole-cell assay, and observing the ratio of rearranged 3-(hydroxymethyl)cyclohexene and unrearranged 2-norcaranol products, the lifetime of the substrate radical was determined to be approximately 0.2 ns. The wild-type organism Pseudomonas putida mt-2 and two separate Escherichia coli clones expressing xylMA genes gave similar results. One clone produced the Pseudomonas putida mt-2 XylMA hydroxylase and the other produced Sphingomonas yanoikuyae B1 XylMA hydroxylase. Clones were constructed by inserting genes for xylene monooxygenase and xylene monooxygenase reductase downstream from an IPTG-inducible T7 promoter. Mechanistic investigations using whole-cell assays will facilitate more rapid screening of structure-function relationships and the identification of novel oxygenases. This approach should enable the construction of a picture of the key metalloenzymes and the mechanisms they use in selected parts of the global carbon cycle without requiring the isolation of every protein involved.  相似文献   

17.
Dissociation constants K(d) for cytochrome P450 reductase (reductase) and cytochrome P450 2B4 are measured in the presence of various substrates. Aminopyrine increases the dissociation constant for binding of the two proteins. Furthermore, cytochrome b(5) (b(5)) stimulates metabolism of this substrate and dramatically decreases the substrate-related K(d) values. Experiments are performed to test if the b(5)-mediated stimulation is effected through a conformational change of P450. The effects of a redox-inactive analogue of b(5) (Mn b(5)) on product formation and reaction stoichiometry are determined. Variations in the concentration of Mn b(5) stock solution that have been shown to effect the aggregation state of the protein alter the rate of P450-mediated NADPH oxidation but have no effect on the rate of product formation. Thus, the electron transfer capability of b(5) is necessary for stimulation of metabolism. Furthermore, stopped flow spectrometry measurements of the rate of first electron reduction of the P450 by reductase indicate that the coupling of P450 2B4-mediated metabolism improves, in the presence of Mn b(5), with slower delivery of the first electron of the catalytic cycle by the reductase. These results are consistent with a model involving the regulation of the P450 catalytic cycle by conformational changes of the P450 enzyme. We propose that the conformational change(s) necessary for progression of the catalytic cycle is inhibited when reduced, but not oxidized, reductase is bound to the P450.  相似文献   

18.
The oxidation of norbornane by a reconstituted liver cytochrome P-450 system affords exo- and endo-2-norborneol in a ratio of 3.4:1. The ratio of these products was found to be 0.76:1 when exo,exo,exo,exo-2,3,5,6-tetradueteronorbornane was oxidized. Analysis of the mass spectra of the products from the deuterated hydrocarbon showed that 25% of the exo-norborneol contained four deuterium atoms whereas 9% of the endo-norborneol contained three deuterium atoms. These results, which indicate a very large isotope effect (kHkD = 11.5±1) and a significant amount of epimerization for the hydroxylation of norbornane by cytochrome P-450, suggest an initial hydrogen abstraction to give a carbon radical intermediate.  相似文献   

19.
Kumar S 《Bioinformation》2011,7(4):207-210
Cytochrome P450s are superfamily of heme proteins which generally monooxygenate hydrophobic compounds. The human cytochrome P450 4F22 (CYP4F22) was categorized into "orphan" CYPs because of its unknown function. CYP4F22 is a potential drug target for cancer therapy. However, three-dimensional structure, the active site topology and substrate specificity of CYP4F22 remain unclear. In this study, a three-dimensional model of human P450 4F22 was constructed by comparative modeling using Modeller 9v5. The resulting model was refined by energy minimization subjected to the quality assessment from both geometric and energetic aspects and was found to be of reasonable quality. Docking approach was employed to dock arachidonic acid into the active site of CYP4F22 in order to probe the ligand-binding modes. As a result, several key residues were identified to be responsible for the binding of arachidonic acid with CYP4F22. These findings provide useful information for understanding the biological roles of CYP4F22 and structure-based drug design.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号