首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PDZ motifs are protein–protein interaction domains that often bind to COOH-terminal peptide sequences. The two PDZ proteins characterized in skeletal muscle, syntrophin and neuronal nitric oxide synthase, occur in the dystrophin complex, suggesting a role for PDZ proteins in muscular dystrophy. Here, we identify actinin-associated LIM protein (ALP), a novel protein in skeletal muscle that contains an NH2-terminal PDZ domain and a COOH-terminal LIM motif. ALP is expressed at high levels only in differentiated skeletal muscle, while an alternatively spliced form occurs at low levels in the heart. ALP is not a component of the dystrophin complex, but occurs in association with α-actinin-2 at the Z lines of myofibers. Biochemical and yeast two-hybrid analyses demonstrate that the PDZ domain of ALP binds to the spectrin-like motifs of α-actinin-2, defining a new mode for PDZ domain interactions. Fine genetic mapping studies demonstrate that ALP occurs on chromosome 4q35, near the heterochromatic locus that is mutated in fascioscapulohumeral muscular dystrophy.  相似文献   

2.
LIM protein cDNA, from Bombyx mori that contains an open reading frame of 622 bp encoding 94 amino acids, was identified and characterized. The B. mori LIM protein homologue is classified into group 2 LIM proteins that contain glycine-rich LIM domain. B. mori LIM protein mRNA is up-regulated at late embryogenesis and detected in the mid-gut of 5th instar larvae.  相似文献   

3.
The Z-line is a specialized structure connecting adjacent sarcomeres in muscle cells. alpha-Actinin cross-links actin filaments in the Z-line. Several PDZ-LIM domain proteins localize to the Z-line and interact with alpha-actinin. Actinin-associated LIM protein (ALP), C-terminal LIM domain protein (CLP36), and Z band alternatively spliced PDZ-containing protein (ZASP) have a conserved region named the ZASP-like motif (ZM) between PDZ and LIM domains. To study the interactions and function of ALP we used purified recombinant proteins in surface plasmon resonance measurements. We show that ALP and alpha-actinin 2 have two interaction sites. The ZM motif was required for the interaction of ALP internal region with the alpha-actinin rod and for targeting of ALP to the Z-line. The PDZ domain of ALP bound to the C terminus of alpha-actinin. This is the first indication that the ZM motif would have a direct role in a protein-protein interaction. These results suggest that the two interaction sites of ALP would stabilize certain conformations of alpha-actinin 2 that would strengthen the Z-line integrity.  相似文献   

4.
The LIM domain is defined as a protein-protein interaction module involved in the regulation of diverse cellular processes including gene expression and cytoskeleton organization. We have recently shown that the tobacco WLIM1, a two LIM domain-containing protein, is able to bind to, stabilize and bundle actin filaments, suggesting that it participates to the regulation of actin cytoskeleton structure and dynamics. In the December issue of the Journal of Biological Chemistry we report a domain analysis that specifically ascribes the actin-related activities of WLIM1 to its two LIM domains. Results suggest that LIM domains function synergistically in the full-length protein to achieve optimal activities. Here we briefly summarize relevant data regarding the actin-related properties/functions of two LIM domain-containing proteins in plants and animals. In addition, we provide further evidence of cooperative effects between LIM domains by transiently expressing a chimeric multicopy WLIM1 protein in BY2 cells.Key words: Actin-binding proteins, actin-bundling, cysteine-rich proteins, cytoskeleton, LIM domainThe LIM domain is a ≈55 amino acid peptide domain that was first identified in 1990 as a common cystein-rich sequence found in the three homeodomain proteins LIN-11, Isl1 and MEC-3. It has since been found in a wide variety of eukaryotic proteins of diverse functions. Animals possess several families of LIM proteins, with members containing 1–5 LIM domains occasionally linked to other catalytic or protein-binding domains such as homeodomain, kinase and SH3 domains. In contrast, plants only possess two distinct sets of LIM proteins. One is plant-specific and has not been functionally characterized yet. The other one comprises proteins that exhibit the same overall structure as the animal cystein rich proteins (CRPs), i.e., two very similar LIM domains separated by a ≈50 amino acid-long interLIM domain and a relatively short and variable C-terminal domain (Fig. 1A). The mouse CRP2 protein was the first CRP reported to interact directly with actin filaments (AF) and to stabilize the latter.1 Identical observations were subsequently described for the chicken CRP1 and tobacco WLIM1 proteins.2,3 In addition, these two proteins were shown to arrange AF into cables both in vitro and in vivo and thus join the list of actin bundlers.Open in a separate windowFigure 1Domain maps for wild-type WLIM1 (A) and GFP-fused chimeric 3xWLIM1 (B). A. WLIM1 basically comprises a short N-terminal domain (Nt), two LIM domains (LIM1 and LIM2), an interLIM spacer (IL) and a C-terminal domain (Ct). B. 3xWLIM1 consists of three tandem WLIM1 copies. This chimeric protein has been fused in C-terminus to GFP and transiently expressed in tobacco BY2 cells.To identify the peptide domains of WLIM1 responsible for its actin-related properties/activities, we generated domain-deleted and single domain variants and submitted them to a series of in vivo and in vitro assays.4 Localization experiments established that both LIM domains are required to efficiently target the actin cytoskeleton in tobacco BY2 cells. High-speed (200,000 g) cosedimentation data confirmed that the actin-binding activity of WLIM1 relies on its LIM domains. Indeed, the deletion of either the first or the second LIM domain respectively resulted in a 5-fold and 10-fold decrease of the protein affinity for AF. Importantly, each single LIM domain was found able to interact with AF in an autonomous manner, although with a reduced affinity compared to the wild-type WLIM1. Low-speed (12,500 g) cosedimentation data and electron microscopy observations revealed that the actin bundling activity of WLIM1 is also triggered by its LIM domains. Surprisingly each single LIM domain was able to bundle AF in an autonomous manner, suggesting that WLIM1 has two discrete actin-bundling sites. However, the bundles induced by the variants containing only one LIM domain, i.e., LIM domain-deleted mutants and single LIM domains, differed from those induced by the full-length WLIM1. They appeared more wavy and loosely packed and formed only at relatively high protein:actin ratios. Together these data suggest that LIM domains are autonomous actin-binding and -bundling modules that function in synergy in wild-type WLIM1 to achieve optimal activities.To further assess the mechanism of cooperation between the LIM domains of plant CRP-related proteins, we generated a chimeric protein composed of three WLIM1 copies in tandem (3 × WLIM1, Fig. 1B), and transiently expressed it as a GFP-fusion in tobacco BY2 cells. We anticipated that such a six LIM domain-containing protein displays an even higher actin-bundling activity. (Fig. 2A) shows the typical actin cytoskeleton pattern in an expanding BY2 cell as visualized using the actin marker GFP-fABD2.5 As previously reported by Sheahan et al.,5 GFP-fABD2 decorated dense, transversely oriented, cortical networks as well as transvacuolar strands connecting the subcortical-perinuclear region to the cortex. Ectopic expression of WLIM1-GFP (BY2 cells normally do not express the WLIM1 gene) induced moderate but perceptible modifications of the actin cytoskeleton structure (Fig. 2B). Most AF are arranged in bundles thicker than those observed in GFP-fABD2 expressing cells and fine AF arrays are less frequently observed. As expected, this phenotype was significantly enhanced in cells transformed with the 3xWLIM1-GFP protein (Fig. 2C). Indeed, cells were almost devoided of fine AF arrays and exhibited very thick actin cables (Fig. 2C) that, at times (≈30 %), form atypical long looped structures (Fig. 2D). The appearance of such structures may result from the increase of cable stability and thickness induced by the 3xWLIM1-GFP protein, as these parameters are likely to determine, at least partially, the maximal length of actin bundles. Together the present observations support earlier data showing that LIM domains work in concert in LIM proteins to regulate actin bundling in plant cells. Strikingly, vertebrate and plant CRPs invariably contain two LIM domains. The lack, in these organisms, of CRP-related proteins combining more than two LIM domains may be explained by the fact that very thick cables, such as those induced by the artificial 3xWLIM1, may be too stable structures incompatible with the necessary high degree of actin cytoskeleton plasticity. As an exception, a muscle CRP-related protein with five LIM domains (Mlp84B) has been identified in Drosophila.6 However, rather than decorating actin filaments in an homogenous manner, this protein has been found to concentrate in a specialized region of the Z-discs where it stabilizes, in concert with D-titin, muscle sarcomeres.7Open in a separate windowFigure 2Typical actin cytoskeleton patterns in tobacco BY2 cells that have been transiently transformed, using a particle gun, with GFP-fABD2 (A), WLIM1-GFP (B), and 3xWLIM1-GFP (C and D). For each construct, more than 60 cells were analyzed by confocal microscopy. In the case of 3xWLIM1-GFP, two prevalent patterns have been observed (C and D). Bars = 20 µm.The relatively well conserved spacer length (≈50 amino acids) that separates the two LIM domains in vertebrate CRPs and related plant LIM proteins remains an intriguing feature the importance of which in actin cable organization remains to be established. Using electron microscopy we are currently evaluating the effects of the modification of the interLIM domain length on the structural properties of actin cables.  相似文献   

5.
6.
We report on the in vivo uptake of antibodies into plant protoplasts. When protoplasts of sunflower, Arabidopsis or tobacco were incubated in vivo with an antibody, this antibody was detected by immunofluorescence in the cytoplasm and/or the nucleus, depending on the location of the target protein. Furthermore, when protoplasts were cultured in the presence of antibodies, specific effects were observed. Incubation with antibodies raised against p34cdc2 led to a strong inhibition of the division rate, and a decrease in the average DNA content of protoplasts. With antibodies against HaWLIM1, a LIM domain protein of the CRP type, a negative effect on actin organisation was observed. We conclude that antibodies can penetrate plant protoplasts in vivo, and thus may be used as powerful tools for the study of protein function.  相似文献   

7.
8.
9.
The biochemical lesion in a light-sensitive, acetate-requiring Chlamydomonas mutant was identified. This strain, designated rpk, exhibited photosynthetic rates less than 3% of the wild-type. Analysis of photosynthetic products by high-performance liquid chromatography demonstrated an accumulation of 14C label in pentose and hexose monophosphates. After 1 min of photosynthesis in 14CO2 these intermediates comprised 27.5% of the label in the mutant compared with 8% in the wild-type. The mutant pheno-type was caused by a 20-fold reduction in ribulose-5-phosphate (Ru5P)-kinase (EC 2.7.1.19) activity. The mutant exhibited wild-type levels of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) and transketolase (EC 2.2.1.1) indicating that the mutation specifically affected Ru5P kinase. In a cross of the mutant with the wild-type, tetrad progeny segregated in a Mendelian fashion (1:1) and light-sensitivity cosegregated with reduced Ru5P-kinase activity and an acetate requirement for growth. Almost normal levels of Ru5P-kinase protein were detected in the mutant by probing nitrocellulose replicas of sodium dodecylsulfate-polyacrylamide gels with anti-Ru5P-kinase antibody. The subunit size of the mutant enzyme, 42 kDa, was identical to that of the wild-type. Isoelectric focusing of the native protein determined that the mutant protein was altered, exhibiting a more acidic isoelectric point than the wild-type protein. Thus, the molecular basis for the lesion affecting Ru5P-kinase activity in mutant rpk is a charge alteration which results in a partially impaired enzyme.Abbreviations Chl chlorophyll - Da dalton - FCCP carbonylcyanide-p-trifluorophenylhydrazone - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate  相似文献   

10.

Background  

The cysteine and glycine rich protein 2 (CRP2) encoded by the Csrp2 gene is a LIM domain protein expressed in the vascular system, particularly in smooth muscle cells. It exhibits a bimodal subcellular distribution, accumulating at actin-based filaments in the cytosol and in the nucleus. In order to analyze the function of CRP2 in vivo, we disrupted the Csrp2 gene in mice and analysed the resulting phenotype.  相似文献   

11.
Cytochrome P450 17α-hydroxylase/17, 20 lyase (CYP17) is a microsomal enzyme reported to have two distinct catalytic activities, 17α-hydroxylase and 17, 20 lyase, that are essential for the biosynthesis of peripheral androgens such as dehydroepiandrosterone (DHEA). Paradoxically, DHEA is present and plays a role in learning and memory in the adult rodent brain, while CYP17 activity and protein are undetectable. To determine if CYP17 is required for DHEA formation and function in the adult rodent brain, we generated CYP17 chimeric mice that had reduced circulating testosterone levels. There were no detectable differences in cognitive spatial learning between CYP17 chimeric and wild-type mice. In addition, while CYP17 mRNA levels were reduced in CYP17 chimeric compared to wild-type mouse brain, the levels of brain DHEA levels were comparable. To determine if adult brain DHEA is formed by an alternative Fe2+-dependent pathway, brain microsomes were isolated from wild-type and CYP17 chimeric mice and treated with FeSO4. Fe2+ caused comparable levels of DHEA production by both wild-type and CYP17 chimeric mouse brain microsomes; DHEA production was not reduced by a CYP17 inhibitor. Taken together these in vivo studies suggest that in the adult mouse brain DHEA is formed via a Fe2+-sensitive CYP17-independent pathway.  相似文献   

12.
The 2.2 Å X-ray crystal structure of Candida tenuis xylose reductase (AKR2B5) bound with NADP+ reveals that Phe-114 contributes to the substrate binding pocket of the enzyme. In the related human aldose reductase (AKR1B1), this phenylalanine is replaced by a tryptophan. The side chain of Trp was previously implicated in forming a hydrogen bond with bound substrate or inhibitor. The apparent Michaelis constant of AKR2B5 for xylose (Km≈90 mM) is 60 times that of AKR1B1, perhaps because critical enzyme–substrate interactions of Trp are not available to Phe-114. We, therefore, prepared a Phe-114→Trp mutant (F114W) of AKR2B5, to mimic the aldose reductase relationship in xylose reductase. Detailed analysis of the kinetic consequences in purified F114W revealed that the Km values for xylose and xylitol at pH 7.0 and 25°C were increased 5.1- and 4.4-fold, respectively, in the mutant compared with the wild-type. Turnover numbers (kcat) of F114W for xylose reduction and xylitol oxidation were half those of the wild-type. Apparent dissociation constants of NADH (KiNADH=44 µM) and NAD+ (KiNAD+=177 µM) were increased 1.6- and 1.4-fold in comparison with values of KiNADH and KiNAD+ for the wild-type, respectively. Catalytic efficiencies (kcat/Km) for NADH-dependent reduction of different aldehydes were between 3.1- and 31.5-fold lower than the corresponding kcat/Km values of the wild-type. Therefore, replacement of Phe-114 with Trp weakens rather than strengthens apparent substrate binding by AKR2B5, suggesting that xylose reductase exploits residue 114 in a different manner from aldose reductase.  相似文献   

13.
14.
Ca2+ is a highly versatile intra‐ and intercellular signal that has been reported to regulate a variety of different pattern‐forming processes during early development. To investigate the potential role of Ca2+ signaling in regulating convergence‐related cell movements, and the positioning and morphology of the pronephric anlagen, we treated zebrafish embryos from 11.5 h postfertilization (hpf; i.e. just before the pronephric anlagen are morphologically distinguishable in the lateral intermediate mesoderm; LIM) to 16 hpf, with a variety of membrane permeable pharmacological reagents known to modulate [Ca2+]i. The effect of these treatments on pronephric anlagen positioning and morphology was determined in both fixed and live embryos via in situ hybridization using the pronephic‐specific probes, cdh17, pax2.1 and sim1, and confocal imaging of BODIPY FL C5‐ceramide‐labeled embryos, respectively. We report that Ca2+ released from intracellular stores via inositol 1,4,5‐trisphosphate receptors plays a significant role in the positioning and morphology of the pronephric anlagen, but does not affect the fate determination of the LIM cells that form these primordia. Our data suggest that when Ca2+ release is inhibited, the resulting effects on the pronephric anlagen are a consequence of the disruption of normal convergence‐related movements of LIM cells toward the embryonic midline.  相似文献   

15.
16.
17.
Abstract

Nitric oxide (NO) is synthesised by a group of enzymes called nitric oxide synthases (NOS) and oxidizes to its stable end-products nitrite (NO2-) and nitrate (NO3-) We have previously reported in an in vivo rat model that NO is an important regulator for rat bone fracture healing.1 This study examines the effects of NO on alkaline phosphatase (ALP) activity in a rat fracture callus explant culture system. Explants of rat femoral fracture callus from days 4, 7, 14 and 28 post fracture induced NO2- release and ALP activity in a biphasic temporal manner, with the highest activity on day 7 and the lowest activity on day 14. Inhibition of NOS by co-incubation with an NOS inhibitor,S-(2-aminoethyl) isothiouronium bromide hydrobromide (AETU), inhibited ALP activity by an average of 50% at each time point (P <0.01). Supplementation with NO donor 3-morpholino-sydnonomine hydrochloride (SIN-1) at low doses (25 and 0.025 µM) increased ALP activity by 20% (P <0.01). ALP mRNA and histochemical ALP activity were localised to osteoblast-like and chondrocyte-like cells within fracture callus. The current study provides evidence that NO plays a regulatory role in ALP activity during rat fracture healing.  相似文献   

18.
A ferritin from the obligate anaerobe and hyperthermophilic archaeon Pyrococcus furiosus (optimal growth at 100°C) has been cloned and overproduced in Escherichia coli to one-fourth of total cell-free extract protein, and has been purified in one step to homogeneity. The ferritin (PfFtn) is structurally similar to known bacterial and eukaryal ferritins; it is a 24-mer of 20 kDa subunits, which add up to a total Mr 480 kDa. The protein belongs to the non-heme type of ferritins. The 24-mer contains approximately 17 Fe (as isolated), 2,700 Fe (fully loaded), or <1 Fe (apoprotein). Fe-loaded protein exhibits an EPR spectrum characteristic for superparamagnetic core formation. At 25°C Vmax=25 mole core Fe3+ formed per min per mg protein when measured at 315 nm, and the K0.5=5 mM Fe(II). At 0.3 mM Fe(II) activity increases 100-fold from 25 to 85°C. The wild-type ferritin is detected in P. furiosus grown on starch. PfFtn is extremely thermostable; its activity has a half-life of 48 h at 100°C and 85 min at 120°C. No apparent melting temperature was found up to 120°C. The extreme thermostability of PfFtn has potential value for biotechnological applications.  相似文献   

19.
The GA-signal transduction pathways downstream to the Gα protein in rice seedling root were investigated using in-gel kinase assay and in vitro protein phosphorylation techniques with a Gα protein defective mutant, d1. A 50-kDa protein kinase was detected downstream to Gα protein in the membrane fraction of rice seedling roots using an in-gel kinase assay with histone III-S as a substrate. The activity of a 50-kDa protein kinase increased in the wild-type rice by gibberellin (GA3) treatment, but did not change in the d1 mutant. This protein kinase activity was inhibited by the Ca2+ chelator ethyleneglycol-bis-(beta-aminoethylether)-N,N,N 1,N 1-tetraacetic acid (EGTA), protein kinase inhibitors, staurosporine and H7, and calmodulin antagonist, trifluoperazine, suggesting that the 50-kDa protein kinase is a putative plant Ca2+-dependent protein kinase (CDPK). The activity of the 50-kDa putative CDPK reached its highest level at 3 h after GA3 treatment and then gradually declined with time. In order to identify the endogenous substrate for 50-kDa putative CDPK, two-dimensional polyacrylamide gel electrophoresis followed by in vitro protein phosphorylation was carried out. The phosphorylation activity of an endogenous protein PP30, identified as an unknown protein having molecular weight 30 kDa and isoelectric point 5.8 was increased in the wild-type rice by GA3 treatment, compared with the d1 mutant. The addition of GA3 treated membrane fraction, which predominantly represent a 50-kDa putative CDPK further increased the phosphorylation of PP30. Almost similar to GA3 treatment, phosphorylation activity of PP30 was also increased by the treatment with cholera toxin in the wild-type rice but not in d1 mutant. These results suggest that the 50-kDa putative CDPK and an unknown protein, PP30 promoted by GA3 treatment are G-protein mediated in rice seedling roots.  相似文献   

20.
The PDZ and LIM domain-containing protein family is encoded by a diverse group of genes whose phylogeny has currently not been analyzed. In mammals, ten genes are found that encode both a PDZ- and one or several LIM-domains. These genes are: ALP, RIL, Elfin (CLP36), Mystique, Enigma (LMP-1), Enigma homologue (ENH), ZASP (Cypher, Oracle), LMO7 and the two LIM domain kinases (LIMK1 and LIMK2). As conventional alignment and phylogenetic procedures of full-length sequences fell short of elucidating the evolutionary history of these genes, we started to analyze the PDZ and LIM domain sequences themselves. Using information from most sequenced eukaryotic lineages, our phylogenetic analysis is based on full-length cDNA-, EST-derived- and genomic- PDZ and LIM domain sequences of over 25 species, ranging from yeast to humans. Plant and protozoan homologs were not found. Our phylogenetic analysis identifies a number of domain duplication and rearrangement events, and shows a single convergent event during evolution of the PDZ/LIM family. Further, we describe the separation of the ALP and Enigma subfamilies in lower vertebrates and identify a novel consensus motif, which we call 'ALP-like motif' (AM). This motif is highly-conserved between ALP subfamily proteins of diverse organisms. We used here a combinatorial approach to define the relation of the PDZ and LIM domain encoding genes and to reconstruct their phylogeny. This analysis allowed us to classify the PDZ/LIM family and to suggest a meaningful model for the molecular evolution of the diverse gene architectures found in this multi-domain family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号