首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Focal adhesion kinase (FAK) is a structurally unique nonreceptor protein-tyrosine kinase that localizes to focal adhesion plaques. Regulation of its activity has been implicated in diverse signaling pathways, including those mediated by extracellular matrix/integrin interactions, G-protein coupled receptors for mitogenic neuropeptides, and certain oncogene products. To gain evidence for specific processes in which FAK may be involved in vivo, a study was initiated to determine its expression pattern during mouse development. FAK expression was detected in early embryos and appeared to be distributed throughout all cell types at about the time of neurulation. Subsequent to neural tube closure, expression became particularly abundant in the developing vasculature. This included expression in the medial layer of arteries populated by smooth muscle cells. In vitro studies using cultured rat aortic vascular smooth muscle cells demonstrate that FAK phosphotyrosine content is dramatically elevated in response to plating cells onto the adhesive glycoprotein, fibronectin. Also, enhanced tyrosine phosphorylation of FAK is observed in these cells upon stimulation with the vasoconstrictor angiotensin II. Thus, in vascular smooth muscle cells, like fibroblasts, FAK appears to play a role in signaling mechanisms induced by extracellular matrix components as well as G-protein coupled receptor agonists. The combined results of this study suggest that signaling through FAK may play an important role in blood vessel morphogenesis and function. © 1994 Wiley-Liss, Inc.  相似文献   

2.
Smooth muscle cells lose their contractile function and phenotype very rapidly when placed in culture. During organ culture of smooth muscle strips, phenotype is lost more slowly. In the present studies, we established an organ culture model to study contractile function and expression of muscarinic receptors, G proteins and adenylyl cyclase in different serum concentrations in tracheal smooth muscle from swine. The results show that contractile function and the amounts of M(3) receptors, G proteins and adenylyl cyclase were maintained for up to 5 days in culture. The expression of M(2) receptors was significantly decreased in culture when compared to freshly isolated muscles. Maximal isometric tension was significantly increased in cultured muscles compared with freshly isolated muscles. Different serum concentrations did not significantly affect contractile function and expression of muscarinic receptors, G proteins and adenylyl cyclase. In conclusion, our studies suggest that cultured smooth muscle might be used as a model to study the regulation of contractile function of smooth muscle by various signal transduction pathways.  相似文献   

3.
4.
The tone of vascular smooth muscle cells is a primary determinant of the total peripheral vascular resistance and hence the arterial blood pressure. Most forms of hypertension ultimately result from an increased vascular tone that leads to an elevated total peripheral resistance. Regulation of vascular resistance under normotensive and hypertensive conditions involves multiple mediators, many of which act through G protein-coupled receptors on vascular smooth muscle cells. Receptors that mediate vasoconstriction couple with the G-proteins G(q)-G11 and G12-G13 to stimulate phosphorylation of myosin light chain (MLC) via the Ca2+/MLC kinase- and Rho/Rho kinase-mediated signaling pathways, respectively. Using genetically altered mouse models that allow for the acute abrogation of both signaling pathways by inducible Cre/loxP-mediated mutagenesis in smooth muscle cells, we show that G(q)-G11-mediated signaling in smooth muscle cells is required for maintenance of basal blood pressure and for the development of salt-induced hypertension. In contrast, lack of G12-G13, as well as of their major effector, the leukemia-associated Rho guanine nucleotide exchange factor (LARG), did not alter normal blood pressure regulation but did block the development of salt-induced hypertension. This identifies the G12-G13-LARG-mediated signaling pathway as a new target for antihypertensive therapies that would be expected to leave normal blood pressure regulation unaffected.  相似文献   

5.
Caveolin is a principal component of caveolar membranes. In the present study, we utilized a decoy peptide approach to define the degree of involvement of caveolin in PKC-dependent regulation of contractility of differentiated vascular smooth muscle. The primary isoform of caveolin in ferret aorta vascular smooth muscle is caveolin-1. Chemical loading of contractile vascular smooth muscle tissue with a synthetic caveolin-1 scaffolding domain peptide inhibited PKC-dependent increases in contractility induced by a phorbol ester or an alpha agonist. Peptide loading also resulted in a significant inhibition of phorbol ester-induced adducin Ser662 phosphorylation, an intracellular monitor of PKC kinase activity, ERK1/2 activation, and Ser789 phosphorylation of the actin binding protein caldesmon. alpha-Agonist-induced ERK1-1/2 activation was also inhibited by the caveolin-1 peptide. Scrambled peptide-loaded tissues or sham-loaded tissues were unaffected with respect to both contractility and signaling. Depolarization-induced activation of contraction was not affected by caveolin peptide loading. Similar results with respect to contractility and ERK1/2 activation during exposure to the phorbol ester or the alpha-agonist were obtained with the cholesterol-depleting agent methyl-beta-cyclodextrin. These results are consistent with a role for caveolin-1 in the coordination of signaling leading to the regulation of contractility of smooth muscle.  相似文献   

6.
Nuclear prostaglandin receptors: role in pregnancy and parturition?   总被引:5,自引:0,他引:5  
The key regulatory role of prostanoids [prostaglandins (PGs) and thromboxanes (TXs)] in the maintenance of pregnancy and initiation of parturition has been established. However, our understanding of how these events are fine-tuned by the recruitment of specific signaling pathways remains unclear. Whereas, initial thoughts were that PGs were lipophilic and would easily cross cell membranes without specific receptors or transport processes, it has since been realized that PG signaling occurs via specific cell surface G-protein coupled receptors (GPCRs) coupled to classical adenylate cyclase or inositol phosphate signaling pathways. Furthermore, specific PG transporters have been identified and cloned adding a further level of complexity to the regulation of paracrine action of these potent bioactive molecules. It is now apparent that PGs also activate nuclear receptors, opening the possibility of novel intracrine signaling mechanisms. The existence of intracrine signaling pathways is further supported by accumulating evidence linking the perinuclear localization of PG synthesizing enzymes with intracellular PG synthesis. This review will focus on the evidence for a role of nuclear actions of PGs in the regulation of pregnancy and parturition.  相似文献   

7.
Bandopadhyay  R.  Orte  C.  Lawrenson  J.G.  Reid  A.R.  De Silva  S.  Allt  G. 《Brain Cell Biology》2001,30(1):35-44
Evidence from a variety of sources suggests that pericytes have contractile properties and may therefore function in the regulation of capillary blood flow. However, it has been suggested that contractility is not a ubiquitous function of pericytes, and that pericytes surrounding true capillaries apparently lack the machinery for contraction. The present study used a variety of techniques to investigate the expression of contractile proteins in the pericytes of the CNS. The results of immunocytochemistry on cryosections of brain and retina, retinal whole-mounts and immunoblotting of isolated brain capillaries indicate strong expression of the smooth muscle isoform of actin (α-SM actin) in a significant number of mid-capillary pericytes. Immunogold labelling at the ultrastructural level showed that α-SM actin expression in capillaries was exclusive to pericytes, and endothelial cells were negative. Compared to α-SM actin, non-muscle myosin was present in lower concentrations. By contrast, smooth muscle myosin isoforms, were absent. Pericytes were strongly positive for the intermediate filament protein vimentin, but lacked desmin which was consistently found in vascular smooth muscle cells. These results add support for a contractile role in pericytes of the CNS microvasculature, similar to that of vascular smooth muscle cells.  相似文献   

8.
cGMP is a second messenger that produces its effects by interacting with intracellular receptor proteins. In smooth muscle cells, one of the major receptors for cGMP is the serine/threonine protein kinase, cGMP-dependent protein kinase (PKG). PKG has been shown to catalyze the phosphorylation of a number of physiologically relevant proteins whose function it is to regulate the contractile activity of the smooth muscle cell. These include proteins that regulate free intracellular calcium levels, the cytoskeleton, and the phosphorylation state of the regulatory light chain of smooth muscle myosin. Other studies have shown that vascular smooth muscle cells (VSMCs) that are cultured in vitro may cease to express PKG and will, coincidentally, acquire a noncontractile, synthetic phenotype. The restoration of PKG expression to the synthetic phenotype VSMC results in the cells acquiring a more contractile phenotype. These more recent studies suggest that PKG controls VSMC gene expression that, in turn, regulates phenotypic modulation of the cells. Therefore, the regulation of PKG gene expression appears to be linked to phenotypic modulation of VSMC. Because several vascular disorders are related to the accumulation of synthetic, fibroproliferative VSMC in the vessel wall, it is likely that changes in the activity of the nitric oxide/cGMP/PKG pathway is involved the development of these diseases.  相似文献   

9.
Atherosclerosis can be defined in broad terms as a vascular disease accompanied by dysregulation of cholesterol metabolism and the accumulation of smooth muscle cells and macrophages within the vessel wall. At the interface of the blood and the vessel wall is the endothelium, which actively participates in a plethora of critical homeostatic functions in addition to affecting cholesterol trafficking in the underlying smooth muscle cell and macrophage. These events include: 1) inflammation resulting in release of cytokines, 2) changes in vascular reactivity causing release of endothelial cell derived relaxing factor (EDRF) and PGI2, and 3) control of vascular smooth cell proliferation via release of growth factors and growth suppressor molecules. Each process has been linked to the regulation of cholesterol accretion in the arterial cell. Furthermore, each homeostatic process is regulated by transmembrane signaling mechanisms at the lipid-protein interface of the membrane. Data have emerged recently indicating that biological response modifiers that trigger transmembrane signaling work in a sequential manner to control cell function. We review studies of the regulatory mechanisms of transmembrane signal transduction that advance the concept that phosphorylation of the specific protein components of the receptor machinery may result in a cooperative cellular response to ligands that will ultimately affect cholesterol delivery and trafficking within cells. We review recent data demonstrating that eicosanoids and cytokines released from one cell activate their receptors on neighboring cells, and interact with each other during this "cross-talk phenomenon." Cross-talking among phosphorylation reactions involving, for example, protein kinases A and C and tyrosine protein kinase, coupled with the highly regulated eicosanoid pathways and the diacylglycerol-phosphatidyl inositol (DG-PI) system, are discussed in terms of their metabolic impact on cholesterol delivery, intracellular processing, and efflux.  相似文献   

10.
The profound hypotension in septic shock patients is difficult to treat as it is accompanied by depressed constrictor responses to α1-adrenoceptor agonists. Bacterial lipopolysaccharide (LPS) is the main trigger for most of the cardiovascular alterations occurring in septic shock. In this study we investigated the effects of LPS exposure on vascular contractility in general and the role of Regulator of G protein Signalling (RGS) proteins in the LPS-induced vascular alterations. Exposure of rat aortic rings to various LPS concentrations (3, 10, 30 μg/ml) for 22 hours differentially affected agonist-induced contractile responses at four distinct G-protein coupled receptors (α1-adrenoceptors, angiotensin II, serotonin and endothelin-1 receptors). While the endothelin-1-induced contraction was unaffected by LPS pre-treatment, phenylephrine- and angiotensin II-induced contraction were significantly reduced whereas serotonin-induced contraction was significantly enhanced. Concomitantly, LPS treatment increased the RGS16 mRNA expression both in aortic rings and cultured vascular smooth muscle cells (VSMCs) but not that of RGS2, RGS3, RGS4 or RGS5. The significant increase in RGS16 mRNA expression in VSMCs by LPS was time- and concentration-dependent but independent of increased inducible NO synthase (iNOS) activity. The changes in RGS16 mRNA might contribute to the differential regulation of the contractile responses to vasoconstrictors upon LPS exposure.  相似文献   

11.
The smooth muscle cells in the vascular wall are constantly exposed to distending forces from the intraluminal pressure. A rise in blood pressure triggers growth of the vessel wall, which is characterized primarily by hypertrophy of smooth muscle cells with maintained differentiation in a contractile phenotype. Growth factor stimulation of dissociated smooth muscle cells, on the other hand, causes proliferative growth with loss of contractility. This type of response is also found in neointima development following angioplasty and in atherosclerotic lesions. An intact tissue environment is therefore critical for preserved differentiation. Recent advances point to a role of actin polymerization in the expression of smooth muscle differentiation marker genes, in concert with serum response factor (SRF) and cofactors, such as myocardin. Stretch of intact venous smooth muscle activates Rho and inhibits the actin filament severing factor cofilin, resulting in increased actin polymerization. Concomitantly, the rates of synthesis of SRF-regulated differentiation markers, such as SM22alpha, calponin, and alpha-actin, are increased. This increase in differentiation signals is parallel with activation of the mitogen-activated protein (MAP) kinase pathway. Thus stretch-induced growth in a maintained contractile phenotype occurs by dual activation of signal pathways regulating both growth and differentiation. A current challenge is to identify sites of crosstalk between these pathways in intact smooth muscle tissue.  相似文献   

12.
Myometrial smooth muscle contractility is regulated predominantly through the reversible phosphorylation of MYLs (myosin light chains), catalysed by MYLK (MYL kinase) and MYLP (MYL phosphatase) activities. MYLK is activated by Ca2+-calmodulin, and most uterotonic agonists operate through myometrial receptors that increase [Ca2+]i (intracellular Ca2+ concentration). Moreover, there is substantial evidence for Ca2+-independent inhibition of MYLP in smooth muscle, leading to generation of increased MYL phosphorylation and force for a given [Ca2+]i, a phenomenon known as 'Ca2+-sensitization'. ROCK (Rho-associated kinase)-mediated phosphorylation and inhibition of MYLP has been proposed as a mechanism for Ca2+-sensitization in smooth muscle. However, it is unclear to date whether the mechanisms that sensitize the contractile machinery to Ca2+ are important in the myometrium, as they appear to be in vascular and respiratory smooth muscle. In the present paper, we discuss the signalling pathways regulating MYLP activity and the involvement of ROCK in myometrial contractility, and present recent data from our laboratory which support a role for Ca2+-sensitization in human myometrium.  相似文献   

13.
G-protein coupled receptors (GPCRs) represent a large class of cell surface receptors that mediate a multitude of functions. Over the years, a number of GPCRs and ancillary proteins have been shown to be expressed in skeletal muscle. Unlike the case with other muscle tissues like cardiac and vascular smooth muscle cells, there has been little attempt at systematically analyzing GPCRs in skeletal muscle. Here we have compiled all the GPCRs that are expressed in skeletal muscle. In addition, we review the known function of these receptors in both skeletal muscle tissue and in cultured skeletal muscle cells.  相似文献   

14.
15.
Impaired smooth muscle contractility is a hallmark of acute acalculous cholecystitis. Although free cytosolic Ca2+ ([Ca2+]i) is a critical step in smooth muscle contraction, possible alterations in Ca2+ homeostasis by cholecystitis have not been elucidated. Our aim was to elucidate changes in the Ca2+ signaling pathways induced by this gallbladder dysfunction. [Ca2+]i was determined by epifluorescence microscopy in fura 2-loaded isolated gallbladder smooth muscle cells, and isometric tension was recorded from gallbladder muscle strips. F-actin content was quantified by confocal microscopy. Ca2+ responses to the inositol trisphosphate (InsP3) mobilizing agonist CCK and to caffeine, an activator of the ryanodine receptors, were impaired in cholecystitic cells. This impairment was not the result of a decrease in the size of the releasable pool. Inflammation also inhibited Ca2+ influx through L-type Ca2+ channels and capacitative Ca2+ entry induced by depletion of intracellular Ca2+ pools. In addition, the pharmacological phenotype of these channels was altered in cholecystitic cells. Inflammation impaired contractility further than Ca2+ signal attenuation, which could be related to the decrease in F-actin that was detected in cholecystitic smooth muscle cells. These findings indicate that cholecystitis decreases both Ca2+ release and Ca2+ influx in gallbladder smooth muscle, but a loss in the sensitivity of the contractile machinery to Ca2+ may also be responsible for the impairment in gallbladder contractility.  相似文献   

16.
Genetic studies in mice and humans have revealed a pivotal function for transforming growth factor-beta (TGF-β) in vascular development and maintenance of vascular homeostasis. Mice deficient for various TGF-β signaling components develop an embryonic lethality due to vascular defects. In patients, mutations in TGF-β receptors have been linked to vascular dysplasia like Hereditary Hemorrhagic Telangiectasia (HHT) and pulmonary arterial hypertension (PAH). Besides indirect effects by regulating the expression of angiogenic regulators, TGF-β also has potent direct effects on endothelial cell growth and migration, and we have proposed that TGF-β regulates the activation state of the endothelium via two opposing type I receptor/Smad pathways, activin receptor-like kinase (ALK)1 and ALK5. TGF-β is also critical for the differentiation of mural precursors into pericytes and smooth muscle cells. Furthermore, defective paracrine TGF-β signaling between endothelial and neighboring mural cells may be responsible for a leaky vessel phenotype that is characteristic of HHT. In this review, we discuss our current understanding of the TGF-β signaling pathway and its regulation of endothelial and vascular smooth muscle cell function.  相似文献   

17.
Regulation of vascular smooth muscle cell contractile state is critical for the maintenance of blood vessel tone. Abnormal vascular smooth muscle cell contractility plays an important role in the pathogenesis of hypertension, blood vessel spasm, and atherosclerosis. Myosin phosphatase, the key enzyme controlling myosin light chain dephosphorylation, regulates smooth muscle cell contraction. Vasoconstrictor and vasodilator pathways inhibit and activate myosin phosphatase, respectively. G-protein-coupled receptor agonists can inhibit myosin phosphatase and cause smooth muscle cell contraction by activating RhoA/Rho kinase, whereas NO/cGMP can activate myosin phosphatase and cause smooth muscle cell relaxation by activation of cGMP-dependent protein kinase. We have used yeast two-hybrid screening to identify a 116-kDa human protein that interacts with both myosin phosphatase and RhoA. This myosin phosphatase-RhoA interacting protein, or M-RIP, is highly homologous to murine p116RIP3, is expressed in vascular smooth muscle, and is localized to actin myofilaments. M-RIP binds directly to the myosin binding subunit of myosin phosphatase in vivo in vascular smooth muscle cells by an interaction between coiled-coil and leucine zipper domains in the two proteins. An adjacent domain of M-RIP directly binds RhoA in a nucleotide-independent manner. M-RIP copurifies with RhoA and Rho kinase, colocalizes on actin stress fibers with RhoA and MBS, and is associated with Rho kinase activity in vascular smooth muscle cells. M-RIP can assemble a complex containing both RhoA and MBS, suggesting that M-RIP may play a role in myosin phosphatase regulation by RhoA.  相似文献   

18.
Signaling by nitric oxide (NO) determines several cardiovascular functions including blood pressure regulation, cardiac and smooth muscle hypertrophy, and platelet function. NO stimulates the synthesis of cGMP by soluble guanylyl cyclases and thereby activates cGMP-dependent protein kinases (PKGs), mediating most of the cGMP functions. Hence, an elucidation of the PKG signaling cascade is essential for the understanding of the (patho)physiological aspects of NO. Several PKG signaling pathways were identified, meanwhile regulating the intracellular calcium concentration, mediating calcium desensitization or cytoskeletal rearrangement. During the last decade it emerged that the inositol trisphosphate receptor-associated cGMP-kinase substrate (IRAG), an endoplasmic reticulum-anchored 125-kDa membrane protein, is a main signal transducer of PKG activity in the cardiovascular system. IRAG interacts specifically in a trimeric complex with the PKG1β isoform and the inositol 1,4,5-trisphosphate receptor I and, upon phosphorylation, reduces the intracellular calcium release from the intracellular stores. IRAG motifs for phosphorylation and for targeting to PKG1β and 1,4,5-trisphosphate receptor I were identified by several approaches. The (patho)physiological functions for the regulation of smooth muscle contractility and the inhibition of platelet activation were perceived. In this review, the IRAG recognition, targeting, and function are summarized compared with PKG and several PKG substrates in the cardiovascular system.  相似文献   

19.
The endothelins (ETs) comprise a family of 21 amino acid peptides, ET-1, ET-2 and ET-3, first demonstrated as products of vascular endothelium. Subsequent work showed that they are also found in non-endothelial cells from a variety of tissues such as breast, parathyroid and adrenal gland. At first, the ETs were recognized for their pressor effects. However, ET administration in vivo initially caused hypotension at low concentrations by triggering the paracrine release of endothelial-derived vasodilators. The ETs exert powerful contractile actions on myometrium and other types of smooth muscle and are mitogenic, or co-mitogenic for fibroblasts, vascular smooth muscle and other cells. Demonstration of extravascular ET in endometrium has revealed a powerful vasoconstrictor which might act on the spiral arterioles to effect a powerful and sustained contraction of vascular smooth muscle. ETs might also contribute to the process of endometrial repair. In addition, the ETs appear to play a fundamental role in the control of uterine function in pregnancy. Effects on myometrial contractility have been implicated in the mechanisms governing the onset of normal and pre-term labour, and the peptides are likely to be key determinants of placental blood flow by binding to vascular smooth muscle receptors in the placenta.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号