首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chlamydia trachomatis ribonucleotide reductase (RNR) is a class Ic RNR. It has two homodimeric subunits: proteins R1 and R2. Class Ic protein R2 in its most active form has a manganese–iron metal cofactor, which functions in catalysis like the tyrosyl radical in classical class Ia and Ib RNRs. Oligopeptides with the same sequence as the C‐terminus of C. trachomatis protein R2 inhibit the catalytic activity of C. trachomatis RNR, showing that the class Ic enzyme shares a similar highly specific inhibition mechanism with the previously studied radical‐containing class Ia and Ib RNRs. The results indicate that the catalytic mechanism of this class of RNRs with a manganese–iron cofactor is similar to that of the tyrosyl‐radical‐containing RNRs, involving reversible long‐range radical transfer between proteins R1 and R2. The competitive binding of the inhibitory R2‐derived oligopeptide blocks the transfer pathway. We have constructed three‐dimensional structure models of C. trachomatis protein R1, based on homologous R1 crystal structures, and used them to discuss possible binding modes of the peptide to protein R1. Typical half maximal inhibitory concentration values for C. trachomatis RNR are about 200 µ m for a 20‐mer peptide, indicating a less efficient inhibition compared with those for an equally long peptide in the Escherichia coli class Ia RNR. A possible explanation is that the C. trachomatis R1/R2 complex has other important interactions, in addition to the binding mediated by the R1 interaction with the C‐terminus of protein R2. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Friedhelm Lendzian 《BBA》2005,1707(1):67-90
This short review compiles high-field electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) studies on different intermediate amino acid radicals, which emerge in wild-type and mutant class I ribonucleotide reductase (RNR) both in the reaction of protein subunit R2 with molecular oxygen, which generates the essential tyrosyl radical, and in the catalytic reaction, which involves a radical transfer between subunits R2 and R1. Recent examples are presented, how different amino acid radicals (tyrosyl, tryptophan, and different cysteine-based radicals) were identified, assigned to a specific residue, and their interactions, in particular hydrogen bonding, were investigated using high-field EPR and ENDOR spectroscopy. Thereby, unexpected diiron-radical centers, which emerge in mutants of R2 with changed iron coordination, and an important catalytic cysteine-based intermediate in the substrate turnover reaction in R1 were identified and characterized. Experiments on the essential tyrosyl radical in R2 single crystals revealed the so far unknown conformational changes induced by formation of the radical. Interesting structural differences between the tyrosyl radicals of class Ia and Ib enzymes were revealed. Recently accurate distances between the tyrosyl radicals in the protein dimer R2 could be determined using pulsed electron-electron double resonance (PELDOR), providing a new tool for docking studies of protein subunits. These studies show that high-field EPR and ENDOR are important tools for the identification and investigation of radical intermediates, which contributed significantly to the current understanding of the reaction mechanism of class I RNR.  相似文献   

3.
Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper(II) complexes were studied, aiming to correlate their cytotoxic activities with their effects on the diferric/tyrosyl radical center of the RNR enzyme in vitro. In this study we propose for the first time a potential specific binding pocket for Triapine on the surface of the mouse R2 RNR protein. In our mechanistic model, interaction with Triapine results in the labilization of the diferric center in the R2 protein. Subsequently the Triapine molecules act as iron chelators. In the absence of external reductants, and in presence of the mouse R2 RNR protein, catalytic amounts of the iron(III)–Triapine are reduced to the iron(II)–Triapine complex. In the presence of an external reductant (dithiothreitol), stoichiometric amounts of the potently reactive iron(II)–Triapine complex are formed. Formation of the iron(II)–Triapine complex, as the essential part of the reaction outcome, promotes further reactions with molecular oxygen, which give rise to reactive oxygen species (ROS) and thereby damage the RNR enzyme. Triapine affects the diferric center of the mouse R2 protein and, unlike hydroxyurea, is not a potent reductant, not likely to act directly on the tyrosyl radical.  相似文献   

4.
Epstein-Barr virus (EBV) belongs to the gamma subfamily of herpes viruses, among the most common pathogenic viruses in humans worldwide. The viral ribonucleotide reductase small subunit (RNR R2) is involved in the biosynthesis of nucleotides, the DNA precursors necessary for viral replication, and is an important drug target for EBV. RNR R2 generates a stable tyrosyl radical required for enzymatic turnover. Here, the electronic and magnetic properties of the tyrosyl radical in EBV R2 have been determined by X-band and high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy recorded at cryogenic temperatures. The radical exhibits an unusually low g1-tensor component at 2.0080, indicative of a positive charge in the vicinity of the radical. Consistent with these EPR results a relatively high C-O stretching frequency associated with the phenoxyl radical (at 1508 cm−1) is observed with resonance Raman spectroscopy. In contrast to mouse R2, EBV R2 does not show a deuterium shift in the resonance Raman spectra. Thus, the presence of a water molecule as a hydrogen bond donor moiety could not be identified unequivocally. Theoretical simulations showed that a water molecule placed at a distance of 2.6 Å from the tyrosyl-oxygen does not result in a detectable deuterium shift in the calculated Raman spectra. UV/VIS light spectroscopic studies with metal chelators and tyrosyl radical scavengers are consistent with a more accessible dimetal binding/radical site and a lower affinity for Fe2+ in EBV R2 than in Escherichia coli R2. Comparison with previous studies of RNR R2s from mouse, bacteria, and herpes viruses, demonstrates that finely tuned electronic properties of the radical exist within the same RNR R2 Ia class.  相似文献   

5.
This short review compiles high-field electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) studies on different intermediate amino acid radicals, which emerge in wild-type and mutant class I ribonucleotide reductase (RNR) both in the reaction of protein subunit R2 with molecular oxygen, which generates the essential tyrosyl radical, and in the catalytic reaction, which involves a radical transfer between subunits R2 and R1. Recent examples are presented, how different amino acid radicals (tyrosyl, tryptophan, and different cysteine-based radicals) were identified, assigned to a specific residue, and their interactions, in particular hydrogen bonding, were investigated using high-field EPR and ENDOR spectroscopy. Thereby, unexpected diiron-radical centers, which emerge in mutants of R2 with changed iron coordination, and an important catalytic cysteine-based intermediate in the substrate turnover reaction in R1 were identified and characterized. Experiments on the essential tyrosyl radical in R2 single crystals revealed the so far unknown conformational changes induced by formation of the radical. Interesting structural differences between the tyrosyl radicals of class Ia and Ib enzymes were revealed. Recently accurate distances between the tyrosyl radicals in the protein dimer R2 could be determined using pulsed electron-electron double resonance (PELDOR), providing a new tool for docking studies of protein subunits. These studies show that high-field EPR and ENDOR are important tools for the identification and investigation of radical intermediates, which contributed significantly to the current understanding of the reaction mechanism of class I RNR.  相似文献   

6.
Ribonucleotide reductase (RNR) of Chlamydia trachomatis is a class I RNR enzyme composed of two homodimeric components, proteins R1 and R2. In class I RNR, R1 has the substrate binding site, whereas R2 has a diferric site and normally in its active form a stable tyrosyl free radical. C. trachomatis RNR is unusual, because its R2 component has a phenylalanine in the place of the radical carrier tyrosine. Replacing the tyrosyl radical, a paramagnetic Fe(III)-Fe(IV) species (species X, normally a transient intermediate in the process leading to radical formation) may provide the oxidation equivalent needed to start the catalytic process via long range electron transfer from the active site in R1. Here EPR spectroscopy shows that in C. trachomatis RNR, species X can become essentially stable when formed in a complete RNR (R1/R2/substrate) complex, adding further weight to the possible role of this species X in the catalytic reaction.  相似文献   

7.
Ribonucleotide reductase (RNR) is a viable target for new drugs against the causative agent of tuberculosis, Mycobacterium tuberculosis. Previous work has shown that an N‐acetylated heptapeptide based on the C‐terminal sequence of the smaller RNR subunit can disrupt the formation of the holoenzyme sufficiently to inhibit its function. Here the synthesis and binding affinity, evaluated by competitive fluorescence polarization, of several truncated and N‐protected peptides are described. The protected single‐amino acid Fmoc‐Trp shows binding affinity comparable to the N‐acetylated heptapeptide, making it an attractive candidate for further development of non‐peptidic RNR inhibitors. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca2+-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the “open” and “closed” conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM’s inhibitors correlated well with available experimental data as the r2 obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca2+-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca2+-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca2+-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs.  相似文献   

9.
Ribonucleotide Reductase (RNR) is an enzyme responsible for the reduction of ribonucleotides to their corresponding Deoxyribonucleotides (DNA), which is a building block for DNA replication and repair mechanisms. The key role of RNR in DNA synthesis and control in cell growth has made this an important target for anticancer therapy. Increased RNR activity has been associated with malignant transformation and tumor cell growth. In recent years, several RNR inhibitors, including Triapine, Gemcitabine and GTI-2040, have entered the clinical trials. Our current work focuses on an attempted to dock this inhibitors Flavin and Phenosafranine to curtail the action of human RNR2. The docked inhibitor Flavin and Phenosafranine binds at the active site with THR176, which are essential for free radical formation. The inhibitor must be a radical scavenger to destroy the tyrosyl radical or iron metal scavenger. The iron or radical site of R2 protein can react with one-electron reductants, whereby the tyrosyl radical is converted to a normal tyrosine residue. However, compounds such as Flavin and Phenosafranine were used in most of the cases to reduce the radical activity. The docking study was performed for the crystal structure of human RNR with the radical scavengers Flavin and Phenosafranine to inhibit the human RNR2. This helps to understand the functional aspects and also aids in the development of novel inhibitors for the human RNR2.  相似文献   

10.
KatB is the only catalase–peroxidase identified so far in Sinorhizobium meliloti. It plays a housekeeping role, as it is expressed throughout all the growth phases of the free-living bacterium and also during symbiosis. This paper describes the functional and structural characterization of the KatB mutants Gly303Ser, Trp95Ala, Trp95Phe, Tyr217Leu, Tyr217Phe and Met243Val carried out by optical and electron spin resonance spectroscopy. The aim of this work was to investigate the involvement of these residues in the catalatic and/or peroxidatic reaction and falls in the frame of the open dispute around the factors that influence the balance between catalatic and peroxidatic activity in heme enzymes. The Gly303 residue is not conserved in any other protein of this family, whereas the Trp95, Tyr217 and Met243 residues are thought to form an intrinsic cofactor that is likely to play a role in intramolecular electron transfer. Spectroscopic investigations show that the Gly303Ser mutant is almost similar to the wild-type KatB and should not be involved in substrate binding. Mutations on Trp95, Tyr217 and Met243 clear out the catalatic activity completely, whereas the peroxidatic activity is maintained or even increased with respect to that of the wild-type enzyme. The k cat values obtained for these mutants suggest that Trp95 and Tyr217 form a huge delocalized system that provides a pathway for electron transfer to the heme. Conversely, Met243 is likely to be placed close to the binding site of the organic molecules and plays a crucial role in substrate docking.  相似文献   

11.
Ribonucleotide reductases (RNR; EC 1.17.4.1) provide the 2′-deoxyribonucleotides for DNA replication of proliferating cells by a uniform radical mechanism using diverse metals. The native metallo-cofactor of the Corynebacterium glutamicum RNR contains manganese and is sensitive to EDTA and radical scavengers. Hybrid holoenzymes, capable of ribonucleotide reduction, were composed of the small manganese-containing (R2F) and the large catalytic subunit (R1E) from either of the two corynebacterial RNRs. A synthetic peptide deduced from the C-terminal region of the nrdF gene inhibited the C. glutamicum-RNR non-competitively and cross-reacted with the C. ammoniagenes-RNR. The C. glutamicum-R2F has a saturable organic radical signal at g=2.005 detected by electron paramagnetic resonance (EPR) spectroscopy and shows a distinct absorption at 408 nm indicative of a tyrosyl-like organic radical (Y·). Quantification of the metal content revealed 0.06 mol Fe but 0.8 mol Mn per mol R2F-monomer and would thus assign two manganese atoms bound to the dimeric metallo-cofactor, while a distinct enzymatic activity (32 µmol×mg?1×min?1) was observed in the biochemical complementation assay. Divergence of the C. glutamicum-RNR studied here from the prototypical Salmonella typhimurium class 1b enzyme and the Chlamydia trachomatis class Ic enzyme is discussed below.  相似文献   

12.
Wild-type phosphotriesterase (PTE) prefers the SP-enantiomers over the corresponding RP-enantiomers by factors ranging from 10 to 90. To satisfy the binding modes of the PTE of SP- and RP-enantiomers, all-atom molecular dynamics simulations were carried out on two paraoxon SP and RP derivatives, namely, Sp-1 and Rp-1. Molecular mechanics Poisson–Boltzmann surface area and molecular mechanics generalized Born surface area (MM-PBSA and MM-GBSA) calculations indicated that His230 in Sp-1-PTE had a closer interaction with the substrate than that in Rp-1-PTE and that such interaction increased the catalytic efficiency of PTE for Sp-1. The steered molecular dynamics simulation indicated that, compared with Sp-1, Rp-1 in the unbinding (binding) may hinder some residue displacement, thus requiring more effort to escape the binding pocket of PTE. In addition, Trp131, Phe306, and Tyr309 are deemed important residues for the Sp-1 unbinding pathway via PTE, whereas Tyr309 alone is considered an important residue for the Rp-1 unbinding pathway. These results demonstrate the possibility of dramatically altering the stereoselectivity and overall reactivity of the native enzyme toward chiral substrates by modifying specific residues located within the active site of PTE.  相似文献   

13.
A computational approach to designing a peptide-based ligand for the purification of human serum albumin (HSA) was undertaken using molecular docking and molecular dynamics (MD) simulation. A three-step procedure was performed to design a specific ligand for HSA. Based on the candidate pocket structure of HSA (warfarin binding site), a peptide library was built. These peptides were then docked into the pocket of HSA using the GOLD program. The GOLDscore values were used to determine the affinity of peptides for HSA. Consequently, the dipeptide Trp–Trp, which shows a high GOLDscore value, was selected and linked to a spacer arm of Lys[CO(CH2)5NH] on the surface of ECH-lysine sepharose 4 gel. For further evaluation, the Autodock Vina program was used to dock the linked compound into the pocket of HSA. The docking simulation was performed to obtain a first guess of the binding structure of the spacer–Trp–Trp–HSA complex and subsequently analyzed by MD simulations to assess the reliability of the docking results. These MD simulations indicated that the ligand–HSA complex remains stable, and water molecules can bridge between the ligand and the protein by hydrogen bonds. Finally, absorption spectroscopic studies were performed to illustrate the appropriateness of the binding affinity of the designed ligand toward HSA. These studies demonstrate that the designed dipeptide can bind preferentially to the warfarin binding site. Graphical Abstract
Three-step computational approach to the design of a dipeptide ligand for human serum albumin purification exploiting structure-based docking and molecular dynamics simulation  相似文献   

14.
While there is evidence that other ABC transporters can tell between empty and loaded substrate binding protein, reconstitution experiments suggest otherwise for the Escherichia coli vitamin B12 importer BtuCD‐F. Here, we address the question of BtuCD‐F substrate sensitivity in a combined protein–protein docking and molecular dynamics simulation approach. Starting from the BtuCD and holo‐BtuF crystal structures, we model two holo‐BtuCD‐F docking complexes differing by a 180° orientation of BtuF. One of these is similar to the apo‐BtuCD‐F crystal structure. Both docking complexes were embedded in a lipid/water environment to investigate their dynamics and BtuCD's conformational response to the presence and absence of BtuF, vitamin B12, and Mg‐ATP in a series of 28 independent MD simulations. We find holo‐BtuF stabilizing the open conformation of BtuCD, whereas the transporter begins to close again when BtuF or vitamin B12 is removed—suggesting BtuCD‐F is capable of substrate sensitivity. We identified BtuC transmembrane helices 3 and 5, the L‐loops and the adjacent helices comprised of BtuC residues 170–180 as hotspots of conformational change. We propose the latter to act as substrate sensors. BtuF‐Trp44 appears to act as a lid on the vitamin B12 binding cleft in BtuF X‐ray structures and protrudes into the BtuCD transport channel in one of our simulations, which might represent an initial step in vitamin B12 uptake. On an average, we observe subunit motions where the nucleotide binding domains approach each other while the transmembrane domains display an opening trend toward the periplasm. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
In this study, the binding of the enzyme chitinase A1 (afChiA1) from the plant-type Aspergillus fumigatus with four potent inhibitors, allosamidin (ASM), acetazolamide (AZM), 8-chloro-theophylline (CTP) and kinetin (KIT) is investigated by molecular docking, molecular dynamics simulation and binding free energy calculation. The results reveal that the electrostatic interactions play an important role in the stabilisation of the binding of afChiA1 with inhibitors. Based on the binding energy of afChiA1-ligands, the key residues (Gln37 and Trp312) in the active binding pocket of the complex systems are confirmed by molecular mechanics/Poisson–Boltzmann surface area method, and the active inhibitors, ASM and AZM, both could form strong interaction with Gln37 and Trp312, and the non-active ligands, CTP and KIT, could not interact with these two residues, which is consistent with the result of experimental report. Then, it is identified that Gln37 and Trp312 should be one of the important active site residues of afChiA1.  相似文献   

16.
Five‐nanosecond molecular dynamics (MD) simulations were performed on human serum albumin (HSA) to study the conformational features of its primary ligand binding sites (I and II). Additionally, 11 HSA snapshots were extracted every 0.5 ns to explore the binding affinity (Kd) of 94 known HSA binding drugs using a blind docking procedure. MD simulations indicate that there is considerable flexibility for the protein, including the known sites I and II. Movements at HSA sites I and II were evidenced by structural analyses and docking simulations. The latter enabled the study and analysis of the HSA–ligand interactions of warfarin and ketoprofen (ligands binding to sites I and II, respectively) in greater detail. Our results indicate that the free energy values by docking (Kd observed) depend upon the conformations of both HSA and the ligand. The 94 HSA–ligand binding Kd values, obtained by the docking procedure, were subjected to a quantitative structure‐activity relationship (QSAR) study by multiple regression analysis. The best correlation between the observed and QSAR theoretical (Kd predicted) data was displayed at 2.5 ns. This study provides evidence that HSA binding sites I and II interact specifically with a variety of compounds through conformational adjustments of the protein structure in conjunction with ligand conformational adaptation to these sites. These results serve to explain the high ligand‐promiscuity of HSA. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 161–170, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.

Class Ib ribonucleotide reductases (RNR) utilize a di-nuclear manganese or iron cofactor for reduction of superoxide or molecular oxygen, respectively. This generates a stable tyrosyl radical (Y·) in the R2 subunit (NrdF), which is further used for ribonucleotide reduction in the R1 subunit of RNR. Here, we report high-resolution crystal structures of Bacillus anthracis NrdF in the metal-free form (1.51 Å) and in complex with manganese (MnII/MnII, 1.30 Å). We also report three structures of the protein in complex with iron, either prepared anaerobically (FeII/FeII form, 1.32 Å), or prepared aerobically in the photo-reduced FeII/FeII form (1.63 Å) and with the partially oxidized metallo-cofactor (1.46 Å). The structures reveal significant conformational dynamics, likely to be associated with the generation, stabilization, and transfer of the radical to the R1 subunit. Based on observed redox-dependent structural changes, we propose that the passage for the superoxide, linking the FMN cofactor of NrdI and the metal site in NrdF, is closed upon metal oxidation, blocking access to the metal and radical sites. In addition, we describe the structural mechanics likely to be involved in this process.

  相似文献   

18.
Linezolid, one of the reserve antibiotic of oxazolidinone class has wide range of antimicrobial activity. Here we have conducted a fundamental study concerning the dynamics of its interaction with bovine serum albumin (BSA), and the post binding modification of the later by employing different spectroscopic (absorption, fluorescence and circular dichroism (CD) spectroscopy) and molecular docking tools. Gradual quenching of the tryptophan (Trp) fluorescence upon addition of linezolid to BSA confirms their interaction. Analysis of fluorescence quenching at different temperature indicates that the interaction is made by static complex formation and the BSA has one binding site for the drug. The negative Gibbs energy change (ΔG0), and positive values of enthalpy change (ΔH0) and entropy change (ΔS0) strongly suggest that it is an entropy driven spontaneous and endothermic reaction. The reaction involves hydrophobic pocket of the protein, which is further stabilized by hydrogen bonding and electrostatic interactions as evidenced from 8-anilino-1-napthalene sulfonic acid, sucrose and NaCl binding studies. These findings also support the molecular docking study using AutoDock 4.2. The influence of this interaction on the secondary structure of the protein is negligible as evidenced by CD spectroscopy. So, from these findings, we conclude that linezolid interacts with BSA in 1:1 ratio through hydrophobic, hydrogen bonding and ionic interactions, and this may not affect the secondary structure of the protein.  相似文献   

19.
The interaction between two proton pump inhibitors viz., omeprazole (OME) and esomeprazole (EPZ) with human serum albumin (HSA) was studied by fluorescence, absorption, circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR), voltammetry, and molecular modeling approaches. The Stern–Volmer quenching constants (Ksv) for OME-HSA and EPZ-HSA systems obtained at different temperatures revealed that both OME and EPZ quenched the intensity of HSA through dynamic mode of quenching mechanism. The binding constants of OME-HSA and EPZ-HSA increased with temperature, indicating the increased stability of these systems at higher temperatures. Thermodynamic parameters viz., ?H°, ?S°, and ?G° were determined for both systems. These values revealed that both systems were stabilized by hydrophobic forces. The competitive displacement and molecular docking studies suggested that OME/EPZ was bound to Sudlow’s site I in subdomain IIA in HSA. The extent of energy transfer from HSA to OME/EPZ and the distance of separation in tryptophan (Trp214) Trp214-OME and Trp214-EPZ was determined based on the theory of fluorescence resonance energy transfer. UV absorption, 3D fluorescence, and CD studies indicated that the binding of OME/EPZ to HSA has induced micro environmental changes around the protein which resulted changes in its secondary structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号