首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechano-growth factor (MGF) is a product of alternative splicing of the insulin-like growth factor 1 (IGF-1) mRNA. MGF is known to stimulate myoblast proliferation and to protect neurons and cardiomyocytes from apoptosis. MGF expression is dramatically increased in response to mechanical stimuli and tissue damage. The mechanisms of induction of MGF expression are as yet imperfectly understood. There is certain evidence that some protein factors able to stimulate MGF synthesis in normal myoblasts are released from damaged muscle. This study was undertaken to explore the nature of these protein inductors of MGF expression and to investigate the mechanism of their action. We report here that myofibrillar fraction of skeletal muscle homogenate activated MGF expression in murine myoblasts and myotubes in culture. The expression of another splice form of IGF-1 gene, IGF-1Ea, was also stimulated by myofibrils. Three myofibrillar proteins able to stimulate MGF synthesis were isolated. These proteins were identified by MALDI and immunoblotting as myomesin, myosin-binding protein C, and titin. The activation of MGF expression was associated with the increase of cAMP level in the cells. Inhibitor of adenylyl cyclase dideoxyadenosine arrested stimulation of MGF synthesis by all three myofibrillar proteins.  相似文献   

2.
The effects of potassium chloride on the expression of IGF-1 splice forms and myoblast proliferation were investigated. KCl at the concentrations of 7–12 mM stimulated the synthesis of IGF-1 and mechano growth factor (MGF) in murine myoblasts as well as in myotubes both at the mRNA and protein levels. Pan-calcium channel blocker CdCl2 completely abolished stimulation of growth factor expression, whereas blocker of HCN and Nav1.4 channels ZD7288 drastically reduced it. In addition, potassium chloride stimulated myoblast proliferation, while IGF-1 autocrine signaling inhibition partially suppressed these mitogenic effects.  相似文献   

3.
An understanding of the mechanical and mechano-molecular responses that occur during the differentiation of mouse C2C12 [corrected] myoblasts in 3-D culture is critical for understanding growth, which is important for progress towards producing a tissue-engineered muscle construct. We have established the main differences in force generation between skeletal myoblasts, dermal fibroblasts, and smooth muscle cells in a 3-D culture model in which cells contract a collagen gel construct. This model was developed to provide a reproducible 3-D muscle organoid in which differences in force generation could be measured, as the skeletal myoblasts fused to form myotubes within a collagen gel. Maintenance of the 3-D culture under sustained uni-axial tension, was found to promote fusion of myoblasts to form aligned multi-nucleate myotubes. Gene expression of both Insulin Like Growth Factor (IGF-1 Ea) and an isoform of IGF-1 Ea, Mechano-growth factor (IGF-1 Eb, also termed MGF), was monitored in this differentiating collagen construct over the time course of fusion and maturation (0-7 days). This identified a transient surge in both IGF-1 and MGF expression on day 3 of the developing construct. This peak of IGF-1 and MGF expression, just prior to differentiation, was consistent with the idea that IGF-1 stimulates differentiation through a Myogenin pathway [Florini et al., 1991: Mol. Endocrinol. 5:718-724]. MGF gene expression was increased 77-fold on day 3, compared to a 36-fold increase with IGF-1 on day 3. This indicates an important role for MGF in either differentiation or, more likely, a response to mechanical or tensional cues.  相似文献   

4.
The influence of phorbol myristate acetate (PMA), dibutyryl cAMP and insulin-like growth factor (IGF-1) as well as cytoskeletal disrupting drugs on morphological changes has been studied in peritubular cells isolated from immature rat testis. Morphological studies were combined with immunofluorescence investigations of cytoskeletal elements and their rearrangements by various agents. The results were correlated with modulation of proteoglycan synthesis. Peritubular cells exposed to dibutyryl cAMP or cytochalasin D were transformed from flattened, fibroblast-like into neuronal-like morphology. In such cells, destruction of actin filaments was accompanied with a 50% decrease in cell-associated proteoglycan synthesis as well as with oversulfation of total proteoglycans. On the contrary, peritubular cell shape has been slightly altered after addition of PMA, IGF-1, vinblastine or colchicine. After these treatments, destruction or rearrangement of cytoskeletal elements was observed; cell-layer proteoglycan synthesis remained either unchanged or increased while total proteoglycans were always undersulfated. IGF-1, PMA and dibutyryl cAMP modified the peritubular cell morphology, cytoskeletal organization and proteoglycan production; the cytoskeleton disrupting drugs such as vinblastine, colchicine and cytochalasin D mimicked some of these effects. These observations suggest that alterations in proteoglycan biosynthesis, after activation of tyrosine kinase, protein kinase C and protein kinase A pathways might be mediated, at least in part, by the disorganization of the cytoskeleton structure.  相似文献   

5.
Insulin-like growth factor-1, IGF-1, is believed to be an important anabolic modulator of cartilage metabolism and its bioactivity and bioavailability is regulated, in part, by IGF-1 binding protein 3 (IGFBP-3). Prostaglandin E2 (PGE2) stimulates IGF-1 production by articular chondrocytes and we determined whether the eicosanoid could regulate IGFBP-3 and, as such, act as a modifier of IGF-1 action at a different level. Using human articular chondrocytes in high density primary culture, Western and Western ligand blotting to measure secreted IGFBP-3 protein, and Northern analysis to monitor IGFBP-3 mRNA levels, we demonstrated that PGE2 provoked a 3.9 ± 1.1 (n = 3) fold increase in IGFBP-3 mRNA and protein. This effect was reversed by the Ca++ channel blockers, verapamil and nifedipine, and the Ca++/calmodulin inhibitor, W-7. The Ca++ ionophore, ionomycin, mimicked the effects of PGE2 as did the phorbol ester PMA, which activates Ca++-phospholipid-dependent protein kinase C (PKC). Cyclic AMP mimetics, such as forskolin, IBMX, Ro-20-1724, and Sp-cAMP, inhibited the expression and synthesis of the binding protein. PGE2 did not increase the levels of cAMP or protein kinase A (PKA) activity in chondrocytes. The PGE2 secretagogue, IL-1β, down-regulated control levels of IGFBP-3 which could be completely abrogated by pre-incubation with the tyrosine kinase inhibitor, erbstatin, and partially reversed (50 ± 8%) by KT-5720, a PKA inhibitor. These observations suggested that PGE2 does not mediate the effect of its secretagogue and that IL-1β signalling in chondrocytes may involve multiple kinases of diverse substrate specificities. Dexamethasone down-regulated control, constitutive levels of IGFBP-3 mRNA and protein eliminating the previously demonstrated possibility of cross-talk between glucocorticoid receptor (GR) and PGE2 receptor signalling pathways. Taken together, our results suggest that PGE2 modulates IGFBP-3 expression, protein synthesis, and secretion, and that such regulation may modify human chondrocyte responsiveness to IGF-1 and influence cartilage metabolism. © 1996 Wiley-Liss, Inc.  相似文献   

6.
PKC、PKA和TPK在血小板激活中的作用   总被引:1,自引:0,他引:1  
利用~(32)P-NaH_2PO_4标记猪血小板,然后以PMA、凝血酶、PGE_1、腺苷等处理,结果表明,随着PMA激活PKC,血小板发生聚集。35μmol/LPGE_1或1mmol/LdbcAMP不能抑制50nmol/LPMA诱导的血小板聚集,腺苷却能抑制PMA诱导的血小板聚集(EC_(50)=0.1mmol/L),db-cAMP、腺苷都不能抑制100nmol/LPMA诱导的40kD蛋白磷酸化。PKA激活不能抑制PMA激活的PKC。在PMA、凝血酶激活的血小板中,PKC、TPK都发生激活,40kD底物既是PKC的底物又是TPK的底物,PKC和TPK在血小板聚集中起着重要的调节作用。  相似文献   

7.
The role protein kinase C plays in the regulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by insulin and phorbol esters was studied in H4IIE hepatoma cells (ATCC CRL 1548). The combined effects of phorbol 12-myristate 13-acetate (PMA) and insulin on the suppression of mRNA coding for PEPCK (mRNAPEPCK) synthesis were additive. A potent inhibitor of both cyclic nucleotide-dependent protein kinases and protein kinase C, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, inhibited the cAMP and PMA-mediated regulation of mRNAPEPCK synthesis, but did not affect the action of insulin. Desensitization of the protein kinase C pathway by exposure to PMA for 16 h abolished the subsequent action of the phorbol ester, but did not affect insulin- or cAMP-mediated regulation of PEPCK gene expression. We conclude that insulin suppresses PEPCK gene expression independently from the protein kinase C-mediated pathway used by phorbol esters.  相似文献   

8.
Forskolin, an activator of adenylate cyclase, stimulates adrenocorticotropin (ACTH) release and increases proopiomelanocortin mRNA levels in anterior pituitary cells by enhancing cyclic AMP (cAMP)-dependent protein kinase activity. The phorbol ester phorbol 12-myristate 13-acetate (PMA) evokes these same responses from anterior pituitary cells by activating protein kinase C. Both protein kinases most likely induce their cellular effects by catalyzing the phosphorylation of specific proteins. To elucidate the mechanisms by which cAMP-dependent protein kinase and protein kinase C promote ACTH secretion and synthesis, the phosphoproteins regulated by forskolin and PMA were identified in the cell line AtT-20, which consists of a homogeneous population of corticotrophs. Phosphoproteins were analyzed in different subcellular fractions by two-dimensional polyacrylamide gel electrophoresis and autoradiography. Forskolin increased phosphate incorporation into two proteins in the cytoplasmic fraction of 24 kilodaltons (kd) (pI 6.8) and 40 kd (pI 5.8), two proteins in the plasma membrane fraction of 32 kd (pI 8.3) and 60 kd (pI 8), and one protein in the nuclear fraction of 20 kd (pI 8.7). Insertion of the inhibitor of cAMP-dependent protein kinase into the AtT-20 cells, using a liposome technique, blocked the rise in phosphate incorporation induced by forskolin. PMA also stimulated phosphate incorporation into proteins in AtT-20 cells. PMA increased the phosphorylation of three cytoplasmic proteins of 25 kd (pI 7.6), 40 kd (pI 5.8), and 40 kd (pI 8.1) as well as two membrane proteins of 32 kd (pI 8.3) and 60 kd (pI 8) and one nuclear protein of 20 kd (pI 6.3).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
During ex vivo myoblast differentiation, a pool of quiescent mononucleated myoblasts, reserve cells, arise alongside myotubes. Insulin/insulin-like growth factor (IGF) and PKB/Akt-dependent phosphorylation activates skeletal muscle differentiation and hypertrophy. We have investigated the role of glycogen synthase kinase 3 (GSK-3) inhibition by protein kinase B (PKB)/Akt and Wnt/beta-catenin pathways in reserve cell activation during myoblast differentiation and myotube hypertrophy. Inhibition of GSK-3 by LiCl or SB216763, restored insulin-dependent differentiation of C2ind myoblasts in low serum, and cooperated with insulin in serum-free medium to induce MyoD and myogenin expression in C2ind myoblasts, quiescent C2 or primary human reserve cells. We show that LiCl treatment induced nuclear accumulation of beta-catenin in C2 myoblasts, thus mimicking activation of canonical Wnt signaling. Similarly to the effect of GSK-3 inhibitors with insulin, coculturing C2 reserve cells with Wnt1-expressing fibroblasts enhanced insulin-stimulated induction of MyoD and myogenin in reserve cells. A similar cooperative effect of LiCl or Wnt1 with insulin was observed during late ex vivo differentiation and promoted increased size and fusion of myotubes. We show that this synergistic effect on myotube hypertrophy involved an increased fusion of reserve cells into preexisting myotubes. These data reveal insulin and Wnt/beta-catenin pathways cooperate in muscle cell differentiation through activation and recruitment of satellite cell-like reserve myoblasts.  相似文献   

11.
The second messengers and protein kinases involved in the induction of type I plasminogen activator inhibitor (PAI-1) synthesis by various agents were evaluated in cultured bovine aortic endothelial cells. Phorbol myristate acetate (PMA) induced PAI-1 in these cells implicating the protein kinase C (PK-C) pathway. However, bradykinin, which also activates PK-C in bovine aortic endothelial cells, did not induce PAI-1. Moreover, when PK-C was down-regulated by PMA pretreatment, subsequent induction of PAI-1 by transforming growth factor beta (TGF beta) and tumor necrosis factor alpha (TNF alpha) was unaltered, and induction by lipopolysaccharide (LPS) was decreased by only 50%. LPS increased phospholipid second messengers which can activate PK-C but TGF beta and TNF alpha did not. Agents which increase cAMP, (e.g., forskolin and isobutylmethylxanthine) blocked the induction of PAI-1 synthesis by PMA, LPS, TGF beta and TNF alpha suggesting that induction may occur by lowering cAMP. This possibility seems unlikely since cAMP levels did not change in response to any of these agents. Moreover, somatostatin lowered cAMP but did not induce PAI-1. PAI-1 was not induced by treating the cells with cGMP, Na+/H+ ionophore and calcium ionophore or arachidonic acid.  相似文献   

12.
Insulin modulation of the Na/H antiport of L-6 cells, from rat skeletal muscle was studied in both myoblasts and myotubes using the fluorescent, pH sensitive, intracellular probe 2′,7′ bis (carboxyethyl)-5(6)-carboxyfluorescein. Insulin stimulated the Na/H antiport activity in L-6 cells, showing a bell-shaped dose response typical of other insulin responses: a maximum at 10 nM (ΔpH of 0.132 ± 0.007 and 0.160 ± 0.040 over basal value, for myoblasts and myotubes, respectively; means ± SD, n = 6–8) and smaller effects at higher and lower concentrations. Phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, also stimulated the antiport in myoblasts but not in myotubes. Surprisingly the rapid increase in intracellular pH was not observed when insulin and PMA were added simultaneously to myoblasts; apparently these two activators mutually excluded each other. Downregulation of protein kinase C, obtained by preincubation of cells with PMA for 20 hr, totally abolished both hormone and PMA effects in myoblasts, whereas in myotubes insulin stimulation was not affected. Inhibitors of tyrosine kinase activity, such as erbstatin analog and genistein abolished insulin effect on the Na/H antiport, both in myoblasts and in myotubes. Different sensitivity to pertussis toxin in the two cell types suggests that the differentiation process leads to a change in the signal pathways involved in the physiological response to insulin. J. Cell. Physiol. 171:235–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
14.
The proto-oncogene c-Kit, a transmembrane receptor tyrosine kinase, is an important regulator of cell growth whose constitutively active oncogenic counterpart, v-kit, induces sarcomas in cats. Mutations in murine c-kit that reduce the receptor tyrosine kinase activity cause deficiencies in the migration and proliferation of melanoblasts, hematopoietic stem cells, and primordial germ cells. We therefore investigated whether c-Kit regulates normal human melanocyte proliferation and plays a role in melanomas. We show that normal human melanocytes respond to mast cell growth factor (MGF), the Kit-ligand that stimulates phosphorylation of tyrosyl residues in c-Kit and induces sequential phosphorylation of tyrosyl residues in several other proteins. One of the phosphorylated intermediates in the signal transduction pathway was identified as an early response kinase (mitogen-activated protein [MAP] kinase). Dephosphorylation of a prominent 180-kDa protein suggests that MGF also activates a phosphotyrosine phosphatase. In contrast, MGF did not induce proliferation, the cascade of protein phosphorylations, or MAP kinase activation in the majority of cells cultured from primary nodular and metastatic melanomas that grow independently of exogenous factors. In the five out of eight human melanoma lines expressing c-kit mRNAs, c-Kit was not constitutively activated. Therefore, although c-Kit-kinase is a potent growth regulator of normal human melanocytes, its activity is not positively associated with malignant transformation.  相似文献   

15.
Stimulation of human colon cancer cells with insulin-like growth factor 1 (IGF-1) induces expression of the VEGF gene, encoding vascular endothelial growth factor. In this article we demonstrate that exposure of HCT116 human colon carcinoma cells to IGF-1 induces the expression of HIF-1 alpha, the regulated subunit of hypoxia-inducible factor 1, a known transactivator of the VEGF gene. In contrast to hypoxia, which induces HIF-1 alpha expression by inhibiting its ubiquitination and degradation, IGF-1 did not inhibit these processes, indicating an effect on HIF-1 alpha protein synthesis. IGF-1 stimulation of HIF-1 alpha protein and VEGF mRNA expression was inhibited by treating cells with inhibitors of phosphatidylinositol 3-kinase and MAP kinase signaling pathways. These inhibitors also blocked the IGF-1-induced phosphorylation of the translational regulatory proteins 4E-BP1, p70 S6 kinase, and eIF-4E, thus providing a mechanism for the modulation of HIF-1 alpha protein synthesis. Forced expression of a constitutively active form of the MAP kinase kinase, MEK2, was sufficient to induce HIF-1 alpha protein and VEGF mRNA expression. Involvement of the MAP kinase pathway represents a novel mechanism for the induction of HIF-1 alpha protein expression in human cancer cells.  相似文献   

16.
Activation of alpha 1-adrenoceptors appears to amplify beta-adrenergic stimulation of cyclic AMP (cAMP) accumulation in rat pinealocytes severalfold by a mechanism involving activation of a Ca2+-, phospholipid-dependent protein kinase (protein kinase C). The mechanism of action of protein kinase C was investigated in this report using intact cells. Activation of protein kinase C with 4 beta-phorbol 12-myristate 13-acetate (PMA; 10(-7) M) or the alpha 1-adrenergic agonist phenylephrine (PE; 10(-6) M) did not inhibit cAMP efflux in beta-adrenergically stimulated cells. The amplification of the beta-adrenergic cAMP response by these agents also occurred in the presence of isobutylmethylxanthine (10(-3) M) and Ro 20-1724 (10(-4) M), an observation suggesting that inhibition of cAMP phosphodiesterase activity is not the mechanism of action. Furthermore, although PMA (10(-7) M) caused a sixfold increase in the magnitude of the cAMP response to isoproterenol, it did not alter the EC50 of the response (1.7 X 10(-8) M), a result indicating that protein kinase C activation does not alter beta-adrenoceptor sensitivity. The cAMP response following cholera toxin pretreatment (60-120 min) was rapidly and markedly enhanced by alpha 1-adrenergic agonists (cirazoline greater than PE greater than methoxamine), by phorbol esters (PMA greater than 4 beta-phorbol 12,13,-dibutyrate much greater than 4 alpha-phorbol 12,13-didecanoate), and by synthetic diacylglycerols (1,2-dioctanoylglycerol greater than 1-oleoyl 2-acetylglycerol much greater than diolein). The cAMP response to forskolin (10(-5)-10(-3) M) was also increased by PE (3 X 10(-6) M) and PMA (10(-7) M).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Lymphokines including IL-2, IL-4, and IL-6 are involved in the induction of Ig production by activated B cells. We have investigated the role of protein kinases in IL-6-induced IgM secretion by SKW6.4 cells, an IL-6 responsive B cell line. IL-6-stimulated IgM production was inhibited by elevated intracellular cAMP induced either by the addition of dibutyryl cAMP or cholera toxin. The inhibitory effect of elevated intracellular cAMP was blocked by n-(2-(Methylamino)ethyl)-5-isoquinolinesulfonic dihydrochloride (H8), an inhibitor of protein kinase A. H8 did not affect IgM secretion induced by IL-6. In contrast, the addition of 1-(5-isoquinolinesulfonyl)-2-methylpiperizine dihydrochloride (H7), an inhibitor of protein kinase C activity, markedly inhibited IL-6-stimulated IgM production by SKW6.4 cells. H7 and elevated intracellular cAMP inhibited IgM mRNA expression and subsequent IgM synthesis by SKW6.4 cells. SKW6.4 proliferation, as determined by [3H]thymidine incorporation, was not markedly affected by IL-6, dibutyryl cAMP, cholera toxin, H7 or H8. PMA, an activator of protein kinase C, directly stimulated significant IgM secretion by SKW6.4 cells. When added to PMA-stimulated SKW6.4 cells, IL-6 stimulated additional IgM production. This observation suggested that IL-6 could stimulate differentiation without activating protein kinase C. This was confirmed by demonstrating that IL-6 did not stimulate production of diacylglycerol, did not induce the translocation of protein kinase C from the cytosolic compartment to the plasma membrane and could induce SKW6.4 cells to produce IgM after depletion of their cellular protein kinase C by PMA. Taken together these results suggests that IL-6-stimulated IgM production requires utilization of an H7-inhibitable protein kinase that can be inhibited by a protein kinase A-dependent pathway. Despite the fact that PMA can stimulate IgM production in SKW6.4 cells, IL-6 appears to use a protein kinase pathway other than protein kinase C to induce IgM production.  相似文献   

18.
Abstract: We have previously demonstrated that neuropeptide Y (NPY) inhibits depolarization-stimulated catecholamine synthesis in rat pheochromocytoma (PC12) cells differentiated to a sympathetic neuronal phenotype with nerve growth factor (NGF). The present study uses multiple selective Ca2+ channel and protein kinase agonists and antagonists to elucidate the mechanisms by which NPY modulates catecholamine synthesis as determined by in situ measurement of DOPA production in the presence of the decarboxylase inhibitor m-hydroxybenzylhydrazine (NSD-1015). The L-type Ca2+ channel blocker nifedipine inhibited the depolarization-induced stimulation of DOPA production by ~90% and attenuated the inhibitory effect of NPY. In contrast, the N-type Ca2+ channel blocker ω-conotoxin GVIA inhibited neither the stimulation of DOPA production nor the effect of NPY. Antagonism of Ca2+/calmodulin-dependent protein kinase (CaM kinase) greatly inhibited the stimulation of DOPA production by depolarization and prevented the inhibitory effect of NPY, whereas alterations in the cyclic AMP-dependent protein kinase pathway modulated DOPA production but did not prevent the effect of NPY. Stimulation of Ca2+/phospholipid-dependent protein kinase (PKC) with phorbol 12-myristate 13-acetate (PMA) did not affect the basal rate of DOPA production in NGF-differentiated PC12 cells but did produce a concentration-dependent inhibition of depolarization-stimulated DOPA production. In addition, NPY did not produce further inhibition of DOPA production in the presence of PMA, and the inhibition by both PMA and NPY was attenuated by the specific PKC inhibitor chelerythrine. These results indicate that NPY inhibits Ca2+ influx through L-type voltage-gated Ca2+ channels, possibly through a PKC-mediated pathway, resulting in attenuation of the activation of CaM kinase and inhibition of depolarization-stimulated catecholamine synthesis.  相似文献   

19.
Mixed lineage kinase 3 (MLK 3) (also called SPRK or PTK-1) is a recently described member of the family of the mixed lineage kinase subfamily of Ser/Thr protein kinases that interacts with mitogen-activated protein kinase pathways. In order to test the biological relevance and potential interaction of MLK 3 with protein kinase C-mediated signaling pathways, human MLK 3 was stably expressed in rat glomerular mesangial cells using a retroviral vector (LXSN) and the effects of phorbol myristoyl acetate (PMA) on DNA synthesis and osteopontin mRNA expression were examined. In control (vector-transfected) mesangial cells PMA increased [3H]-thymidine incorporation in a concentration-dependent manner. In mesangial cells stably expressing MLK 3, the PMA-induced increase in [3H]-thymidine incorporation was significantly reduced (> 50%). However, the PMA-induced increase in osteopontin mRNA was not affected by MLK 3 expression. To determine the mechanisms of these effects, activation of ERK2, JNK1 and p38 in response to PMA was examined in both vector and MLK 3 transfected cells. ERK2 activation was increased several fold by PMA in control cells but was attenuated significantly in MLK 3 expressing cells, suggesting that MLK 3 expression in mesangial cells can negatively regulate the ERK pathway. PMA had no significant effect on JNK and P38 activation, in either vector- or MLK 3-expressing cells. PD98059, a MEK inhibitor blocked PMA-induced DNA synthesis without affecting osteopontin expression. These results suggest that while protein kinase C activation increases cellular proliferation and osteopontin mRNA expression, over-expression of MLK 3 affects only the PKC-induced DNA synthesis, probably through inhibition of ERK. These results also indicate a novel mechanism of growth regulation by a member of the mixed-lineage kinase family that might have significant therapeutic implications in proliferative glomerulonephritis.  相似文献   

20.
The expression of acetylcholinesterase (AChE) is markedly increased during myogenic differentiation of C2C12 myoblasts to myotubes; the expression is mediated by intrinsic factor(s) during muscle differentiation. In order to analyze the molecular mechanisms regulating AChE expression during myogenic differentiation, a approximately 2.2-kb human AChE promoter tagged with a luciferase reporter gene, namely pAChE-Luc, was stably transfected into C2C12 cells. The profile of promoter-driven luciferase activity during myogenic differentiation of C2C12 myotubes was found to be similar to that of endogenous expression of AChE catalytic subunit. The increase of AChE expression was reciprocally regulated by a cAMP-dependent signaling pathway. The level of intracellular cAMP, the activity of cAMP-dependent protein kinase, the phosphorylation of cAMP-responsive element binding protein and the activity of cAMP- responsive element (CRE) were down-regulated during the myotube formation. Mutating the CRE site of human AChE promoter altered the original myogenic profile of the promoter activity and its suppressive response to cAMP. In addition, the suppressive effect of the CRE site is dependent on its location on the promoter. Therefore, our results suggest that a cAMP-dependent signaling pathway serves as a suppressive element in regulating the expression of AChE during early myogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号