首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rate and equilibrium measurements of ryanodine binding to terminal cysternae fractions of heavy sarcoplasmic reticulum vesicles demonstrate that its activation by high concentrations of monovalent salts is based on neither elevated osmolarity nor ionic strength. The effect of the ions specifically depends on their chemical nature following the Hofmeister ion series for cations (Li+ < NH+ 4 < K∼ Cs+≤ Na+) and anions (gluconate < Cl < NO3 ∼ ClO4 ∼ SCN) respectively, indicating that both are involved in the formation of the salt-protein complex that can react with ryanodine. Activation by rising salt concentrations exhibits saturation kinetics with different dissociation constants (25–11 m) and different degrees of cooperativity (n= 1.5–4.0) for the respective salts. Maximal second order binding rates between 40,000 and 80,000 (m −1· sec−1) were obtained for chlorides and nitrates of 1a group alkali ions with the exception of lithium supporting only rates of maximally 10,000 (M−1· sec−1). The nitrogen bases, NH+ 4 and Tris+, in combination with chloride or nitrate, behave divergently. High maximal binding rates were achieved only with NH4NO3. The dissociation constants for the ryanodine–protein complexes obtained by measurements at equilibrium proved to depend differently on salt concentration, yet, converging to 1–3 nm for the applied salts at saturating concentrations. The salts do not affect dissociation of the ryanodine protein complex proving that the effect of salts on the protein's affinity for ryanodine is determined by their effect on the on-rate of ryanodine binding. ATP and its analogues modify salt action resulting in elevated maximal binding rates and reduction or abolition of binding cooperativity. Linear relations have been obtained by comparing the rates of ryanodine binding at different salt concentrations with the rates or the initial amplitudes (15 sec) of salt induced calcium release from actively loaded heavy vesicles indicating that the various salts promote specifically and concentration dependently channel opening and its reaction with ryanodine. Received: 9 February 1998/Revised: 24 April 1998  相似文献   

2.
Summary Na+, K+ exchanges were studied in isolated hepatocytes of the rainbow trout, Salmo gairdneri. Ouabain at 10–4 M produced maximal inhibition (95%) of K+ uptake and enhanced intracellular Na+ accumulation, showing that active fluxes account for a very large proportion of Na+ and K+ exchanges. Inhibition of the Na–K pump by ouabain was significant at low concentrations (10–8 M). When external K+ concentration was reduced from 7 mM to 0.5 mM, half maximum inhibition (IC50) of K+ uptake was obtained at a 22-fold lower concentration of ouabain confirming that ouabain and potassium compete at the same pump site. Time-course analysis of [3H]ouabain binding indicated a two-component kinetics: one component saturable and dependent on K+ concentration in the medium, the other linear and independent of external K+. The ouabain binding site number, determined by Scatchard plots, remained constant (ca. 2.5·105 per cell) and independent of the external K+ concentration (7, 0.5 or 0 mM), while the dissociation constant (KD) decreased from 4.2 M to 7.3 nM when K+ was removed from the Hank's medium. These ouabain binding sites are characterized by an exceptionally low turnover rate (400 min–1), as estimated from ouabain-sensitive K+ flux, in comparison to those described in other cell types of higher vertebrates. At each external K+ concentration studied, the inhibition of K+ uptake and ouabain binding measured as a function of ouabain concentration indicated a strict correlation between the degree of K pump inhibition and the amount of bound glycoside.  相似文献   

3.
Although siderophores are generally viewed as biological iron uptake agents, recent evidence has shown that they may play significant roles in the biogeochemical cycling and biological uptake of other metals. One such siderophore that is produced by A. vinelandii is the triscatecholate protochelin. In this study, we probe the solution chemistry of protochelin and its complexes with environmentally relevant trace metals to better understand its effect on metal uptake and cycling. Protochelin exhibits low solubility below pH 7.5 and degrades gradually in solution. Electrochemical measurements of protochelin and metal–protochelin complexes reveal a ligand half-wave potential of 200 mV. The Fe(III)Proto3− complex exhibits a salicylate shift in coordination mode at circumneutral to acidic pH. Coordination of Mn(II) by protochelin above pH 8.0 promotes gradual air oxidation of the metal center to Mn(III), which accelerates at higher pH values. The Mn(III)Proto3− complex was found to have a stability constant of log β110 = 41.6. Structural parameters derived from spectroscopic measurements and quantum mechanical calculations provide insights into the stability of the Fe(III)Proto3−, Fe(III)H3Proto, and Mn(III)Proto3− complexes. Complexation of Co(II) by protochelin results in redox cycling of Co, accompanied by accelerated degradation of the ligand at all solution pH values. These results are discussed in terms of the role of catecholate siderophores in environmental trace metal cycling and intracellular metal release.  相似文献   

4.
The cyclic peptide, cRGDf[N(me)]V, binds to the α v β 3 integrin and can disrupt binding of the integrin to its natural ligands in the extracellular matrix. In this work, the ability of a water-soluble, fluorescently labeled variant of the RGD-containing peptide (cRGDfK-488) to bind to integrins on human umbilical vascular endothelial cells (HUVEC) and subsequently undergo endocytosis was characterized. This information was compared to the binding and uptake properties of an α v β 3 integrin-specific monoclonal antibody, LM609X. The specificity of the RGD-containing peptide is assessed by comparison with control peptide that does not bind to the α v β 3 integrin, cRADfK-488. Using a high purity construct, it is shown that the RGD ligand exhibits dissociation constants in the micromolar range whereas LM609X exhibits dissociation constants in the nanomolar range. However, the RGD ligand showed greater uptake following incubation at temperatures which permit endocytosis. A 7.4-fold increase in uptake of the RGD peptide was observed following a 1 h incubation with HUVEC at 37°C (an endocytosis permissive temperature), as compared to that at 4°C (an endocytosis prohibitive temperature). In contrast, only a 1.9-fold increase in cell-associated fluorescence was observed for similar incubations with LM609X. Results from fluorescence microscopy supports the notion that the RGD peptide is rapidly endocytosed at 37°C as compared to LM609X. These results are discussed with regard to previous work indicating that RGD ligands enter cells by integrin-independent pathways. These studies provide well-controlled measures of how RGD ligands stimulate endocytosis. This may be of considerable interest for intracellular delivery of ligand-associated drugs in anti-angiogenic applications.  相似文献   

5.
Serotonin (5HT) binding sites were studied in goldfish retinal membranes by radioligand experiments. The binding site of [3H]5HT was sensitive to pre-treatment of the membranes at 40° or 60° C. 5HT and 5-methoxy-N,N-dimethyltryptamine were the best inhibitors of [3H]5HT binding to retinal membranes. The 5HT2 agonist, 1-(-naphtyl)piperazine, was also a potent inhibitor, however, (+)-1-2,5-dimethoxy-4-iodopheny1-2-aminopropane was less efficient. The catecholaminergic agents haloperidol and clonidine did not display an important inhibition. Propranolol, also reported as 5HT1B antagonist, was a relatively potent blocker. Monoamine uptake blockers did not show potent inhibition. The GTP analog, GppNHp, inhibited the binding. The iterative analysis of saturation curves revealed two classes of binding sites, a high affinity component (Bmax 2.45 pmol/mg of protein, kd 6.86 nM), and a low affinity component (Bmax 53.46 pmol/mg of protein, Kd 232.07 nM). Analysis of the association and dissociation kinetics suggested a binding site (Kd 2 nM). The semilogarithmic plot of the dissociation kinetics gave curves concave to the upper side. The selectivity of the binding and the inhibition by GppNHp suggest the existance of 5HT1 receptors in goldfish retina. The low affinity interaction probably represents the transporter of 5HT or a suptype of receptor expressed in glial cells.Abbreviations used B max maximum binding capacity - CPP, 1 (3 chlorophenyl)piperazine - CLN clonidine - DMI desimipramine - DMT 5-methoxy-N,N-dimethyltryptamine - DOI (+)-1-(2,5-dimethoxy-4-iodophenyl-2-aminopropane - DPAT (+)-8-hydroxy-2-(D1-N-propylamino)tetralin - GppNHp 5-guanylylimidodiphosphate - HAL haloperidol - 5HT serotonin - IC50 concentration of drug producing 50% inhibition of binding - IMI imioramine - Kd equilibrium dissociation constant - MIAN mianserin - NOM nomifensin - NP 1-(1-napthyl)piperazine - PRP propranolol In memory of Dr. Boris Druian who died on Dec. 24, 1991.  相似文献   

6.
To find out the changes in the internal dynamics and function of proteins as a consequence of their binding interactions with guanidine hydrochloride (GdnHCl), laser flash photolysis and optical absorption methods have been used to study the dynamic events in the horse myoglobin–CO complex (MbCO) in the presence of subdenaturing concentrations of GdnHCl at pH 7, 22 °C. The rate coefficients for geminate rebinding and bimolecular rebinding (k on) were measured by laser photolysis of CO in MbCO, and the CO dissociation rate (k off) was determined by the CO replacement method using hexacyanoferrate ion or NO. Starting from the native-state condition, the values of k on and k off decrease by approximately 1.4 (±0.1)-fold in the presence of 0.1–0.3 M GdnHCl, and then increase at higher concentrations of the denaturant. This has been taken as evidence for internal motional constraints and increased stability of the protein in the subdenaturing region giving rise to gated entry of the photolyzed CO from the solvent. The rate for geminate rebinding does not show any decrease in the rate versus GdnHCl concentration plots. The values for the activation enthalpy for the CO dissociation reaction and the entropy loss relative to the native-state entropy, both measured as a function of GdnHCl concentration, indicate that the protein is indeed stabilized under subdenaturing conditions. Analyses of thermal unfolding transitions of myoglobin in the presence of different concentrations of GdnHCl indicate that the stability of this protein extracted from the linear free energy model is approximately 3–4 kcal mol−1 less than the true stability. The results indicate the appropriateness of the denaturant binding model for the analysis of GdnHCl-induced unfolding data, and provide a value of 7.9 kcal mol−1 as the true stability of the protein. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Erythrocytes from growth hormone-deficient children (GHd-children) (n=10) showed a statistically significant increase in insulin binding at low unlabeled insulin concentrations, together with a threefold decrease in apparent receptor affinity, as compared to control children (C) (n=11). Scatchard analysis of the binding data using the two-site model revealed that both the receptor concentration R1 [GHd-children 0.10±0.01 ng/ml and C 0.03±0.002 ng/ml] and the dissociation constant KD1 [GHd-children (0.48±0.05)×10–9M and C (0.19±0.01)×10–9M] for high affinitylow capacity sites were significantly increased in erythrocytes from GHd-children, while neither receptor concentrations (R2) nor the dissociation constant (KD2) for low affinity-high capacity sites proved to be altered. These events were accompanied by a normal sensitivity to insulin as well as glucose tolerance in the GHd-group. The meaning of the increased insulin binding with normal insulin sensitivity in GH-deficiency is discussed.  相似文献   

8.
Predominantly neuronal (neuronal) or non-neuronal (glial) cerebral cortical cell cultures were employed to study the kinetics and changes with maturation of125I-diferric-transferrin uptake. The diferric-transferrin association curve of neuronal cultures at 37°C was nonphasic and indicated equilibrium at 90 minutes. Dissociation was completed by 70 minutes. Diferric-transferrin specific uptake (80% of total) in neuronal cells (evaluated at days 6, 9, 13, 16, and 23 in culture) increased with maturation. Scatchard transformation of the data revealed increasingB max from day 6 to day 16 in culture (1626 to 2740 fmoles/mg protein). However, theK uptake was statistically unchanged over time and equaled 48.7±13.9 nM (mean ±SD). In contrast, association studies of glial cultures documented equilibrium by 45 minutes and dissociation by 40 minutes. The concentration curves for differric-transferrin uptake in glial cells, evaluated at days 11, 15, and 18 in culture, revealed virtually identical uptake at the three ages studied, but the percent specific uptake (58%) was less than for neurons (88%). Scatchard transformation of the data revealed no statistical alteration ofB max orK uptake from days 11 to 18 in culture.B max ranged from 595 to 751 fmol/mg protein; overallK uptake was 48.3±13.2 nM (mean±SD).  相似文献   

9.
Gills are the first site of impact by metal ions in contaminated waters. Work on whole gill cells and metal uptake has not been reported before in crustaceans. In this study, gill filaments of the American lobster, Homarus americanus, were dissociated in physiological saline and separated into several cell types on a 30, 40, 50, and 80% sucrose gradient. Cells from each sucrose solution were separately resuspended in physiological saline and incubated in 65Zn2+ in order to assess the nature of metal uptake by each cell type. Characteristics of zinc accumulation by each kind of cell were investigated in the presence and absence of 10 mM calcium, variable NaCl concentrations and pH values, and 100 μM verapamil, nifedipine, and the calcium ionophore A23187. 65Zn2+ influxes were hyperbolic functions of zinc concentration (1–1,000 μM) and followed Michaelis–Menten kinetics. Calcium reduced both apparent zinc binding affinity (K m) and maximal transport velocity (J max) for 30% sucrose cells, but doubled the apparent maximal transport velocity for 80% sucrose cells. Results suggest that calcium, sodium, and protons enter gill epithelial cells by an endogenous broad-specificity cation channel and trans-stimulate metal uptake by a plasma membrane carrier system. Differences in zinc transport observed between gill epithelial cell types appear related to apparent affinity differences of the transporters in each kind of cell. Low affinity cells from 30% sucrose were inhibited by calcium, while high affinity cells from 80% sucrose were stimulated. 65Zn2+ transport was also studied by isolated, intact, gill filament tips. These intact gill fragments generally displayed the same transport properties as did cells from 80% sucrose and provided support for metal uptake processes being an apical phenomenon. A working model for zinc transport by lobster gill cells is presented.  相似文献   

10.
The first step of riboflavin absorption was studied by determining the uptake of the vitamin by rat small intestinal brush border membrane vesicles. Vesicles were incubated at 25°C in the presence of [3H]-riboflavin at concentrations within the physiological intraluminal range for rat. The time course of [3H]-riboflavin uptake was unaffected by Na+ or K+ gradients. The 5 sec uptake rate plotted as a function of the initial concentration of [3H]-riboflavin in the medium (0.125 to 7.5 m) revealed the presence of a dual mechanism, with a saturable component (apparent kinetic constants: 0.12 m for K m and 0.36 pmol · mg-1 protein · 5 sec-1 for J max) prevailing at low concentrations (<2 m), and a nonsaturable component prevailing at higher concentrations. The presence of a carrier-mediated system for riboflavin was validated by counter-transport experiments. At equilibrium, uptake was almost completely accounted for by membrane binding, whereas at earlier times the transport component accounted for about 30% of total uptake. The plot of [3H]-riboflavin binding at equilibrium as a function of its concentration in the medium was quite similar to that of the 5 sec uptake rate in both intact and osmotically shocked vesicles and demonstrated the occurrence of a saturable component: binding constants were 0.07 (K d) in m), 0.54 (B max in pmol · mg-1 protein), and 0.11 (K d), 1.13 (B max, respectively, indicating the existence of specific riboflavin binding sites. The specificity of riboflavin binding to the membrane was confirmed by preliminary studies with structural analogues. Specific binding could represent the first step of a specific riboflavin entry mechanism in enterocytes.This research was supported by grants from Italian MPI 60% (1989, 1992) and CNR n. 90, 02467 CT 04. We wish to express our gratitude to Prof. E. Perucca (Department of Internal Medicine, Clinical Pharmacology Unit, University of Pavia) for revising the English, and to Mrs. M. Agrati Greco and Mrs. P. Vai Gatti for secretarial assistance and excellent typing.  相似文献   

11.
Summary Geotrichum candidum (isolate 1–9) pathogenic on citrus fruits, appears to lack siderophore production. Iron uptake byG. candidum is mediated by two distinct iron-regulated, energy-and temperature-dependent transport systems that require sulfhydryl groups. One system exhibits specificity for either ferric or ferrous iron, whereas the other exhibits specificity for ferrioxamine-B-mediated iron uptake and presumably other hydroxamate siderophores. Radioactive iron uptake from59FeCl3 showed an optimum at pH 6 and 35° C, and Michaelis-Menten kinetics (apparentK m = 3 m,V max = 0.054 nmol · mg–1 · min–1). The maximal rate of Fe2+ uptake was higher than Fe3+ (V max = 0.25 nmol · mg–1 · min–1) but theK m was identical. Reduction of ferric to ferrous iron prior to transport could not be detected. The ferrioxamine B system exhibits an optimum at pH 6 and 40° C and saturation kinetics (K m = 2 M,V max = 0.22 nmol · mg–1 · min–1). The two systems were distinguished as two separate entities by negative reciprocal competition, and on the basis of differential response to temperature and phenazine methosulfate. Mössbauer studies revealed that cells fed with either57FeCl3 or57FeCl2 accumulated unknown ferric and ferrous binding metabolites.  相似文献   

12.
Conditional stability constants (log K), and binding site densities (Γmax) for dissolved metals and biota are important input parameters for the Biotic Ligand Model. However, determination of these binding parameters is likely to be influenced by solution kinetics because roots have a large metal-binding capacity and can accumulate metals rapidly. The aim of this study was to determine if the rate of free metal ion diffusion to the root surface, and amount of metal in the bulk solution, is sufficient to accommodate the maximum root–metal accumulation capacity. The extent to which these kinetic limitations affect the magnitude of log K and Γmax values was also assessed. Seven day old hydroponically grown durum wheat (Triticum turgidum L. var durum, cv ‘Arcola’) were exposed to solutions with p{Cu2+}s ranging from 10.54 to 2.26 (~20 °C, pH = 6.0, ionic strength = 0.03 M). Exposure solutions were prepared with and without the metal buffer nitrilotriacetic acid (NTA) so that the total amount of metal in the exposure solution, and net flux of metal to the root, could be varied. The results demonstrate that NTA enhances Cu accumulation at exposure p{Cu2+}s between 10 and 6. Comparison of the diffusive flux to the root with the metal flux into the root, for (−NTA) and (+NTA) Cu exposures, showed that the flux of the un-buffered free metal ion to the root was not large enough to accommodate the maximum Cu binding capacity between 10 and 6 p{Cu2+} in solution. The total amount of Cu in solution may have limited uptake for exposure p{Cu2+}s of 10.01 and 9.01, but the background concentrations of Cu in the control plants prevented definitive conclusions from being made within this exposure range. Similar results were found for Mn and Ni. For Cd, which had lower background concentrations in the roots, the amount of metal in solution did not limit uptake until a p{Cd2+} of 10.01. Limiting the supply of Cu2+ to the root (i.e. low {Cu2+}s with no NTA) caused only a moderate bias in Γmax values, but suppressed the log K value by 3.44 log units. The log K values for Cd, Mn and Ni, in the absence of NTA, were more similar than expected, which suggests that the kinetics of free ion re-supply to the root surface limited metal uptake, as it did for Cu. Section Editor: T. B. Kinraide  相似文献   

13.
Typical physico-chemical studies of metal binding proteins are usually aimed at determination of the metal binding constant K for a native protein (K n), while the significance of the K value for the thermally denatured protein (K u) is usually underestimated. Meanwhile, metal binding induced shift of thermal denaturation transition of a single site metal binding protein is defined by K n to K u ratio, implying that knowledge of both K values is required for full characterization of the system. In the present work, the most universal approach to the studies of single site metal binding proteins, namely construction of a protein “phase diagram” in coordinates of free metal ion concentration – temperature, is considered in detail. The detailed algorithm of construction of the phase diagrams along with underlying mathematic procedures developed here may be of use for studies of other simple protein-target type systems, where target represents low molecular weight ligand. Analysis of the simplest protein-ligand system reveals that thermodynamic properties of apo-protein dictate the maximal possible increase of its affinity to any simple ligand upon thermal denaturation of the protein. Experimental and general problems coupled with the use of the phase diagrams are discussed.  相似文献   

14.
Summary The effects of several sulfamoyl benzoic acid derivatives on Na–K–Cl cotransport were investigated in winter flounder intestine. The relative efficacy (IC50 values) and order of potency of these derivatives were benzmetanide, 5×10–8 m> bumetanide 3×10–7 m>piretanide 3×10–6 m>furosemide 7×10–6 m> amino piretanide 1×10–5 3-amino-4-penoxy-5-sulfamoyl benzoic acid. Binding of [3H] bumetanide was studied in microsomal membranes from winter flounder intestine and compared to that in bovine kidney outer medulla. Binding was also studied in brush-border membranes from winter flounder intestine. The estimated values forK d and number of binding sites (n) were: bovine kidney,K d =1.6×10–7,n=10.5 pmol/mg protein; winter flounder intestine,K d 1.2×10–7,n=7.3 pmol/mg protein, and brush-border membranes from winter flounder,K d =5.3×10–7,n=20.4 pmol/mg protein. The estimatedK d for bumetamide binding to winter flounder brush-border membranes derived from association and dissociation kinetics was 6.8×10–7 m. The similarity in magnitudes of IC50 andK d for bumetanide suggests that the brush-border cotransporter is ordinarily rate-limiting for transmural salt absorption and that bumetanide specifically binds to the cotransporter. Measurement of bumetanide binding at various concentrations of Na, K and Cl showed that optimal binding required all three ions to be present at about 5mm concentrations. Higher Na and K concentrations did not diminish binding but higher Cl concentrations (up to 100mm Cl) inhibited bumetanide binding by as much as 50%. Still higher Cl concentrations (500 and 900mm) did not further inhibit bumetanide binding. Scatchard analysis of bumetanide binding at 5 and 100mm Cl concentrations showed that bothK d andn were lower at the higher Cl concentration (5mm Cl:K d =5.29×10–7 m,n=20.4 pmol/mg protein; 100mm Cl:K d =2.3×10–7 m,n=8.8 pmol/mg protein). These data suggest two possibilities: that bumetanide and Cl binding are not mutually exclusive (in contrast to pure competitive inhibition) and that they each bind to separate sites or that two distinct bumetanide binding sites exist, only one of which exhibits Cl inhibition of binding. This inhibition would then be consistent with a competitive interaction with Cl.  相似文献   

15.
The effects of serum components and amino acids on the uptake and cytotoxicity of NiCl2 were examined in cultured Chinese hamster ovary (CHO) cells. CHO cells maintained in a minimal salts/glucose medium accumulated 10-fold more63Ni than did cells maintained in complete medium supplemented with 10% fetal bovine serum. Cell-surface binding of63Ni appeared to account for the majority of this increased accumulation of cell-associated nickel observed in the simple maintenance medium since such increases were reduced 70% by trypsin treatment. The addition of the Ni2+-binding amino acids cysteine or histidine to the salts/glucose medium markedly decreased63Ni accumulations, an effect not observed following addition of any of several amino acids that do not bind Ni2+. Supplementation of the salts/glucose medium with fetal bovine serum decreased in a concentration dependent fashion both the63Ni2+ uptake and cell detachment caused by Ni2+, while dialyzed (amino acid-free) serum was 3–5-fold less effective than undialyzed serum at reducing63Ni2+ uptake and similarly exhibited only a slight protective effect against nickel-induced cytotoxicity. Supplementation of dialyzed serum with cysteine at levels approximating those in whole serum partially restored its inhibitory activity toward nickel uptake by cells and restored completely its inhibition of nickel's cytotoxicity, indicating the predominant role of specific amino acids over serum proteins in regulating the uptake and subsequent cytotoxicity of Ni2+. Addition of cysteine to the salts/glucose medium during a 2 h exposure of cells to either 100 μM HgCl2 or 1 mM NiCl2 masked the cytotoxic effects of these metal ions. These results demonstrate the importance of extracellular small molecular weight metal ion chelators in altering the biological effects of metal ions at the level of metal uptake.  相似文献   

16.
Summary Guanosine di- and triphosphates specifically decrease the affinity of chemotactic cAMP receptors in isolatedDictyostelium discoideum membranes. The K0.5 was increased from 50 nM to 150 nM. Receptors were shown to be heterogeneous in dissociation kinetics. In the absence of guanine nucleotides three dissociation processes could be resolved, having first order rate constants of 8.7 x 10−4, 1.3 X 10−2, and higher than 0.1 s−1. Guanine nucleotides decreased the affinity for cAMP by transforming the slowest dissociating receptor form (KD is 8 nM) to forms dissociating more rapidly. Our data indicate that a guanine nucleotide binding protein (G-protein) is involved in the transduction of the cAMP signal inD. discoideum.  相似文献   

17.
Since immobilized metal ion affinity chromatography (IMAC) was first reported, several modifications have been developed. Among them, Ni2+ immobilized by chelation with nitrilotriacetic acid (NTA) bound to a solid support has become the most common method for the purification of proteins carrying either a C‐ or N‐terminal histidine (His) tag. Despite its broad application in protein purification, only little is known about the binding properties of the His‐tag, and therefore almost no thermodynamic and kinetic data are available. In this study, we investigated the binding mechanism of His‐tags to Ni2+‐NTA. Different series of oligohistidines and mixed oligohistidines/oligoalanines were synthesized using automated solid‐phase peptide synthesis (SPPS). Binding to Ni2+‐NTA was analyzed both qualitatively and quantitatively with surface plasmon resonance (SPR) using commercially available NTA sensor chips from Biacore. The hexahistidine tag shows an apparent equilibrium dissociation constant (KD) of 14 ± 1 nM and thus the highest affinity of the peptides synthesized in this study. Furthermore, we could demonstrate that two His separated by either one or four residues are the preferred binding motifs within hexahis tag. Finally, elongation of these referred motifs decreased affinity, probably due to increased entropy costs upon binding. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
19 F NMR spectroscopy have been applied to evaluate metal ion binding by the representative PvuII endonuclease in the absence of substrate. In separate experiments, ITC data demonstrate that PvuII endonuclease binds 2.16 Mn(II) ions and 2.05 Ca(II) metal ions in each monomer active site with K d values of  ≈ 1 mM. While neither calorimetry nor protein NMR spectroscopy is directly sensitive to Mg(II) binding to the enzyme, Mn(II) competes with Mg(II) for common sites(s) on PvuII endonuclease. Substitution of the conserved active site carboxylate Glu68 with Ala resulted in a loss of affinity for both equivalents of both Ca(II) and Mn(II). Interestingly, the active site mutant D58A retained an affinity for Mn(II) with K d  ≈ 2 mM. Mn(II) paramagnetic broadening in 19F spectra of wild-type and mutant 3-fluorotyrosine PvuII endonucleases are consistent with ITC results. Chemical shift analysis of 3-fluorotyrosine mutant enzymes is consistent with a perturbed conformation for D58A. Therefore, free PvuII endonuclease binds metal ions, and metal ion binding can precede DNA binding. Further, while Glu68 is critical to metal ion binding, Asp58 does not appear to be critical to the binding of at least one metal ion and appears to also have a role in structure. These findings provide impetus for exploring the roles of multiple metal ions in the structure and function of this representative endonuclease. Received: 30 March 1999 / Accepted: 28 September 1999  相似文献   

19.
The binding of lipophilic ions to the membrane of envelope vesicles from Halobacterium halobium was examined in the absence and presence of membrane potential. The lipophilic ions used constitute a homologous series of (Phe)3-P+-(CH2)n-CH3 (n = 0–4) and tetraphenylphosphonium (TPP+). In the absence of membrane potential, the amounts of binding were proportional to the probe concentration in the medium when the concentration is dilute. Upon illumination, interior negative membrane potential is generated which induces the uptake of phosphonium cation probe. 2 μM were employed as the initial probe concentration. The real membrane potential was evaluated by means of extrapolation to the state of no binding: The values of for various probes are plotted against the binding coefficient. Here, Ciapp is the apparent intra-vesicular concentration of the probes which is calculated without consideration of bound probes. The ordinate intercept of the plot gives the true concentration ratio, and from this the membrane potential is evaluated. The membrane potential-dependent binding was analysed with a model: the membrane is split into two halves, outer and inner half, and the amounts of bound probes in each region are governed by the concentration in the contiguous solution. We obtained a formula which describes amounts of binding as a function of the membrane potential.  相似文献   

20.
Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO4 2−) and tungstate (WO4 2−). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteria. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. K. Hollenstein and M. Comellas-Bigler contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号