首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen exchange in leaves in the light   总被引:30,自引:20,他引:10       下载免费PDF全文
Photosynthetic O2 production and photorespiratory O2 uptake were measured using isotopic techniques, in the C3 species Hirschfeldia incana Lowe., Helianthus annuus L., and Phaseolus vulgaris L. At high CO2 and normal O2, O2 production increased linearly with light intensity. At low O2 or low CO2, O2 production was suppressed, indicating that increased concentrations of both O2 and CO2 can stimulate O2 production. At the CO2 compensation point, O2 uptake equaled O2 production over a wide range of O2 concentrations. O2 uptake increased with light intensity and O2 concentration. At low light intensities, O2 uptake was suppressed by increased CO2 concentrations so that O2 uptake at 1,000 microliters per liter CO2 was 28 to 35% of the uptake at the CO2 compensation point. At high light intensities, O2 uptake was stimulated by low concentrations of CO2 and suppressed by higher concentrations of CO2. O2 uptake at high light intensity and 1000 microliters per liter CO2 was 75% or more of the rate of O2 uptake at the compensation point. The response of O2 uptake to light intensity extrapolated to zero in darkness, suggesting that O2 uptake via dark respiration may be suppressed in the light. The response of O2 uptake to O2 concentration saturated at about 30% O2 in high light and at a lower O2 concentration in low light. O2 uptake was also observed with the C4 plant Amaranthus edulis; the rate of uptake at the CO2 compensation point was 20% of that observed at the same light intensity with the C3 species, and this rate was not influenced by the CO2 concentration. The results are discussed and interpreted in terms of the ribulose-1,5-bisphosphate oxygenase reaction, the associated metabolism of the photorespiratory pathway, and direct photosynthetic reduction of O2.  相似文献   

2.
Increasing H2O2 levels in guard cells in response to environmental stimuli are recently considered a general messenger involved in the signaling cascade for the induction of stomatal closure. But little is known as to whether subsidiary cells participate in the H2O2-mediated stomatal closure of grass plants. In the present study, 2-week-old seedlings of maize (Zea mays) were exposed to different degrees of soil water deficit for 3 weeks. The effects of soil water contents on leaf ABA and H2O2 levels and stomatal aperture were investigated using physiological, biochemical, and histochemical approaches. The results showed that even under well-watered conditions, significant amounts of H2O2 were observed in guard cells, whereas H2O2 concentrations in the subsidiary cells were negligible. Decreasing soil water contents led to a significant increase in leaf ABA levels associated with significantly enhanced O2 ? and H2O2 contents, consistent with reduced degrees of stomatal conductance and aperture. The significant increase in H2O2 appeared in both guard cells and subsidiary cells of the stomatal complex, and H2O2 levels increased with decreasing soil water contents. Drought-induced increase in the activity of antioxidative enzymes could not counteract the significant increase in H2O2 levels in guard cells and subsidiary cells. These results indicate that subsidiary cells participate in H2O2-mediated stomatal closure, and drought-induced H2O2 accumulation in subsidiary cells is involved in the signaling cascade regulating stomatal aperture of grass plants such as maize.  相似文献   

3.
Chlorella vulgaris 11h cells grown in air enriched with 4% CO2(high-CO2 cells) had carbonic anhydrase (CA) activity whichwas 20 to 90 times lower than that of algal cells grown in ordinaryair (containing 0.04% CO2, low-CO2 cells). The CO2 concentrationduring growth did not affect either ribulose 1,5-bisphosphate(RuBP) carboxylase activity or its Km for CO2. When high-CO2 cells were transferred to low CO2 conditions,CA activity increased without a lag period, and this increasewas accompanied by an increase in the rate of photosynthetic14CO2 fixation under 14CO2-limiting conditions. On the otherhand, CA activity as well as the rate of photosynthetic 14CO2fixation at low 14CO2 concentrations decreased when low-CO2cells were transferred to high CO2 conditions. Diamox, an inhibitor of CA, at 0.1 mM did not affect photosynthesisof low-CO2 cells at high CO2 concentration (0.5%). Diamox inhibitedphotosynthesis only under low CO2 concentrations, and the lowerthe CO2 concentration, the greater was the inhibition. Consequently,the CO2 concentration at which the rate of photosynthesis attainedone-half its maximum rate (Km) greatly increased in the presenceof this inhibitor. When CO2 concentration was higher than 1%, the photosyntheticrate in low-CO2 cells decreased, while that in high-CO2 cellsincreased. Fractionation of the low-CO2 cells in non-aqueous medium bydensity showed that CA was fractionated in a manner similarto the distribution of chlorophyll and RuBP carboxylase. These observations indicate that CA enhances photosynthesisunder CO2-limiting conditions, but inhibits it at CO2 concentrationshigher than a certain level. The mechanism underlying the aboveregulatory functions of CA is discussed. 1This work was reported at the International Symposium on PhotosyntheticCO2-Assimilation and Photorespiration, Sofia, August, 1977 (18).Requests for reprints should be addressed to S. Miyachi, RadioisotopeCentre, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. (Received December 11, 1978; )  相似文献   

4.
In order to establish whether non-mitochondrial oxidase activity in human neutrophils is tightly related to cytosolic Ca2+ concentration, we simultaneously measured Ca2+ oscillations induced by ATP and oxidant production in single adherent neutrophils using confocal microscopy. ATP induced fast damped Ca2+ spikes with a period of 15 s and slower irregular spikes with a period greater than 50 s. Spikes in Ca2+ occurred in the absence of Ca2+ influx, but the amplitude was damped by inhibition of Ca2+ influx. Using the oxidation of hydroethidine as a cytosolic marker of oxidant production, we show that the generation of reactive oxygen species by neutrophils adherent to glass was accelerated by ATP. The step-up in NADPH oxidase activity followed the first elevation of cytosolic Ca2+ but, despite subsequent spikes in Ca2+ concentration, no oscillations in oxidase activity could be detected. ATP induced spikes in Ca2+ in a very reproducible way and we propose that the Ca2+ signal is an on-switch for oxidase activity, but the activity is apparently not directly correlated with spiking activity in cytosolic Ca2+.  相似文献   

5.
Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems. The present study demonstrates that H2O2 was generated in seedling explants after the primary roots were removed, and it mediates the auxin response prior to adventitious root formation in cucumber (Cucumis sativus L. Ganfeng 8). When compared with the controls, treatment of cucumber seedling explants after primary roots removal with either 20–40 mM H2O2 or 10 μM IAA significantly increased the number of adventitious roots, and treatment with 10–50 mM H2O2 significantly increased the fresh weight of adventitious roots. The effects of H2O2 on promoting the formation and growth of adventitious roots were eliminated by 2 mM ascorbic acid, 100 U CAT or 1 μM DPI, and the effects of IAA were eliminated by 4 mM ascorbic acid, 100 U CAT or 5 μM DPI. Treatment with either 4 mM ascorbic acid or 1–5 μM DPI inhibited the formation and growth of adventitious roots, and these inhibitory effects were partly reversed by exogenous H2O2.Furthermore, a higher concentration of endogenous H2O2 was detected in seedling explants 3 h after the primary roots were removed. However, in 10 μM DPI-treated seedling explants, the concentration of endogenous H2O2 was markedly reduced by DPI. Results obtained suggest that H2O2 may function as a signaling molecule, involved in the formation and development of adventitious roots in cucumber.  相似文献   

6.
FLAGELLIN-SENSING 2 (FLS2) is a leucine-rich repeat/transmembrane domain/protein kinase (LRR-RLK) that is the plant receptor for bacterial flagellin or the flagellin-derived flg22 peptide. Previous work has shown that after flg22 binding, FLS2 releases BIK1 kinase and homologs and associates with BAK1 kinase, and that FLS2 kinase activity is critical for FLS2 function. However, the detailed mechanisms for activation of FLS2 signaling remain unclear. The present study initially identified multiple FLS2 in vitro phosphorylation sites and found that Serine-938 is important for FLS2 function in vivo. FLS2-mediated immune responses are abolished in transgenic plants expressing FLS2S938A, while the acidic phosphomimic mutants FLS2S938D and FLS2S938E conferred responses similar to wild-type FLS2. FLS2-BAK1 association and FLS2-BIK1 disassociation after flg22 exposure still occur with FLS2S938A, demonstrating that flg22-induced BIK1 release and BAK1 binding are not sufficient for FLS2 activity, and that Ser-938 controls other aspects of FLS2 activity. Purified BIK1 still phosphorylated purified FLS2S938A and FLS2S938D mutant kinase domains in vitro. Phosphorylation of BIK1 and homologs after flg22 exposure was disrupted in transgenic Arabidopsis thaliana plants expressing FLS2S938A or FLS2D997A (a kinase catalytic site mutant), but was normally induced in FLS2S938D plants. BIK1 association with FLS2 required a kinase-active FLS2, but FLS2-BAK1 association did not. Hence FLS2-BIK1 dissociation and FLS2-BAK1 association are not sufficient for FLS2-mediated defense activation, but the proposed FLS2 phosphorylation site Ser-938 and FLS2 kinase activity are needed both for overall defense activation and for appropriate flg22-stimulated phosphorylation of BIK1 and homologs.  相似文献   

7.
广西龙眼主栽品种丰产园果实及叶片的营养状况   总被引:3,自引:0,他引:3  
对广西三个龙眼主栽品种"大乌圆"、"石硖"和"储良"进行果实性状和营养成分、叶片N、P、K含量分析,结果表明:各品种果实营养成分之间及其与叶片N、P、K含量之间有一定的相关性;初步提出广西丰产龙眼叶片N、P、K含量范围:"大乌圆"1.5×10-2~1.9×10-2, 0.08×10-2~0.12×10-2,0.48×10-2~0.64×10-2;"石硖" 1.5×10-2~1.7×10-2,0.09×10-2~0.10×10-2,0.39×10-2~0.56×10-2; "储良"1.4×10-2~1.8×10-2,0.08×10-2~0.11×10-2,0.38×10-2~0.62×10-2。  相似文献   

8.
Effects of nitrogen dioxide (NO2) exposure on prostacyclin (PGIP2) synthesis in the rat lung and thromboxane A2 (TXA2) synthesis in the platelets were studied. Male Wistar rats were exposed to 10 ppm NO2 for 1, 3, 5, 7 and 14 days. PGI2 synthesizing activity of homogenized lung decreased. The damage of PGI2 synthesizing activity reaches its maximum at 3 days. At 14 days, PGI2 synthesizing activity returned to the normal level. The activity of PGI2 synthetase decreased significantly. The formation of lipid peroxides due to NO2 exposure may cause the depression of PGI2 synthesizing activity of lung. On the other hand, platelet TXA2 synthesizing activity increased. This increased TXA2 synthesizing activity lasted at least till 3 days. Then, it returned to the normal level. The counts of platelet were decreased significantly by 1, 3, 5 and 7 days NO2 exposure. Then the decreased counts of platelet returned to the normal level at 14 days NO2 exposure. These results indicate that the depression of PGI2 synthesizing activity lung by NO2 exposure cause an increase in TXA2 synthesizing activity of platelets. It may contribute to induce platelet aggregation and to the observed decrease in the number of platelets during NO2 exposure.  相似文献   

9.
Gpx2, one of three glutathione peroxidase homologs (Gpx1, Gpx2, and Gpx3) in Saccharomyces cerevisiae, is an atypical 2-Cys peroxiredoxin that prefers to use thioredoxin as a reducing agent in vitro. Despite Gpx2 being an antioxidant, no obvious phenotype of gpx2Δ mutant cells in terms of oxidative stress has yet been found. To gain a clue as to Gpx2’s physiological function in vivo, here we identify its intracellular distribution. Gpx2 was found to exist in the cytoplasm and mitochondria. In mitochondria, Gpx2 was associated with the outer membrane of the cytoplasmic-side, as well as the inner membrane of the matrix-side. The redox state of the mitochondrial Gpx2 was regulated by Trx1 and Trx2 (cytoplasmic thioredoxin), and by Trx3 (mitochondrial matrix thioredoxin). In addition, we found that the disruption of GPX2 reduced the sporulation efficiency of diploid cells.  相似文献   

10.
As a mechano-calcium channel, polycystin2 (PC2) play an important role in the response of renal epithelial cells to fluid flow shear stress. In bone tissue, osteocytes are well known as the main mechanosensory cells, and sensitive to fluid flow stimulus in vitro. In the study, we investigated the effects of oscillating fluid flow (OFF, 2 h, 1 Hz, 1.0 Pa) on the release of Nitric Oxide (NO) and ProstaglandinE2 (PGE2), and the role of PC2 on the release. Our findings demonstrate that PC2 expression increases after 2 h of OFF, and silencing PC2 by RNAi inhibits downstream NO production and iNOS expression, but does not affect the response of PGE2 to OFF.  相似文献   

11.
Aging of oocytes, being not fertilized after ovulation for a prolonged time, considerably affects normal development of the fertilized oocyte. We examined effects of the aging on a series of highly repetitive Ca2+ transients commonly seen in fertilized mouse oocytes (Ca2+ oscillations). Frequency of Ca2+ oscillations in the aged oocyte [20 hrs after induction of superovulation by i.p. human chorionic gonadotropin (hCG)] was significantly higher (34.1 ± 5.8 1/hr) than the fresh oocyte (14 hr post-hCG, 21.8 ± 7.9 1/hr). Rates of rise and fall of individual Ca2+ transient in the aged oocyte were significantly slower than the fresh oocyte, whereas durations of individual Ca2+ transients were similar. When extracellular Ca2+ was raised from 2.04 mM to 5.00 mM, aged oocytes showed significant prolongation of the duration of individual Ca2+ transient, that resulted in a sustained elevation of intracellular Ca2+ ([Ca2+]i) in 33% of the aged oocyte. Transient increase in [Ca2+]i by photolysis of a caged Ca2+, Nitr-5, injected into cytoplasm was completely restored in the fresh oocyte [fluorescence intensity of [Ca2+]i indicator dye Fluo-3 (F480) returned to 97 ± 2% of the control level, time constant = 37 ± 9 sec]. In contrast, in the aged oocyte, restoration of F480 following Nitr-5 photolysis was incomplete (115 ± 12% of the control) and slow (time constant = 64 ± 23 sec). Because inhibition of the Ca2+ pump of the endoplasmic reticulum (ER) by 5 μM thapsigargin almost completely inhibited restoration of F480 following Nitr-5 photolysis in the fresh oocyte, we conclude that the aging-related changes in Ca2+ oscillations may be accounted for by dysfunction of intracellular Ca2+ regulation, presumably of the Ca2+ pump of the ER. Mol. Reprod. Dev. 48:383–390, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Primary mouse keratinocytes in culture are induced to terminally differentiate by increasing extracellular Ca2+ concentrations (CaO) from 0.05 mM to ≥ 0.1 mM. The addition of Sr2+ (≥ 2.5 mM) to medium containing 0.05 mM Ca2+ induces focal stratification and terminal differentiation, which are similar to that found after increasing the CaO to 0.12 mM. Sr2+ in 0.05 mM Ca2+ medium induces the expression of the differentiation-specific keratins, keratin 1 (K1), keratin 10 (K10), and the granular cell marker, filaggrin, as determined by both immunoblotting and immunofluorescence. Sr2+ induces the expression of those differentiation markers in a dose dependent manner, with an optimal concentration of 5 mM. In the absence of Ca2+ in the medium, the Sr2+ effects are reduced, and Sr2+ is ineffective when both Ca2+ and serum are deleted from the medium. Sr2+ treatment increases the ratio of fluorescence intensity of the intracellular Ca2+ sensitive probe, fura-2, indicating an associated rise in the level of intracellular free Ca2+ and/or Sr2+. At doses sufficient to induce differentiation, Sr2+ also increases the level of inositol phosphates in primary keratinocytes within 30 min. The uptake curves of 85Sr2+ by primary keratinocytes are similar to those of 45Ca2+. At low concentrations, the initial uptake of both 45Ca2+ and 85Sr2+ reaches a plateau within 1 hr; at higher concentrations, the uptake of both 45Ca2+ and 85Sr2+ increases continuously for 12 hr. In keratinocytes pre-equilibrated with 45Ca2+ in 0.05 mM Ca2+ medium, Sr2+ causes an increase of 45Ca2+ uptake, which is dependent on the presence of serum. These results suggest that Sr2+ utilizes the same signalling pathway as Ca2+ to induce keratinocyte terminal differentiation and that Ca2+ may be required to exert these effects. © 1993 Wiley-Liss, Inc.  相似文献   

13.
14.
Barley seed proteins, Hordoindolines, are homologues of wheat Puroindolines, which are associated with grain hardness. Barley Hordoindoline genes are known to comprise Hina and Hinb, and Hinb consists of two Hinb genes, Hinb-1 and Hinb-2. Two types of allele were found for Hina, Hinb-1 and Hinb-2 genes, respectively, among Japanese two- and six-rowed barley lines. One of the alleles of Hinb-2 (Hinb-2b) had a frame-shift mutation resulting in an in-frame stop codon. For two-rowed barley lines, grain hardness was significantly higher among lines with the Hinb-2b than those with the wild type Hinb-2 gene (Hinb-2a). Protein spots corresponding to HINa, HINb-1, and HINb-2 were identified by 2D-gel electrophoresis among barley lines with Hinb-2a. Among the lines with Hinb-2b, HINa and HINb-1 were expressed at similar levels as those in the wild type, but HINb-2 was not detected. A DNA (cleaved amplified polymorphic sequence) marker was developed to distinguish between the Hinb-2a and Hinb-2b gene sequences. Analysis of grain hardness among F2 lines derived from a cross between a line with Hinb-2a (Shikoku hadaka 115) and a line with the Hinb-2b (Shikoku hadaka 84) showed significantly higher grain hardness in the mutant lines. From these results, the Hinb-2b frame-shift (null) mutation might play a critical role in barley grain hardness. The DNA marker will be useful in barley breeding to select lines having harder grain texture.  相似文献   

15.
In a study on metabolic consumption of photosynthetic electronsand dissipation of excess light energy under water stress, O2and CO2 gas exchange was measured by mass spectrometry in tomatoplants using 18O2 and 13CO2. Under water stress, gross O2 evolution(EO), gross O2 uptake (UO), net CO2 uptake (PN), gross CO2 uptake(TPS), and gross CO2 evolution (EC) declined. The ratio PN/EOfell during stress, while the ratios UO/EO and EC/TPS rose.Mitochondrial respiration in the light, which can be measureddirectly by 12CO2 evolution during 13CO2 uptake at 3000 µll–1 13CO2, is small in relation to gross CO2 evolutionand CO2 release from the glycolate pathway. It is concludedthat PSII, the Calvin cycle and mitochondrial respiration aredown-regulated under water stress. The percentages of photosyntheticelectrons dissipated by CO2 assimilation, photorespiration andthe Mehler reaction were calculated: in control leaves morethan 50 % of the electrons were consumed in CO2 assimilation,23 % in photorespiration and 13 % in the Mehler reaction. Undersevere stress the percentages of electrons dissipated by CO2assimilation and the Mehler reaction declined while the percentageof electrons used in photorespiration doubled. The consumptionof electrons in photorespiration may reduce the likelihood ofdamage during water deficit.  相似文献   

16.
Parkinson’s disease (PD) is a dopaminergic-related pathology in which functioning of the basal ganglia is altered. It has been postulated that a direct receptor-receptor interaction – i.e. of dopamine D2 receptor (D2R) with adenosine A2A receptor (A2AR) (forming D2R-A2AR oligomers) – finely regulates this brain area. Accordingly, elucidating whether the pathology prompts changes to these complexes could provide valuable information for the design of new PD therapies. Here, we first resolved a long-standing question concerning whether D2R-A2AR assembly occurs in native tissue: by means of different complementary experimental approaches (i.e. immunoelectron microscopy, proximity ligation assay and TR-FRET), we unambiguously identified native D2R-A2AR oligomers in rat striatum. Subsequently, we determined that, under pathological conditions (i.e. in a rat PD model), D2R-A2AR interaction was impaired. Collectively, these results provide definitive evidence for alteration of native D2R-A2AR oligomers in experimental parkinsonism, thus conferring the rationale for appropriate oligomer-based PD treatments.KEY WORDS: Immunoelectron microscopy, Oligomerization, Parkinson’s disease, Proximity ligation assay, TR-FRET  相似文献   

17.
Recent studies have provided evidence that depolarization in the absence of extracellular Ca2+ can trigger Ca2+ release from internal stores in a variety of neuron subtypes. Here we examine whether postganglionic sympathetic neurons are able to mobilize Ca2+ from intracellular stores in response to depolarization, independent of Ca2+ influx. We measured changes in cytosolic ΔF/F0 in individual fluo-4 –loaded sympathetic ganglion neurons in response to maintained K+ depolarization in the presence (2 mM) and absence of extracellular Ca2+ ([Ca2+]e). Progressive elevations in extracellular [K+]e caused increasing membrane depolarizations that were of similar magnitude in 0 and 2 mM [Ca2+]e. Peak amplitude of ΔF/F0 transients in 2 mM [Ca2+]e increased in a linear fashion as the membrane become more depolarized. Peak elevations of ΔF/F0 in 0 mM [Ca2+]e were ~5–10% of those evoked at the same membrane potential in 2 mM [Ca2+]e and exhibited an inverse U-shaped dependence on voltage. Both the rise and decay of ΔF/F0 transients in 0 mM [Ca2+]e were slower than those of ΔF/F0 transients evoked in 2 mM [Ca2+]e. Rises in ΔF/F0 evoked by high [K+]e in the absence of extracellular Ca2+ were blocked by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase, or the inositol 1,4,5-triphosphate (IP3) receptor antagonists 2-aminoethoxydiphenyl borate and xestospongin C, but not by extracellular Cd2+, the dihydropyridine antagonist nifedipine, or by ryanodine at concentrations that caused depletion of ryanodine-sensitive Ca2+ stores. These results support the notion that postganglionic sympathetic neurons possess the ability to release Ca2+ from IP3-sensitive internal stores in response to membrane depolarization, independent of Ca2+ influx.  相似文献   

18.
2-Aminoethoxydiphenyl borate (2-APB) is used as a pharmacological tool because it antagonizes inositol 1,4,5-trisphosphate receptors and store-operated Ca2+ (SOC) channels, and activates some TRP channels. Recently, we reported that 2-APB enhanced the increase in cytotoxic [Ca2+]i, resulting in cell death under external acidic conditions in rat pheochromocytoma cell line PC12. However, the molecular mechanism and functional role of the 2-APB-induced Ca2+ influx in PC12 have not been clarified. In this study, to identify the possible target for the action of 2-APB we examined the pharmacological and molecular properties of [Ca2+]i and secretory responses to 2-APB under extracellular low pH conditions. 2-APB dose-dependently induced a [Ca2+]i increase and dopamine release, which were greatly enhanced by the external acidification (pH 6.5). [Ca2+]i and secretory responses to 2-APB at pH 6.5 were inhibited by the removal of extracellular Ca2+ and SOC channel blockers such as SK&F96365, La3+ and Gd3+. PC12 expressed all SOC channel molecules, Orai 1, Orai 2 and Orai 3. When we used an siRNA system, downregulation of Orai 3, but not Orai 1 and Orai 2, attenuated both [Ca2+]i and secretory responses to 2-APB. These results suggest that 2-APB evokes external acid-dependent increases of [Ca2+]i and dopamine release in PC12 through the activation of Orai 3. The present results indicate that 2-APB may be a useful pharmacological tool for Orai channel-related signaling.  相似文献   

19.
Field experiments in the high rainfall zone (HRZ) and the medium rainfall zone (MRZ) in Zambia were designed to determine the natural occurrence of fumonisins (FB1–2) in Zambian maize hybrids, accumulation of FB1–2 resulting from artificial inoculation with Fusarium verticillioides and effects of climate and planting time on FB1–2 in maize. Combined FB1–2 concentrations varied from 0 to 13,050 ng/g, with an overall mean of 666 ng/g. Maize from the HRZ had low incidences of FB1–2-positive samples (mean 41%) which contained FB1–2 below 500 ng/g. In the MRZ, higher incidences (mean 97%) and concentrations (40% of samples >1,000 ng/g) were recorded in two out of three years. There was no correlation between mean location FB1–2 concentrations in individual years and precipitation, number of rain days or monthly precipitation. Postponing the planting time with 10 or 20 days did not significantly affect FB1–2 concentration, but it reduced the yields in some years.  相似文献   

20.
Sarcoplasmic reticulum (SR) Ca2 + release plays an essential role in mediating cardiac myocyte contraction. Depolarization of the plasma membrane results in influx of Ca2 + through l-type Ca2 + channels (LTCCs) that in turn triggers efflux of Ca2 + from the SR through ryanodine receptor type-2 channels (RyR2). This process known as Ca2 +-induced Ca2 +release (CICR) occurs within the dyadic region, where the adjacent transverse (T)-tubules and SR membranes allow RyR2 clusters to release SR Ca2 + following Ca2 + influx through adjacent LTCCs. SR Ca2 + released during systole binds to troponin-C and initiates actin–myosin cross-bridging, leading to muscle contraction. During diastole, the cytosolic Ca2 + concentration is restored by the resequestration of Ca2 + into the SR by SR/ER Ca2 +-ATPase (SERCA2a) and by the extrusion of Ca2 + via the Na+/Ca2 +-exchanger (NCX1). This whole process, entitled excitation–contraction (EC) coupling, is highly coordinated and determines the force of contraction, providing a link between the electrical and mechanical activities of cardiac muscle. In response to heart failure (HF), the heart undergoes maladaptive changes that result in depressed intracellular Ca2 + cycling and decreased SR Ca2 + concentrations. As a result, the amplitude of CICR is reduced resulting in less force production during EC coupling. In this review, we discuss the specific proteins that alter the regulation of Ca2 + during HF. In particular, we will focus on defects in RyR2-mediated SR Ca2 + release. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号