首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Apple replant disease (ARD) is a soil-borne disease complex that affects young apple trees in replanted orchards, resulting in stunted growth and reduced yields. Newly developed rootstock genotypes with tolerance to ARD may help to control this disease. We determined the effects of rootstock genotype rotations during orchard renovation, by investigating root-zone soil microbial consortia and the relative severity of ARD on seven rootstock genotypes (M.9, M.26, G.30, G.41, G.65, G.935, and CG.6210) planted in soil where trees on four of those same rootstocks (M.9, M.26, G.30 and CG.6210) had grown for the previous 15 years. Rootstock genotyping indicated that genetic distances among rootstocks were loosely correlated with their differential responses to ARD. Root-zone fungal and bacterial community composition, assessed by DNA fingerprinting (T-RFLP), differed between M.26 and CG.6210. Soil bacterial communities were influenced most by which rootstock had grown in the soil previously, while fungal communities were influenced more by the current replanted rootstock. In a clone library of bacteria from M.26 and CG.6210 root-zone soil, β-Proteobacteria was the most abundant phylum (25% of sequences). Sequences representing the Burkholderia cepacia complex were obtained only from CG.6210 soil. Rootstock genotypes that were grown in the orchard soil previously affected subsequent ARD severity, but replanting with the same or closely related rootstocks did not necessarily exacerbate this disease problem. Our results suggest that genotype-specific interactions with soil microbial consortia are linked with apple rootstock tolerance or susceptibility to ARD.  相似文献   

2.

Aims

Plant tolerance to herbivory has often been linked to plant growth rate, with faster growing plants that present high tissue turnover rates expected to be more tolerant than slower-growing plants. We tested whether this relationship also holds for rootstock growth rate and tolerance to apple replant disease (ARD).

Methods

An ARD susceptible rootstock, M.26 and ARD tolerant rootstock, CG.6210 were grown in soil from an apple replant site (FS) and in pasteurized soil (PS) from the same site. Total below ground biomass production was determined by harvesting a subset of plants per soil treatment and rootstock at 11, 17, and 23 weeks after planting. Root samples were collected prior to each harvesting date to determine root respiration and total carbon (C) and nitrogen (N) content. Root dynamics were tracked during the growing season by digitally photographing root observation windows.

Results

Total root biomass, first and second order roots, and second-to-first order root ratio were higher in CG.6210 than in M.26 in both soil treatments. Roots of CG.6210 were thinner and had lower N concentration than those of M.26. Roots of M.26 had longer lifespans than those of CG.6210, and the mortality risk of M.26 roots was 56 % that of CG.6210 roots.

Conclusion

Our study indicates that rootstocks with faster growing root systems can tolerate ARD infection by investing fewer resources in individual root construction that can be shed more readily.  相似文献   

3.
A field trial was conducted near Kelowna, British Columbia, to determine the effect of biological treatments alone and in combination with formalin fumigation in apple replant disease soil. The response was measured by the increase in cross-sectional trunk area, total shoot growth, and fruit yield of McIntosh apple trees on M.26 rootstock. The postplanting drench application of strain EBW-4 of Bacillus subtilis alone was consistently effective in increasing cross-sectional trunk area for 5 years, total shoot growth for 4 years, and fruit yield for 3 years. The biological agent EBW-4 of B. subtilis in combination with formalin fumigation was also effective in promoting total shoot growth and cross-sectional trunk area. The application of formalin fumigation alone was effective in increasing shoot growth for 2 years and cross-sectional trunk area for 1 year only. This treatment did not increase fruit yield for 3 years. The consistent performance of strain EBW-4 of B. subtilis during 1986-1991 indicates that this bacterium has the potential for biological control of replant disease under orchard conditions in the Okanagan Valley of British Columbia.  相似文献   

4.
Root development may exert control on plant–pathogen interactions with soil-borne pathogens by shaping the spatial and temporal availability of susceptible tissues and in turn the impact of pathogen colonization on root function. To evaluate the relationship between root development and resistance to apple replant disease (ARD) pathogens, pathogen abundance was compared across root branching orders in a bioassay with two rootstock genotypes, M.26 (highly susceptible) and CG.210 (less susceptible). Root growth, anatomical development and secondary metabolite production were evaluated as tissue resistance mechanisms. ARD pathogens primarily colonized first and second order roots, which corresponded with cortical tissue senescence and loss in second and third order roots. Defense compounds were differentially allocated across root branching orders, while defense induction or stress response was only detected in first order and pioneer roots. Our results suggest disease development is based largely on fine-root tip attrition. In accordance, the less susceptible rootstock supported lower ARD pathogen abundance and altered defense compound production in first order and pioneer roots and maintained higher rates of root growth in both the ARD soil and pasteurized control compared to the more susceptible. Thus, this rootstock’s ability to maintain shoot growth in replant soil may be attributable to relative replant pathogen resistance in distal root branches as well as tolerance of infection based on rates of root growth.  相似文献   

5.
Apple replant disease (ARD) is a soil-disease syndrome of complex etiology that affects apple tree roots in replanted orchards, resulting in stunted tree growth and reduced yields. To investigate whether different groundcover management systems (GMSs) influence subsequent ARD severity, we grew apple seedlings in an outdoor nursery in pots containing orchard soil from field plots where four GMSs had been maintained for 14 years in an orchard near Ithaca, NY, USA. The GMS treatments were: (1) pre-emergence herbicide (Pre-H), bare soil strips maintained by applying tank-mixed glyphosate, norflurazon and diuron herbicides annually; (2) post-emergence herbicide (Post-H), sparse weed cover maintained by applying glyphosate in May and July each year; (3) mowed sod grass (Mowed Sod); and (4) bark mulch (Mulch). Soils were also sampled from the grass drive lane maintained between the trees in the orchard (Grass Lane). Sampled soils (Orchard soil) were either pasteurized or left untreated, placed into 4-L pots, and planted with one apple seedling per pot. After 3 months of growth, soil (Bioassay soil) and apple tree roots (Bioassay roots) were sampled from each pot and microbial populations colonizing samples were characterized. Seedling growth was reduced in soils sampled from all four GMS treatments compared to the Grass Lane soils. Among the GMS treatments, seedling biomass was greater in Pre-H than in the Post-H soil. Soil microbial communities and nutrient availability differed among all four GMS treatments and the Grass Lane. Root-lesion (Pratylenchus sp.) nematode populations were higher in the Mowed Sod than in the other GMS treatments. Soil bacterial and fungal community composition was assessed in Orchard and Bioassay soils and Bioassay roots with a DNA fingerprinting method (T-RFLP). Redundancy analysis indicated that soils sampled from the different GMS treatments differentially influenced seedling biomass. A clone library of 267 soil bacteria was developed from sampled Orchard soils and Bioassay roots. These communities were dominated by Acidobacteria (25% of sequences), Actinobacteria (19%), δ-Proteobacteria (12%), β-Proteobacteria (10%), and these ratios differed among the GMS soils. Members of the family Comamonadaceae were detected only in tree-row soil, not in the Grass Lanes. The dominant sequences among 145 cloned fungi associated with apple seedling roots were Fusarium oxysporum (16% of sequences), an uncultured soil fungus submitted under DQ420986 (12%), and Rhodotorula mucilaginosa (9%). In a redundancy analysis, factors including fungal and oomycete community compositions, soil respiration rates, population sizes of culturable bacteria and fungi, soil organic matter content, and nutrient availability, were not significant predictors of apple seedling biomass in these soils. Different GMS treatments used by apple growers may influence subsequent ARD severity in replanted trees, but edaphic factors commonly associated with soil fertility may not reliably predict tree-root health and successful establishment of replanted orchards.  相似文献   

6.
The long-term effects of biological agents alone and in combination with monoammonium phosphate on tree growth and fruit production of apple trees planted on apple replant soil was studied for five years. Application of monoammonium phosphate (MAP) in the year of planting increased shoot growth, cross-sectional trunk area and fruit yield of McIntosh on M.26 rootstock for the first two years. The application of bacterial agents alone were not effective in increasing young tree growth except BACT-1 in 1987. None of the bacterial agents increased fruit yield when applied alone. The addition of certain bacterial agents to MAP application increased young tree growth in various years. The combination of bacterial agent B-10 and MAP reduced young tree growth and yield compared with the MAP treatment alone. These results suggest that the application of MAP alone may be sufficient to alleviate the replant problem and the addition of BACT-1, EBW-4 or B8 bacterial agents to this treatment may be beneficial to increase tree growth in some years. Contribution number 822. Contribution number 822.  相似文献   

7.
连作苹果园土壤真菌的T-RFLP分析   总被引:11,自引:0,他引:11  
为探讨连作苹果园不同土壤空间真菌群落结构,应用T-RFLP(Terminal Restriction Fragment Length Polymorphism)技术,比较了3个连作园不同取样位置(行间、原穴、株间)和不同土层(0—30 cm、30—60 cm)的土壤真菌多样性,并结合不同样品TRFLP图谱的差异,采用多样性指数分析、聚类分析和主成分分析(PCA),分析了3个连作园土壤真菌群落结构特征。结果表明,磁窑、道朗和金城连作园的土壤真菌多样性存在差异,各采样地区的Shannon多样性指数在0.43—2.47之间,Pielou均匀度指数在0.17—0.85之间,Simpson优势度指数在0.12—0.81之间,Margalef丰富度指数最高的是金城树穴0—30 cm土层(R=4.55),最低的是磁窑行间30—60 cm土层(R=0.77)。在调查的不同取样位置、不同土层中,原树穴具有最高的多样性指数、均匀度指数、丰富度指数和最低的优势度指数;0—30 cm土层的土壤真菌多样性指数、均匀度指数、丰富度指数均高于30—60cm土层,而优势度指数的趋势正好相反;PCA和聚类分析结果显示磁窑、道朗和金城连作园的土壤真菌群落结构均有明显差异,3个连作园的土壤真菌各自构成一个独立的群落结构,这些群落能够适应各自的土壤环境并成为环境的优势群落。  相似文献   

8.

Key message

Gene expression studies in roots of apple replant disease affected plants suggested defense reactions towards biotic stress to occur which did not lead to adequate responses to the biotic stressors.

Abstract

Apple replant disease (ARD) leads to growth inhibition and fruit yield reduction in replanted populations and results in economic losses for tree nurseries and fruit producers. The etiology is not well understood on a molecular level and causal agents show a great diversity indicating that no definitive cause, which applies to the majority of cases, has been found out yet. Hence, it is pivotal to gain a better understanding of the molecular and physiological reactions of the plant when affected by ARD and later to overcome the disease, for example by developing tolerant rootstocks. For the first time, gene expression was investigated in roots of ARD affected plants employing massive analysis of cDNA ends (MACE) and RT-qPCR. In reaction to ARD, genes in secondary metabolite production as well as plant defense, regulatory and signaling genes were upregulated whereas for several genes involved in primary metabolism lower expression was detected. For internal verification of MACE data, candidate genes were tested via RT-qPCR and a strong positive correlation between both datasets was observed. Comparison of apple ‘M26’ roots cultivated in ARD soil or γ-irradiated ARD soil suggests that typical defense reactions towards biotic stress take place in ARD affected plants but they did not allow responding to the biotic stressors attack adequately, leading to the observed growth depressions in ARD variants.
  相似文献   

9.
The role of soil fungi and nematodes in citrus replant problems was investigated. Several pathogenic and non-pathogenic fungi and the nematodeTylenchulus semipenetrans were isolated in about equal abundance from soils which displayed or did not display replant problems. However, in almost all trees showing evidence of decline, infection by the fungusPhytophthora citrophthora had advanced through the roots until it had reached the tree crown. Fumigation of old citrus soil with methyl bromide greatly increased the growth of sour organe. The application of Nemacure, Benomyl and Ridomil 5G confirmed the important role of pathogenic and non-pathogenic fungi and nematodes in the citrus replant problem. Inoculation of methyl bromide-treated soil with the pathogenic and non-pathogenic fungi separately or in combination further confirmed the previous experiments and also revealed an important role ofP. citrophthora andFusarium solani when replanting citrus in old citrus orchards.  相似文献   

10.
甲壳素对连作条件下平邑甜茶幼苗生长及土壤环境的影响   总被引:2,自引:0,他引:2  
研究在苹果连作土壤中添加甲壳素对苹果幼苗生长、土壤酶及土壤真菌群落结构的影响,探讨甲壳素缓解苹果连作障碍的可能性,为防控苹果连作障碍提供依据。盆栽条件下,以平邑甜茶幼苗为试材,在苹果连作土壤中分别添加0,0.5,1.0和2.5g/kg的甲壳素,测定了连作土壤中添加不同量的甲壳素后,幼苗生物量、根系保护酶活性、土壤主要酶(蔗糖酶、脲酶、磷酸酶等)活性以及土壤中真菌群落结构的变化。9月份结果表明,与对照相比,1.0 g/kg的甲壳素处理连作土,可显著提高平邑甜茶幼苗株高和干鲜重,分别比对照增加了36.8%、82.1%和100.8%;甲壳素处理能增加幼苗根系保护酶活性,其中1.0 g/kg甲壳素处理SOD、POD和CAT活性最高,其次为0.5 g/kg,而2.5 g/kg甲壳素处理显著抑制了幼苗根系保护酶活性。1.0 g/kg甲壳素处理可提高土壤中细菌/真菌值,并且提高了土壤中蔗糖酶、脲酶、蛋白酶、磷酸酶、过氧化氢酶和多酚氧化酶活性,分别比对照提高了8.6%、40.5%、81.1%、15.3%、18.7%和49.8%,2.5 g/kg甲壳素处理则降低土壤酶活性或者使土壤酶活性与对照相当。根据T-RFLP的图谱中OUT的数量、种类及丰度,分别计算了不同处理土壤的真菌多样性,发现1.0 g/kg甲壳素处理的连作土具有最高的多样性、均匀度和丰富度指数,分别比对照增加了52.2%、8.0%和87.1%。主成分分析(PCA)结果显示,不同剂量甲壳素处理的连作土壤中真菌被PC2分成了两部分,其中0.5 g/kg和1.0 g/kg的甲壳素添加量分布在PC2的负方向上,而CK和2.5g/kg的甲壳素处理分布在PC2的正方向上,这说明添加不同量的甲壳素对连作土壤真菌群落多样性有显著影响,添加量太多或者太少均会造成土壤真菌多样性下降,只有适量的甲壳素可提高真菌群落结构多样性。实验结果表明1.0 g/kg的甲壳素可提高连作平邑甜茶幼苗生物量,改善连作土壤环境,有效缓解平邑甜茶的连作障碍。  相似文献   

11.
Xiang  Li  Wang  Mei  Huang  Junxia  Jiang  Weitao  Yan  Zhubing  Chen  Xuesen  Yin  Chengmiao  Mao  Zhiquan 《Plant Growth Regulation》2022,96(1):145-156
Plant Growth Regulation - Apple replant disease (ARD) is a common problem, which occurs in all major apple-growing regions worldwide. It hinders the growth of apple trees and reduces apple yield...  相似文献   

12.
Apple replant disease (ARD) is common to all major apple-growing regions in the world. It occurs when new apple trees are replanted on sites where previously the same or closely related crop species were grown. Biotic (fungi, bacteria and nematodes) and abiotic soil factors (poor soil structure, nutrition) contribute to the development and severity of ARD. However, the aetiology of ARD and effects on higher trophic levels are still unknown. In that sense, Collembola might play an important role, since they are one of the dominant mesofauna groups in many soils. They act as decomposer, fungivores and predators, representing different trophic levels in soil food webs. Therefore, any effect of ARD on the occurrence of Collembola could have ecological impacts on the soil quality and health. Here, we examined the colonization behaviour of two Collembolan species, Folsomia candida and Sinella curviseta, in choice tests and population growth tests using Apple Replant Diseased soil (ARD) and non-ARD soil samples from different field sites and standardized laboratory bioassays. Additionally, Collembola behaviour was quantified by continuous video observations to investigate short-term behavioural changes. Results showed that both Collembolan species significantly preferred colonization of the non-ARD soils compared with ARD soils, independent of the origin of the soil samples or specific disinfection treatments. Moreover, the detailed video analysis of the foraging behaviour indicates rapid colonization of soil samples and low dispersal rates. Most likely, volatile compounds and to a lesser extent feeding stimulants play a vital role for the colonization process for both Collembolan species. Finally, results showed negative effects of ARD on population growth of both Collembolan species already after an 8-week period, implying strong nutritional deficiencies in ARD affected soils. The hypothesis that ARD causing microorganisms directly affected orientation, colonization and population development of Collembola is discussed.  相似文献   

13.
Apple and cherry rootstocks were planted into land on which apple trees had previously been grown and which pot tests had shown to be subject to apple replant disease. Prior to planting the land was either left unfumigated or zones of progressively increasing area (0.052 m2, 0.839 m3, 3.356 m2) centred on the proposed planting holes were fumigated with chloropicrin. Fumigation greatly increased the growth of the apple rootstocks but not of the cherry rootstocks. In the first year after planting the effects of the two larger fumigated areas were identical but in later years apple rootstock growth was directly related to the size of the fumigated area. This indicated that the replant disease does not simply affect tree establishment as was previously thought to be the case. The implications of this are discussed.  相似文献   

14.
Investigations into peach seedling stunting caused by a replant soil   总被引:1,自引:0,他引:1  
Replant diseases often occur when pome and stone fruits are grown in soil that had previously been planted with the same or similar plant species. They typically lead to reductions in plant growth, crop yield and production duration. In this project, greenhouse assays were used to identify a peach orchard soil that caused replant disease symptoms. Biocidal treatments of this soil led to growth increases of Nemaguard peach seedlings. In addition, plants grown in as little as 1% of the replant soil exhibited reduced plant growth. These results suggest that the disease etiology has a biological component. Analysis of roots from plants exhibiting various levels of replant disease symptoms showed little difference in the amounts of PCR-amplified bacterial or fungal rRNA genes. However, analysis using a stramenopile-selective PCR assay showed that rRNA genes from this taxon were generally more abundant in plants with the smallest top weights. Nucleotide sequence analysis of these genes identified several phylotypes belonging to Bacillariophyta , Chrysophyceae , Eustigmatophyceae , Labyrinthulida , Oomycetes , Phaeophyceae and Synurophyceae . Sequence-selective quantitative PCR assays targeting four of the most abundant phylotypes showed that both diatoms ( Sellaphora spp.) and an oomycete ( Pythium ultimum ) were negatively associated with plant top weights.  相似文献   

15.
Apple replant disease (ARD) is a frequently occurring plant disease, which causes retarded growth and mortality of young apple trees in replanted orchards. The aetiology is not well understood, but soil‐borne micro‐organisms are often discussed as primary causal agents of the replant problem. A greenhouse study was conducted in Laimburg, Italy, with orchard soils from the region, with the aim of obtaining information about the influence of soil biotic and abiotic factors on the aetiology of the disease. Apple rootstocks (M9) were planted into soils cultivated with apple trees that were either fumigated with chloropicrin or not fumigated, as well as mixtures of fumigated and non‐fumigated soils. In addition, uncultivated soils (from the inter‐row, from a fallow plot and from a meadow) were taken as controls. Various parameters were measured after 62 days in a controlled pot assay. Soils fumigated with chloropicrin resulted in higher apple shoot growth and lower microbial biomass carbon than non‐fumigated soils. Uncultivated soils had generally the highest microbial biomass carbon and the highest ergosterol contents. No considerable differences between basal respiration, ergosterol content, pH, electrical conductivity, and most nutrient and metal contents were observed between fumigated and non‐fumigated soils. Denaturing gradient gel electrophoresis gels of DNA extracted from the soils revealed differences in the fungal, bacterial and actinobacterial communities of the different soils, indicating significant shifts in microbial community composition after chloropicrin treatment. This study indicates biotic factors in soil to be a causal agent of apple replant disease.  相似文献   

16.
Environments co-contaminated with metals and organic compounds are difficult to remediate. Actinobacteria is an important group of microorganisms found in soils, with high metabolic versatility and potential for bioremediation. In this paper, actinobacteria were used to remediate soil co-contaminated with Cr(VI) and lindane. Five actinobacteria, tolerant to Cr(VI) and lindane mixture were selected: Streptomyces spp. A5, A11, M7, and MC1, and Amycolatopsis tucumanensis DSM 45259. Sterilized soil samples were inoculated with actinobacteria strains, either individually or as a consortium, and contaminated with Cr(VI) and lindane, either immediately or after 7 days of growth, and incubated at 30 °C during 14 days. All actinobacteria were able to grow and remove both contaminants, the consortium formed by Streptomyces spp. A5, M7, MC1, and A. tucumanensis showed the highest Cr(VI) removal, while Streptomyces sp. M7 produced the maximum lindane removal. In non-sterile soil samples, Streptomyces sp. M7 and the consortium removed more than 40% of the lindane, while Streptomyces sp. M7 demonstrated the greatest Cr(VI) removal. The most appropriate strategy for bioremediation of Cr(VI) and lindane co-contaminated soils would be the inoculation with Streptomyces sp. M7.  相似文献   

17.
环渤海湾地区连作苹果园土壤中酚酸类物质变化   总被引:11,自引:1,他引:10  
分析了山东昌邑、栖霞、蓬莱,辽宁大连、抚宁、绥远,河北昌黎、青县等地苹果园连作土壤中酚酸物质的组成和含量,结果表明:连作障碍发生的苹果园土壤中酚酸类物质的组成和含量在不同地区、不同土层厚度间存在显著差异。苹果园土壤中酚酸类物质的含量从春季到秋季随时间的延长逐渐减少,但过程缓慢。且非连作园土壤中酚酸类物质含量显著少于连作土。连作土壤中酚酸物质的组成和含量在不同季节间差异显著,尤其春季土壤中酚酸物质的种类与夏季和秋季显著不同。这可能是因为植物在不同季节分泌的酚酸类物质种类和含量有差别.不同土层中酚酸物质的分布因季节不同而有显著差异。夏季土壤中酚酸物质主要分布在浅层土壤中,而秋季则主要分布在深层土壤中。这可能是由于浇水等果园管理措施和自然降水对土壤中的酚酸物质产生的淋溶作用,使得大量的酚酸物质向深层土壤运动,最终造成了秋季果园连作土中随土层加深而酚酸物质含量增加的现象。不同地区苹果园连作土中,对羟基苯甲酸、(+)-儿茶素、咖啡酸、阿魏酸含量与非连作土无显著差异,而焦性没食子酸、绿原酸和根皮苷显著高于非连作土。焦性没食子酸、绿原酸和根皮苷可能是引起山东、辽宁、河北地区苹果园连作障碍的关键酚酸物质。  相似文献   

18.
Phytotoxic micromycetes appear to be responsible for the apple replant disease (ARD). This was suppressed by the inoculation of apple-tree seedlings with some species of vesicular-arbuscular mycorrhizal (VAM) fungi—Glomus fasciculatum andG. macrocarpum. After the inoculation, growth of apple-tree seedlings improved in dependence on the type of soil, on VAM fungus species and on the ARD appearance. After 12-month cultivation, plant biomass (height, shoot and root dry masses) was markedly increased by inoculation withG. fasciculatum. Similarly, the numbers of colony forming units per unit soil (CFU) of phytotoxic micromycetes and of diazotroph bacteria (associative dinitrogen-fixing bacteria) in the rhizosphere was affected; CFU of phytotoxic micromycetes decreased, whereas CFU of the genusAzospirillum was higher. These bacteria could also serve as antagonists against phytotoxic micromycetes. It is also suggested that the ratio of CFU of diazotroph bacteria to CFU of phytotoxic micromycetes can be used as an indicator of the degree of ARD. It may be assumed that the use of some VAM fungi can replace the chemcial treatment of the soil with ARD.  相似文献   

19.
Effect of rootstock on apple (Malus domestica) tree water relations   总被引:1,自引:0,他引:1  
The effects of rootstock on mid-season water relations, under orchard conditions of non-limiting soil moisture, were determined for bearing 'Empire' apple trees ( Malus domestica Borkh.) on the clonal rootstocks M9, M26, M7, MM106, and MM104 (most to least dwarfing) in their sixth and seventh growing seasons. Stem water potentials (ψstem) of trees on M9 and M26 were more negative at midday, under warm, sunny conditions, than were the trees on the other three rootstocks. However, change in ψstem per change in stem distance through the canopy (water potential gradient) did not vary among rootstocks at midday. There was no rootstock effect on diurnal variation in transpiration or stomatal conductance. Differences in water storage capacitance, relative to tree size, were determined in a separate study but did not account for the differences observed in ψstem. Calculated hydraulic conductivities of xylem water transport suggest that rootstocks differ in their ability to conduct water to the scion, but hydraulic conductivity of the scion was not affected by rootstock. Root-stock differences in hydraulic conductivity were not accounted for by differences in tree size.  相似文献   

20.
【背景】草莓是我国和世界上重要的园艺作物,主要采用一年一栽的栽培模式,导致连作现象普遍存在,其中真菌性病害引起的土传病害是草莓栽培中面临的一个主要问题。【目的】以草莓连作土壤为材料,探讨土壤熏蒸剂棉隆加生物菌肥对草莓连作土壤微生物真菌多样性的影响,以期为草莓连作障碍治理提供理论依据。【方法】分别采集棉隆消毒前(A)、棉隆消毒后(B)、棉隆消毒后未添加生物菌肥(C1)和添加生物菌肥(C2)初花期的草莓连作土壤(或根际土壤)样本,提取DNA,通过PCR扩增建立文库,利用Hi Seq 2500平台Illumina第二代高通量测序技术并结合相关生物信息学,分析土壤真菌ITS1区域的丰富度、多样性以及群落结构。【结果】从4个不同处理草莓连作土壤样本中获得了723个真菌OTU(Operational taxonomic unit),其中子囊菌门和担子菌门均为优势真菌。多样性和丰富度研究发现,棉隆处理降低草莓连作土壤微生物丰富度和多样性;添加生物菌肥增加根际土壤生物丰富度,并降低其多样性。从门水平看,棉隆处理担子菌门真菌比例减少,子囊菌门真菌比例增加;添加生物菌肥处理两者比例均有增加。优势真菌群落分析表明棉隆消毒减少了枝顶孢属、曲霉属、管柄囊霉属、镰刀菌属、踝节菌属、链格孢属等真菌比例,增加了马拉色氏霉菌属、线孢虫草菌属、侧耳属等真菌比例;添加生物菌肥减少了管柄囊霉属、镰刀菌属、被孢菌属、轮枝菌属、隔指孢属等真菌比例,增加了曲霉属、青霉菌属、踝节菌属、简单壳菌属等真菌比例。【结论】采用棉隆消毒和生物菌肥处理草莓连作土壤可降低微生物真菌群落的多样性,并减少或灭杀土壤中的大部分致病菌属,增加有益菌属,起到有效防治草莓土传病害的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号