首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of tree row species on the distribution of soil inorganic N and the biomass growth and N uptake of trees and crops was investigated beneath a Grevillea robustaA. Cunn. ex R. Br. (grevillea) tree row and Senna spectabilisDC. (senna) hedgerow grown with Zea mays L. (maize) and a sole maize crop, during one cropping season. The hypothesis was that a tree with a large nutrient uptake would have a greater competitive effect upon coexisting plants than a tree that takes up less and internally cycles nutrients. The field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya. Soil nitrate and ammonium were measured to 300 cm depth and 525 cm distance from the tree rows, before and after maize cropping. Ammonium concentrations were small and did not change significantly during the cropping season. There was > 8 mg nitrate kg–1 in the upper 60 cm and at 90–180 cm depth at the start of the season, except within 300 cm of the senna hedgerow where concentrations were smaller. During the season, nitrate in the grevillea-maize system only decreased in the upper 60 cm, whereas nitrate decreased at almost every depth and distance from the senna hedgerow. Inorganic N (nitrate plus ammonium) decreased by 94 kg ha–1 in the senna-maize system and 33 kg ha–1 in the grevillea-maize system.The aboveground N content of the trees increased by 23 kg ha–1 for grevillea and 39 kg ha–1 for senna. Nitrogen uptake by maize was 85 kg ha–1 when grown with grevillea and 65 kg ha–1 with senna. Assuming a mineralisation input of 50 kg N ha–1season–1, the decrease in inorganic soil N approximately equalled plant N uptake in the grevillea-maize system, but exceeded that in the senna-maize system. Pruning and litter fall removed about 14 kg N ha–1 a–1 from grevillea, and > 75 kg N ha–1 a–1 from senna. The removal of pruned material from an agroforestry system may lead to nutrient mining and a decline in productivity.  相似文献   

2.
Livesley  S.J.  Gregory  P.J.  Buresh  R.J. 《Plant and Soil》2000,227(1-2):149-161
Complementarity in the distribution of tree and crop root systems is important to minimise competition for resources whilst maximising resource use in agroforestry systems. A field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya to compare the distribution and dynamics of root length and biomass of a 3-year-old Grevillea robusta A. Cunn. ex R. Br. (grevillea) tree row and a 3-year-old Senna spectabilis DC. (senna) hedgerow grown with Zea mays L. (maize). Tree roots were sampled to a 300 cm depth and 525 cm distance from the tree rows, both before and after maize cropping. Maize roots were sampled at two distances from the tree rows (75–150 cm and 450–525 cm) to a maximum depth of 180 cm, at three developmental stages. The mean root length density (Lrv) of the trees in the upper 15 cm was 0.55 cm cm−3 for grevillea and 1.44 cm cm−3 for senna, at the start of the cropping season. The Lrv of senna decreased at every depth during the cropping season, whereas the Lrv of grevillea only decreased in the crop rooting zone. The fine root length of the trees decreased by about 35% for grevillea and 65% for senna, because of maize competition, manual weeding, seasonal senescence or pruning regime (senna). At anthesis, the Lrv of maize in the upper 15 cm was between 0.8 and 1.5 cm cm−3. Maize root length decreased with greater proximity to the tree rows, potentially reducing its ability to compete for soil resources. However, the specific root length (m g−1) of maize was about twice that of the trees, so may have had a competitive uptake advantage even when tree root length was greater. Differences in maize fine root length and biomass suggest that competition for soil resources and hence fine root length may have been more important for maize grown with senna than grevillea. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Smith  D.M.  Jackson  N.A.  Roberts  J.M.  Ong  C.K. 《Plant and Soil》1999,211(2):191-205
Limited knowledge of root distributions in agroforestry systems has resulted in assumptions that various tree species are more suited to agroforestry than others, because they are presumed to have few superficial lateral roots. This assumption was tested for Grevillea robusta when grown with maize (Zea mays) in an agroforestry system in a semi-arid region of Kenya. At a site with a shallow soil, root lengths of both species between the soil surface and bedrock were quantified by soil coring, at intervals over four cropping seasons, in plots containing sole stands and mixtures of the trees and crop; the trees were 4–6 years old and they were severely pruned before the third season. Profiles of soil water content were measured using a neutron probe. Prior to pruning of the trees, recharge of soil water below the deepest maize roots did not occur, resulting in significant (P<0.05) suppression of maize root lengths and downward root growth. Maximum root length densities for both species occurred at the top of the soil profile, reaching 1.1–1.7 cm cm-3 for G. robusta, but only 0.5 cm cm-3 for maize grown with trees. Root populations in mixed plots were dominated by G. robusta at all times, all depths and all distances from trees and maize and, thus, there was no spatial separation of the rooting zones of the trees and crop. Competition between G. robusta and maize for soil water stored near the surface was unavoidable, although pruning reduced its impact; complementary use of water by the trees and crop would only have been possible if alternative sources of water were available. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.

Aim

We studied the vertical and lateral root distribution of tree species from three genera (Populus spp. - poplar, Picea spp. - spruce, Salix spp. - willow) that were planted in temperate windbreaks and assessed the effects of soil texture on root density.

Methods

Root distribution to depths of up to 1 m was assessed using the trench-profile method at different distances from the tree rows (2, 6 and 9 m) in 18 mature (average age, 25 years-old) windbreak-sites that were located on light- or heavy-textured agricultural soils in southeastern Québec, Canada. Roots were classified into three diameter classes: fine (<1 mm), medium-size (1–5 mm), and coarse (>5 mm).

Results

Tree fine-root density in poplar and willow windbreaks was higher than in spruce windbreaks at 2 m from the tree row. Root densities were higher in light compared to heavy soils, but these differences were specific to poplar and spruce. Across species groups and soil types, 67 % of the roots occurred in the uppermost 30 cm. In this soil zone, different soil fertility variables (pH, clay content, CEC) were negatively correlated with root density. Densities of spruce and willow roots at 6 m from the tree row were much lower (and often unobserved) than that of poplar. At 9 m, low root densities were observed at only two sites.

Conclusions

We conclude that tree identity and soil type are important drivers of root distribution in temperate agroforestry systems. These results may have important implications for the management of tree competition in agroforestry systems and several ecosystem services that are provided by roots, including C-sequestration, erosion control and water infiltration.  相似文献   

5.
The impact of soil available water content (AWC) on the growth and foliar nutrient concentrations of trees in 7-yr-old hybrid aspen (Populus tremula L. x P. tremuloides Michx.) plantations established on abandoned agricultural lands was studied. AWC in the topmost 75 cm soil layer was significantly related to height growth and foliar N concentration of hybrid aspens. The correlations were stronger on well-drained automorphic soils and in the case of a dry growing season with insufficient precipitation. AWC over 150–160 mm can be considered sufficient, and below 120 mm insufficient for fast growth of hybrid aspen. The differences in AWC were less pronounced in the top 25 cm soil layer but were more noticeable in the 25–50 and 50–75 cm soil layers. AWC estimated as a function of soil specific surface area and bulk density was shown here to be a significant indicator for site selection for establishing hybrid aspen plantations. Foliar N concentration over 2.7% can be considered optimal and below 2.4%, insufficient for hybrid aspen on the studied soils. Foliar concentrations of P (on average 0.24%) and K (on average 0.79%) varied little and, thus, did not correlate with tree growth. The most suitable previous agricultural soils for afforestation with hybrid aspen would be moderately drained Albeluvisols, Luvisols and Planosols.  相似文献   

6.
玉米/大豆间作条件下的作物根系生长及水分吸收   总被引:11,自引:0,他引:11  
通过田间试验研究了玉米/大豆条带间作群体的根系分布及土壤水分吸收规律.结果表明:水分充足条件下,土壤剖面内玉米和大豆根系的分布模式近似于三角形;玉米根系水平分布范围较大,侧向伸展长度约为58 cm,16~22 cm土层的玉米根系侧向伸展最远,玉米根系不仅分布于间作条带行间,而且生长到大豆条带的行间;大豆根系水平分布于相对有限的区域内,侧向伸展长度约为26 cm.作物根质量密度随着距作物行(玉米或大豆)距离的增加而减少,玉米行和边行大豆根质量密度的90%分布于0~30 cm土层.距玉米行10 cm处玉米的根质量密度高于大豆,距玉米行20 cm处大豆的根质量密度大于玉米,两种作物根质量密度的85%都分布于0~30 cm土层内.间作条带内水分变化主要集中在0~30 cm土层,水分变化量依次为:玉米区域>大豆区域>条带行间.表明在水分充足条件下,间作作物优先在自己的区域吸水,根系混合区吸水滞后发生.  相似文献   

7.
以国土部土地利用山东无棣科学观测野外基地白蜡-香花槐混交林×紫花苜蓿林草复合系统为对象,研究了0~40 cm土层土壤的水盐分布特征,并通过游动分割窗技术分析了系统内水盐边界效应.结果表明:白蜡-香花槐混交林×紫花苜蓿林草复合系统内土壤水盐含量在水平方向上分布不均衡,越靠近表层,水平方向土壤含水量变异程度越大,而土壤含盐量变异程度越小.以混交林带为分界线,其两侧土壤水盐含量均有相同变化规律:随离林带距离的推近,在0~10 cm土层,含水量先降低再升高,含盐量平缓波动;在10~ 20 cm土层,含水量下降-平缓-下降,含盐量先上升后下降;在20~40 cm土层,含水量平缓波动,含盐量持续升高.林草复合系统内土壤水盐含量均随土层深度的增加而显著升高.林草复合系统土壤中除HCO3^-、K^+外,其余各离子含量与总盐含量呈相同变化规律,相关性大小为Na^+>Cl^->SO4^2->Mg2+>Ca^2+.游动分割窗技术表明,南北走向林草复合系统中,土壤水分的主要竞争区域为林带东侧2.5至林带西侧2m区域;土壤盐分在距林带1.0 m范围内受林带主导影响,距林带1.0~3.0 m范围内受林带及紫花苜蓿的共同影响.  相似文献   

8.
Odhiambo  H.O.  Ong  C.K.  Deans  J.D.  Wilson  J.  Khan  A.A.H.  Sprent  J.I. 《Plant and Soil》2001,235(2):221-233
Variations in soil water, crop yield and fine roots of 3–4 year-old Grevillea robusta Cunn. and Gliricidia sepium (Jacq.) Walp. growing in association with maize (Zea mays L.) were examined in semiarid Kenya during the long rains of 1996 and 1997. Even although tree roots penetrated more deeply than maize roots, maximum root length densities for both tree species and maize occurred in the top 200 mm of the soil profile where soil moisture was frequently recharged by rains. Populations of roots in plots containing trees were dominated by tree roots at the beginning of the growing season but because tree roots died and maize root length increased during the cropping season, amounts of tree and maize roots were similar at the end of the season. Thus, there was evidence of temporal separation of root activity between species, but there was no spatial separation of the rooting zones of the trees and crops within that part of the soil profile occupied by crop roots. Tree root length density declined with increasing distances from rows of trees and with depth in the soil profile. Although Grevillea trees were largest, plots containing G. sepium trees always contained more tree roots than plots containing G. robusta trees and Gliricidia was more competitive with maize than Grevillea. Overall, Gliricidia reduced crop yield by about 50% and Grevillea by about 40% relative to crop yield in control plots lacking trees and reductions of crop yield were greatest close to trees. There was less soil moisture in plots containing trees than in control plots. Such difference between control plots and plots containing trees were maximal at the end of the dry season and there was always less soil moisture close to trees than elsewhere in the plots. Plots containing Gliricidia trees contained less soil water than plots containing Grevillea trees.  相似文献   

9.
Soil organic carbon (soil C) sequestration in forests is often higher under nitrogen (N2)-fixing than under non-N2-fixing tree species. Here, we examined whether soil C could be increased using mixed-species plantations compared to monocultures, which are less productive aboveground than mixtures. In addition, we compared soil C sequestration under N2-fixing trees with non-N2-fixing trees that received N fertilizer. Monocultures of Eucalyptus globulus (E) and the N2-fixing Acacia mearnsii (A) and mixtures of these species were planted in a replacement series: 100%E, 75%E + 25%A, 50%E + 50%A, 25%E + 75%A and 100%A. Soil samples were also collected from fertilized monoculture treatments (100%EFer) of E. globulus (250 kg N ha?1). Total organic C, N and phosphorus were determined at age 8 years at two soil depths (0–10 cm and 10–30 cm) and three density fractions of soil organic matter (SOM) were quantified for 0–5 cm depth. Soil C was highest in the 50%E + 50%A mixed stand and was highly correlated with aboveground biomass, not to the percentage of A. mearnsii in mixtures. This was largely due to soil C at 10–30 cm because there were no treatment effects on soil C at 0–10 cm. All density fractions of SOM at 0–5 cm increased with the percentage of A. mearnsii. In E. globulus monocultures, N fertilization did not increase soil C when compared with unfertilized stands. These results indicate that the inclusion of N2-fixing trees into eucalypt plantations may increase soil C stocks through increased productivity.  相似文献   

10.
Authors index   总被引:1,自引:0,他引:1  
Lehmann  Johannes  Weigl  Doris  Peter  Inka  Droppelmann  Klaus  Gebauer  Gerhard  Goldbach  Heiner  Zech  Wolfgang 《Plant and Soil》1999,210(2):249-262
In a runoff irrigation system in Northern Kenya, we studied the nutrient interactions of sole cropped and alley cropped Sorghum bicolor (L.) Moench and Acacia saligna (Labill.) H.L. Wendl. The trees were pruned once before the cropping season and the biomass was used as fodder for animals. The nutrient contents in leaf tissue, soil and soil solution were monitored and the uptake of applied tracers (15N, Sr) was followed. The grain yield of alley cropped sorghum was similar to or slightly higher than in monoculture and did not decrease near the tree-crop interface. Foliar N and Ca contents of the crop were higher in the agroforestry combination than in monoculture, corresponding to higher soil N and Ca contents. Soil solution and soil mineral N dynamics indicate an increase of N under the tree row and unused soil N at the topsoil in the alley of the sole cropped trees as well as below 60 cm depth in the crop monoculture. The N use efficiency of the tree+crop combination was higher than the sole cropped trees or crops. Competition was observed for Zn and Mn of both tree and crop whereas for Ca only the tree contents decreased. P, K, Mg and Fe dynamics were not affected by alley cropping at our site. The lower uptake of applied Sr by trees in alley cropping compared to those of the monoculture stand suggested a lower competitiveness of the acacia than sorghum, which did not show lower Sr contents when intercropped. The study showed the usefulness of combining soil and plant analyses together with tracer techniques identifying nutrient competition, nutrient transfer processes and the complementary use of soil nutrients, as the main features of the tree-crop combination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Root morphology of 5-year-old trees of Dacryodes edulis (G. Don) H. J. Lam of seed and two vegetative (cutting and marcot) origins were assessed in Cameroon. Roots of D. edulis trees of seed and vegetative origins were totally excavated and their root morphology described and quantified. Trees of seed origin were characterized by a tap root, reaching depths of about 1.2 m. Contrarily trees of cutting origin showed three strong vertical roots (d > 5 mm) with the longest reaching depths of 1.31 m. Trees of marcot origin were observed to have thick, relatively short prominent vertical roots, reaching depths of 1.15 m. At fixed lateral intra-row distances of 50 cm from tree bases, trees of seed and marcot origins recorded high root densities at soil depths of 0–20 cm; both differed significantly (p = 0.032) from those of trees of cutting origin. At soil depth of 60–100 cm, trees of cutting origin recorded the highest root density which however differ significantly (p = 0.016) from those of trees of both seed and marcot origins. D. edulis trees of seed origin had a tap root system, whereas trees of vegetative origin (cuttings and marcots) had developed prominent main adventitious roots growing vertically (sinker roots), into greater depths and a wider/deeper lateral root spread than seedlings. This could be a vital adaptation to the absence of a genetically determined tap roots in trees of vegetative origins so as not to compromise the acquisition of soil-based resources (water and dissolved ions) and anchorage.  相似文献   

12.
Soil labile fractions play an important role in improving soil quality due to its ability of maintaining soil fertility and minimizing negative environmental impacts. The objective of this study was to evaluate the effects of forest transition (conversion of natural broadleaf forests into monoculture tree plantations) on soil labile fractions (light fraction organic carbon, particulate organic carbon, and microbial biomass carbon). Soil samples were collected from a natural forest of Castanopsis kawakamii Hayata (NF) and two adjacent 36-year-old monoculture plantations of C. kawakamii (CK) and Cunninghamia lanceolata Lamb. (Chinese fir) (CF) at Xinkou Experimental Forestry Centre, southeastern China. In the 0–100 cm depth, the light fraction organic carbon (LFOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) were significantly lower in the CK and CF than in the NF (P?<?0.05). Generally, LFOC, POC and MBC contents declined consistently with profile depth. Significant differences in LFOC, POC and MBC concentrations between the native forest and two plantations were detected at 0–40 cm depth, especially the top 10 cm, whereas there was less change below 40 cm, indicating that labile fraction losses due to forest transition mainly occurred in the surface soils. The three indices of labile organic carbon were closely correlated, suggesting they are interrelated properties. Labile fractions (LFOC, POC and MBC) were more sensitive indicators of SOC change resulting from the forest transition. We also found that forest types significantly affected the water stable aggregate >0.25 mm content (WSA) at the 0–10 cm depth. It suggested that converting old-growth native forest to intensively-managed plantations would reduce labile organic C, which may be attributed to a combination of factors including quantity of litter materials, microbial activity and management disturbances, which would change greatly with the forest conversion. How long these changes would persist needs the further study.  相似文献   

13.
Factors governing the dynamics between woody and herbaceous vegetation in the savanna are of ecological interest since they determine ecosystem productivity and stability. Field measurements were conducted in a humid savanna in the Lambwe valley, western Kenya, to compare CO2 exchange of the herbaceous vegetation and trees and its regulation. Soil characteristics and root distribution patterns under tree canopies and in the open locations dominated by the herbaceous vegetation were profiled in 1-m-deep soil layers. Soil water content (SWC) was measured at 30 cm depth both in the herbaceous vegetation and also under the tree canopies. The mean maximum monthly gross primary production (GPPmax) in the herbaceous vegetation was determined from chamber measurements, while daily GPP (GPPday) in both the grass and tree canopies was simulated using the PIXGRO model. The highest mean GPPmax in the herbaceous vegetation was 26.2 ± 3.7 μmol m-2 s-1 during April. Seasonal fluctuations of GPP in the herbaceous vegetation were explained by soil water availability (R 2 = 0.78) within the upper 30-cm soil profile. Seasonal GPPday fluctuations were larger (between 1 gC m-2 d-1 and 10 gC m-2 d-1) in the herbaceous vegetation compared to the trees, which fluctuated around 4.3 ± 0.3 gC m-2 d-1 throughout most of the measurement period. Daily tree canopy transpiration (Ec), canopy conductance (Gc), and GPPday were decoupled from SWC in the top 30-cm soil profile. On average, ecosystem GPPday (mean of tree and herbaceous vegetation) was 14.3 ± 1.2 gC m-2 d-1 during the wet period and 6.1 ± 0.9 gC m-2 d-1 during drought. Differences between the herbaceous and tree canopy responses were attributed to soil moisture availability.  相似文献   

14.
Understanding the fates of soil hydrological processes and nitrogen (N) is essential for optimizing the water and N in a dryland crop system with the goal of obtaining a maximum yield. Few investigations have addressed the dynamics of dryland N and its association with the soil hydrological process in a freeze-thawing agricultural area. With the daily monitoring of soil water content and acquisition rates at 15, 30, 60 and 90 cm depths, the soil hydrological process with the influence of rainfall was identified. The temporal-vertical soil water storage analysis indicated the local albic soil texture provided a stable soil water condition for maize growth with the rainfall as the only water source. Soil storage water averages at 0–20, 20–40 and 40–60 cm were observed to be 490.2, 593.8, and 358 m3 ha−1, respectively, during the growing season. The evapo-transpiration (ET), rainfall, and water loss analysis demonstrated that these factors increased in same temporal pattern and provided necessary water conditions for maize growth in a short period. The dry weight and N concentration of maize organs (root, leaf, stem, tassel, and grain) demonstrated the N accumulation increased to a peak in the maturity period and that grain had the most N. The maximum N accumulative rate reached about 500 mg m−2d−1 in leaves and grain. Over the entire growing season, the soil nitrate N decreased by amounts ranging from 48.9 kg N ha−1 to 65.3 kg N ha−1 over the 90 cm profile and the loss of ammonia-N ranged from 9.79 to 12.69 kg N ha−1. With soil water loss and N balance calculation, the N usage efficiency (NUE) over the 0–90 cm soil profile was 43%. The soil hydrological process due to special soil texture and the temporal features of rainfall determined the maize growth in the freeze-thawing agricultural area.  相似文献   

15.

Background and aims

Plant phenology is a sensitive indicator of plant response to climate change. Observations of phenological events belowground for most ecosystems are difficult to obtain and very little is known about the relationship between tree shoot and root phenology. We examined the influence of environmental factors on fine root production and mortality in relation with shoot phenology in hybrid walnut trees (Juglans sp.) growing in three different climates (oceanic, continental and Mediterranean) along a latitudinal gradient in France.

Methods

Eight rhizotrons were installed at each site for 21 months to monitor tree root dynamics. Root elongation rate (RER), root initiation quantity (RIQ) and root mortality quantity (RMQ) were recorded frequently using a scanner and time-lapse camera. Leaf phenology and stem radial growth were also measured. Fine roots were classified by topological order and 0–1 mm, 1–2 mm and 2–5 mm diameter classes and fine root longevity and risk of mortality were calculated during different periods over the year.

Results

Root growth was not synchronous with leaf phenology in any climate or either year, but was synchronous with stem growth during the late growing season. A distinct bimodal pattern of root growth was observed during the aerial growing season. Mean RER was driven by soil temperature measured in the month preceding root growth in the oceanic climate site only. However, mean RER was significantly correlated with mean soil water potential measured in the month preceding root growth at both Mediterranean (positive relationship) and oceanic (negative relationship) sites. Mean RIQ was significantly higher at both continental and Mediterranean sites compared to the oceanic site. Soil temperature was a driver of mean RIQ during the late growing season at continental and Mediterranean sites only. Mean RMQ increased significantly with decreasing soil water potential during the late aerial growing season at the continental site only. Mean root longevity at the continental site was significantly greater than for roots at the oceanic and Mediterranean sites. Roots in the 0–1 mm and 1–2 mm diameter classes lived for significantly shorter periods compared to those in the 2–5 mm diameter class. First order roots (i.e. the primary or parents roots) lived longer than lateral branch roots at the Mediterranean site only and first order roots in the 0–1 mm diameter class had 44.5% less risk of mortality than that of lateral roots for the same class of diameter.

Conclusions

We conclude that factors driving root RER were not the same between climates. Soil temperature was the best predictor of root initiation at continental and Mediterranean sites only, but drivers of root mortality remained largely undetermined.
  相似文献   

16.
Crop yield and water use efficiency (WUE) in a wheat-maize double cropping system are influenced by short and uneven rainfalls in the North China Plain (NCP), A 2-year experiment was conducted to investigate the effects of irrigation on soil water balance, crop yield and WUE to improve irrigation use efficiency in the cropping system, Soil water depletion (~SWS) by crop generally decreased with the increase of irrigation and rainfall, while ASWS for the whole rotation was relatively stable among these irrigation treatments, High irrigations in wheat season increased initial soil moisture and ASWS for subsequent maize especially in the drought season, Initial soil water influenced mainly by the irrigation and rainfall in the previous crop season, is essential to high yield in such cropping systems, Grain yield decreased prior to evapotranspiraUon (ET) when ET reached about 300mm for wheat, while maize showed various WUEs with similar seasonal ET, For whole rotation, WUE declined when ET exceeded about 650 mm, These results indicate great potential for improving irrigation use efficiency in such wheat-maize cropping system in the NCP, Based on the present results, reasonable irrigation schedules according to different annual rainfall conditions are presented for such a cropping system.  相似文献   

17.
Spatial soil-K availability for no-till soybean [Glycine max (L.) Merr.] has not been studied extensively. We characterize soybean growth- and yield-component and quantify root parameters as a function of soil depth in K-stratified soils with 1 M ammonium acetate extractable-K ranges 60–290 at 0–10 cm increment and 50–90 mg kg?1 at the 10–20 cm increment. Shoots and roots (five depth increments to 50 cm) were collected during development and grain at harvest during 2 years. Soil K at or above the critical level (104 mg K kg?1) increased early-season leaf area and root K-uptake rates early and late in reproductive development. Greater number of seeds plant?1 increased yield for soils with K near the critical level. Soil-K above the critical level increased luxury K-uptake without improving yield, seed-K concentration and accumulation, or seed oil and protein concentration. Greater root length density (>41% of the total) in surface soil coupled with previous results showing greater water content throughout the season in surface soil compared to deeper layers illustrates K stratification caused by no-till may enhance soybean K-uptake.  相似文献   

18.
Liedgens  Markus  Soldati  Alberto  Stamp  Peter 《Plant and Soil》2004,262(1-2):191-203
It has been demonstrated that the use of living mulches solves some of the environmental problems associated with the conventional cropping of maize (Zea mays L.). However, plant growth and yield are often reduced in such a cropping system. Since shoot competition between the main crop and the cover crop can be avoided by regular cutting of the cover crop, it was hypothesized that decreases in maize growth and yield in a living Italian ryegrass (Lolium multiflorum Lam.) mulch must be related to below ground interactions between the two species and that these may be traced back to the characteristics of their root systems. Two cropping systems, maize grown alone in bare soil (conventional cropping, BS) or together with a living Italian ryegrass mulch (LM), were studied in lysimeters (1.0 m2 surface area and 1.1 m depth) placed outdoors, near Zurich Switzerland, for a duration of three years. In the LM treatment a strip, 0.3 m wide, in the center of the plot around the maize row was free of grass. For comparison, an Italian ryegrass (RG) treatment, managed as the LM treatment but without maize plants, was also included in the study. Minirhizotrons (54 mm inner diameter) were horizontally installed at ten soil depths between 0.0 and 1.0 m, perpendicular to the orientation of the maize rows. The development of the maize shoot and the rooting patterns were observed non-destructively. LM strongly modified the maize crop by decreasing growth and duration of the leaf area, and thus biomass and grain yield at harvest by as much as 78 and 72%, respectively. Maximum root densities in the three treatments were observed around the time of maize anthesis. However, BS maize was unable to build up root densities similar to those observed in Italian ryegrass plots at the time of maize sowing. The root densities of the LM and the RG treatments were usually similar. The inability of the maize plants to establish a competitive root system in the LM limits the supply of nutrients and water and therefore reduces growth and yield. Improving the productivity of maize in living mulches will depend on the ability to achieve a better separation of the rooting volumes of the two species, so that specific steps to facilitate the main crop and control the living mulch can be taken.  相似文献   

19.
间作经济作物对黄土丘陵区旱作红枣土壤水分的调控效应   总被引:1,自引:0,他引:1  
研究行间种植经济作物饲料油菜和黄花菜对黄土丘陵区旱作红枣林地土壤水分的调控效应.结果表明: 饲料油菜和黄花菜处理0~180 cm土层土壤含水量较无作物对照分别提高6.2%和10.1%;枣树生育期内土壤水分变化主要集中在0~60 cm土层,饲料油菜和黄花菜处理均明显增加了0~60 cm土层土壤含水量,保证枣树生育期内正常生长;持续干旱条件下,各处理土壤水分消耗主要在0~60 cm土层,其中0~20 cm土层土壤含水量与次降雨后干旱天数存在显著指数负相关,雨后18 d干旱期饲料油菜和黄花菜处理0~60 cm土层土壤水分含量均高于对照.该间作系统显著改善了红枣林土壤水分环境,是黄土丘陵区克服季节性干旱的有效措施.  相似文献   

20.
Shallow tube well (STW) water, often contaminated with arsenic (As), is used extensively in Bangladesh for irrigating rice fields in the dry season, leading to potential As accumulation in soils. In the current study the consequences of arsenic from irrigation water and direct surface (0–15 cm) soil application were studied under field conditions with wetland rice culture over 2 years. Twenty PVC cylinders (30-cm length and 30-cm diameter) were installed in field plots to evaluate the mobility and vertical distribution of soil As, As mass balance, and the resulting influences on rice yield and plant-As concentration in Boro (dry season) and transplanted (T.) Aman (wet season) rice over the 2-year growth cycle. Treatments included irrigation-water As concentrations of 0, 1 and 2 mg L?1 (Boro season only) and soil-As concentrations of 10 and 20 mg kg?1. Following the 2-year cropping sequence the major portion (39.3–47.6%) of the applied arsenic was retained within the rooting zone at 0–15 cm depth, with 14.7–19.5% of the total applied As at the 5–10 cm and 10–15 cm soil depths compared to 1.3–3.6% at the 35–40 cm soil depth. These results indicate the relatively low mobility of applied As and the likely continued detrimental accumulation of As within the rooting zone. Arsenic addition in either irrigation water or as soil-applied As resulted in yield reductions from 21 to 74 % in Boro rice and 8 to 80 % in T. Aman rice, the latter indicating the strong residual effect of As on subsequent crops. The As concentrations in rice grain (0.22 to 0.81 µg g?1), straw (2.64 to 12.52 µg g?1) and husk (1.20 to 2.48 µg g?1) increased with increasing addition of As. These results indicate the detrimental impacts of continued long-term irrigation with As-contaminated water on agricultural sustainability, food security and food quality in Bangladesh. A critical need exists for the development of crop and water management strategies to minimize potential As hazard in wetland rice production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号