首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relaxin gene family is a group of genes involved in different physiological roles, most of them related to reproduction. In vertebrates the genes in this family are located in three separate chromosomal locations, and have been called relaxin family locus (RFL) A, B, and C. Among mammals the RFLA and RFLC are the most conserved as no gene copy-number variation has been observed thus far. The RFLB locus is also conserved on most mammals other than primates, where there are several gene gains and losses. Interestingly, the relaxin gene found on the RFLB locus in the European rabbit has acquired a novel role. In addition to the classical reproductive roles, this gene is expressed in tracheobronchial epithelial cells and its expression has been linked to squamous differentiation. We reconstructed the evolutionary history of the European rabbit RFLB locus using the tools of comparative genomics and molecular evolution. We found that the European rabbit possess a RFLB locus which is unique among mammals in that there are five tandemly arranged relaxin gene copies, which contrast with the single relaxin copy gene found in most mammals. In addition we also found that the ancestral pre-duplication gene was subject to the action of positive selection, and several amino acid sites were identified under the action of natural selection including the sites B12 and B13 which are part of the receptor recognition and binding site.  相似文献   

2.
两种淡水鱼类的Sox基因   总被引:7,自引:2,他引:7  
THESOXGENESINTWOSPECIESOFFRESHWATERFISHES两种淡水鱼类的Sox基因KeywordsSex,Intron,Freshwaterfish关键词性别内含子淡水鱼类TheSryisthesexdetermini...  相似文献   

3.
韩利红  刘潮  赵明玉  胡丽娟  胡玉霜 《广西植物》2021,41(12):1955-1963
磷转运蛋白1(phosphate transporter protein 1, PHT1)家族在植物对磷的吸收及再利用过程中发挥重要作用。该研究对菠萝PHT1基因(AcoPHT1)进行全基因组鉴定,并对基因结构、编码蛋白保守功能域和基因表达进行了分析。结果表明:(1)共鉴定到9个AcoPHT1基因,位于基因组7个连锁群上,所有基因均含有1~3个内含子,内含子相位类型多样。(2)除AcoPHT1.8外,AcoPHT1蛋白均为碱性蛋白,所有蛋白属于亲水性蛋白,且含有10~13个跨膜功能域,均具有保守的PHT1蛋白标签序列GGDYPLSATIxSE,主要定位于叶绿体和细胞质中。(3)AcoPHT1蛋白聚类在单子叶植物组和单双子叶植物混合组中,相对于拟南芥,水稻PHT1与菠萝PHT1相似度更高。(4)AcoPHT1基因启动子区含有P1BS、W-box等与磷吸收和响应胁迫有关的多个顺式作用元件。(5)靶基因预测分析显示,基因AcoPHT1.2、AcoPHT1.8和AcoPHT1.9受多个miRNA调控。(6)AcoPHT1基因表达存在组织特异性和功能冗余性,不同PHT1基因可能在菠萝不同组织或发育阶段发挥作用。该研究结果为菠萝PHT1家族基因的功能鉴定和育种应用奠定理论基础。  相似文献   

4.
Enzymes that modify cell wall components most likely play critical roles in altering size, shape, and physical properties of plant cells. Regulation of such modifying activity is expected to be important during morphogenesis and in eliciting developmental and physiological alterations that arise in response to environmental conditions. Previous work has shown that the Arabidopsis TCH4 gene encodes a xyloglucan endotransglycosylase (XET) which acts on the major hemicellulose of the plant cell wall. The expression of TCH4 is dramatically upregulated in response to several environmental stimuli (including touch, wind, darkness, heat shock, and cold shock) as well as the growth-enhancing hormones, auxin and brassinosteroids. This paper reports the presence of an extensive X ET ,related (XTR) gene family in Arabidopsis. In addition to TCH4, this family includes two previously identified genes, EXT and Meri-5, and at least five additional genes. The cDNAs of the XTR family share between 46 and 79% sequence identity and the predicted XTR proteins share from 37 to 84% identity. All eight proteins include potential N-terminal signal sequences and most have a conserved motif (DEIDFEFLG) that is also found in Bacillusβ-glucanase and may be important for enzyme activity. The members of the XTR gene family are differentially sensitive to environmental and hormonal stimuli. Magnitude and kinetics of regulation are distinct for the different genes. Differential regulation of expression of this complex gene family suggests a recruitment of related, yet distinct, cell wall-modifying enzymes that may control the properties of cell walls and tissues during development and in response to environmental cues.  相似文献   

5.
苯丙氨酸解氢酶(phenylalanine ammonia-lyase,PAL)基因家族参与苯丙烷类代谢过程,通过调控植物抗病次生物质的合成在植物抗逆反应中发挥重要作用。为明确谷子PAL基因家族在逆境胁迫下的表达规律,该研究利用生物信息学方法对谷子PAL基因家族进行鉴定和表达分析。结果表明:谷子具有11个PAL基因,在进化树中可分为3个亚家族,SiPAL7独自进化为一支。通过构建蛋白结构域发现PAL基因家族成员均含有保守的PAL结构域。启动子分析显示,PAL基因含有应答激素、逆境胁迫等多种因子的顺式作用元件,说明PAL基因广泛参与不同生物学调控过程。RT-qPCR结果显示,谷子PAL基因家族多为诱导型表达,不同光照条件下PAL基因表达量变化明显,不同基因具有不同响应模式,说明谷子PAL基因家族在参与光调节反应中发挥重要作用。谷子PAL基因高度保守,广泛响应不同非生物胁迫,具有表达特异性。该研究结果为揭示PAL基因家族在调节谷子抗性及胁迫应答过程中的作用提供了参考。  相似文献   

6.
The Roundabout (Robo) family of receptors and their extracellular ligands, the Slit protein family, play important roles in repulsive axon guidance. First identified in Drosophila, Robo receptors form an evolutionarily conserved sub-family of the immunoglobulin (Ig) superfamily that are characterized by the presence of five Ig repeats and three fibronectin-type III repeats in the extracellular domain, a transmembrane domain, and a cytoplasmic domain with several conserved motifs that play important roles in Robo-mediated signaling (Cell 92 (1998) 205; Cell 101 (2000) 703). Robo family members have now been identified in C. elegans, Xenopus, rat, mouse, and human (Cell 92 (1998) 205; Cell 92 (1998) 217; Cell 96 (1999) 807; Dev. Biol. 207 (1999) 62). Furthermore, multiple robo genes have been described in Drosophila, rat, mouse and humans, raising the possibility of potential redundancy and diversity in robo gene function. As a first step in elucidating the role of Robo receptors during vertebrate development, we identified and characterized two Robo family members from zebrafish. We named these zebrafish genes robo1 and robo3, reflecting their amino acid sequence similarity to other vertebrate robo genes. Both genes are dynamically expressed in the developing nervous system in distinct patterns. robo3 is expressed during the first day of development in the hindbrain and spinal cord and is later expressed in the tectum and retina. robo1 nervous system expression appears later in development and is more restricted. Moreover, both genes are expressed in non-neuronal tissues consistent with additional roles for these genes during development.  相似文献   

7.
The leucine-rich repeats and PDZ (LAP) family of genes are crucial for the maintenance of cell polarity as well as for epithelial homeostasis and tumor suppression in both vertebrates and invertebrates. Four members of this gene family are known: densin, erbin, scribble and lano. Here, we identified the four members of the LAP gene family in Xenopus tropicalis and studied their expression patterns during embryonic development. The Xenopus LAP proteins show a conserved domain structure that is similar to their homologs in other vertebrates. In Xenopus embryos, these genes were detected in animal cap cells at the early gastrula stage. At later stages of development, they were widely expressed in epithelial tissues that are highly polar in nature, including the neural epithelia, optic and otic vesicles, and in the pronephros. These data suggest that the roles of the Xenopus LAP genes in the control of cell polarity and morphogenesis are conserved during early development. Erbin and lano show similar expression patterns in the developing head, suggesting potential functional interactions between the two molecules in vivo.  相似文献   

8.
Prohibitins (PHBs) are highly conserved proteins in species ranging from prokaryotes to eukaryotes. Plant PHBs have been implicated in various cellular processes including development, senescence and stress responses. Although PHBs have been investigated in several plant species including Arabidopsis and tobacco, no systematic gene family analysis has been carried in maize. In the present study, 16 putative PHB genes have been identified. Analysis of the conserved protein motifs and gene structures has revealed high levels of conservation within the phylogenetic subgroups. Published microarray database showed that most maize PHB genes exhibited different expression levels in different tissues and developmental stages. Cis-elements analysis showed that ZmPHB2 and ZmPHB12 may play important roles in plant development. Taken together, we provide a comprehensive bioinformatics analysis of the PHB gene family in maize genome and our data provide an important foundation for further functional study of this gene family in maize.  相似文献   

9.
10.
Intelectin family, also called the X-lectin family, is a newly discovered gene family involved in development and innate immunity. However, no research was carried out for this gene family in the model organism zebrafish. Here we present the first characterization of seven zebrafish intelectins (zINTLs) and the first systematic comparative analysis of intelectins from various species in order to provide some clues to the function and evolution of this gene family. We examined the expression patterns of zINTLs in various development stages, normal adults, and Aeromonas salmonicida infected adults. Results showed that zINTL1–3 were highly expressed in one or several adult tissues. zINTL4–7, however, were expressed at quite low levels both in adults and various development stages, and some of them showed relaxation of functional constrains as revealed by Ka/Ks calculation. Of the seven zINTLs, zINTL3 was expressed predominantly in the liver and highly up-regulated upon infection, suggesting its important roles in immunity. Based on the characterization of zebrafish intelectins, we then conducted a systematic survey of intelectin members in various species and made comparative analyses. We found out that intelectin family may be a deuterostome specific gene family; and their expression patterns, quaternary structures and glycosylations vary considerably among various species, though their sequences are highly conserved. Moreover, these varied features have evolved multiple times independently in different species, resulting in species-specific protein structures and expression patterns.  相似文献   

11.
Spt-Ada-Gcn5-乙酰转移酶(Spt-Ada-Gcn5-acetyltransferase, SAGA)是高度保守的辅助转录起始复合物,转录接头蛋白-激活的改变/缺失亚基1 (alteration/deficiency in activation 1, ADA1),也称作组蛋白H2A功能互作因子1 (histone H2A functional interactor 1, HFI1),它是SAGA核心模块中的一个亚基,在植物的生长发育和抗逆性方面发挥着重要的作用。为了解香蕉ADA1的分子特性,本研究基于香蕉基因组数据库,对香蕉ADA1基因家族成员进行鉴定,分析其基本理化性质、系统进化、选择压力、启动子顺式作用元件及生物与非生物胁迫下的表达等。结果显示,香蕉A、B及阿宽蕉基因组中分别有10、6、7个ADA1家族成员;成员均为不稳定的亲水性蛋白,均保守地含有SAGA-Tad1结构域,MaADA1和MbADA1均可与SAGA核心模块中的SAGA相关因子11 (SAGA-associated factor 11, Sgf11)互作;系统发育显示香蕉ADA1基因家族成员可划分为3个亚族,进化过程中大多受纯化选择;香蕉ADA1基因家族成员的基因结构差异性较大;香蕉ADA1基因家族成员含有多个响应激素的作用元件;MaADA1-1可能对香蕉在低温胁迫下的抗性起着重要的作用,MaADA1均响应香蕉枯萎病菌胁迫。本研究表明,ADA1基因家族成员在香蕉中高度保守,并可能响应生物与非生物胁迫。  相似文献   

12.
13.
We describe the isolation and characterization of the cDNA for FKHL13, the human homologue of the mouse hepatocyte nuclear factor 3/fork headhomologue 4 (HFH-4) gene, a member of the HNF-3/fork head(also called winged helix) gene family. Members of this gene family contain a conserved DNA binding region of approx. 110 amino acids and are thought to play an important role in cell-specific differentiation. Previous analysis of the mouse and rat HFH-4 cDNAs revealed a distinct pattern of expression for this gene, suggesting that the gene plays an important role in the differentiation of lung and oviduct/ampulla epithelial cells and testicular spermatids. Analysis of the human FKHL13 gene confirmed this pattern of expression. We also found expression in adult human brain cortex, which we were able to confirm for the mouse. The expression pattern of FKHL13/HFH-4, confined to cilia/flagella-producing cells, leads us to believe that the gene plays an important role in the regulation of axonemal structural proteins. We show that the human gene for FKHL13 lies on chromosome 17 (comparison with the chromosomal location of the mouse gene strongly suggests 17q22–q25) and that the gene, which is approx. 6 kb, contains a single intron disrupting thefork headDNA binding domain. Such a disruption of a functional unit provides strong evidence for the theory of intron insertion during gene evolution. The expression of the gene is probably controlled by the CpG island, which is located in the promoter region of the gene. We also demonstrate that the FKHL13 gene is highly conserved among a wide variety of species, including birds.  相似文献   

14.
Invertase (INV), a key enzyme in sucrose metabolism, irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose, thus playing important roles in plant growth, development, and biotic and abiotic stress responses. In this study, we identified 27 members of the BnaINV family in Brassica napus. We constructed a phylogenetic tree of the family and predicted the gene structures, conserved motifs, cis-acting elements in promoters, physicochemical properties of encoded proteins, and chromosomal distribution of the BnaINVs. We also analyzed the expression of the BnaINVs in different tissues and developmental stages in the B. napus cultivar Zhongshuang 11 using qRT-PCR. In addition, we analyzed RNA-sequencing data to explore the expression patterns of the BnaINVs in four cultivars with different harvest indices and in plants inoculated with the pathogenic fungus Sclerotinia sclerotiorum. We used WGCNA (weighted coexpression network analysis) to uncover BnaINVregulatory networks. Finally, we explored the expression patterns of several BnaINV genes in cultivars with long (Zhongshuang 4) and short (Ningyou 12) siliques. Our results suggest that BnaINVs play important roles in the growth and development of rapeseed siliques and the defense response against pathogens. Our findings could facilitate the breeding of high-yielding B. napus cultivars with strong disease resistance.  相似文献   

15.
Fibroblast growth factors (FGFs) mediate many cell-cell signaling events during early development. While the actions of FGFs have been well-studied, the roles played by specific members of the FGF receptor (FGFR) family are poorly understood. To characterize the roles played by individual FGFRs we compared the regulation and expression of the three Xenopus FGFRs described to date (XFGFR-1, XFGFR-2, and XFGFR-4). First, we describe the expression of Xenopus FGFR-4; XFGFR-4 is present as a maternal mRNA and is found in the embryo through at least the tadpole stage. XFGFR-4 and XFGFR-1 mRNAs are present at comparable levels, arguing that both mediate FGF signaling during early development. Second, the expression of XFGFR-4 in animal caps differs from the expression of XFGFR-1 and XFGFR-2, suggesting that the FGFRs are independently regulated in ectoderm. Third, using whole-mount in situ hybridization, we show that XFGFR-1, XFGFR-2, and XFGFR-4 are expressed in dramatically different patterns, arguing that specific FGF signaling events are mediated by different members of the FGFR family. Among these, FGF signaling during the induction of neural crest cells is likely to be mediated by XFGFR-4. Comparison of our results with previously reported FGFR expression patterns reveals that FGFR-1 expression is highly conserved among vertebrate embryos, and FGFR-2 expression shows many features that are conserved and some that are divergent. In contrast, the expression pattern of FGFR-4 is highly divergent among vertebrate embryos. Received: 5 August 1999 / Accepted: 18 January 2000  相似文献   

16.
MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants.  相似文献   

17.
18.
 The hedgehog family of intercellular signalling molecules have essential functions in patterning both Drosophila and vertebrate embryos. Drosophila has a single hedgehog gene, while vertebrates have evolved at least three types of hedgehog genes (the Sonic, Desert and Indian types) by duplication and divergence of a single ancestral gene. Vertebrate Sonic-type genes typically show conserved expression in the notochord and floor plate, while Desert- and Indian-type genes have different patterns of expression in vertebrates from different classes. To determine the ancestral role of hedgehog in vertebrates, I have characterised the hedgehog gene family in amphioxus. Amphioxus is the closest living relative of the vertebrates and develops a similar body plan, including a dorsal neural tube and notochord. A single amphioxus hedgehog gene, AmphiHh, was identified and is probably the only hedgehog family member in amphioxus, showing the duplication of hedgehog genes to be specific to the vertebrate lineage. AmphiHh expression was detected in the notochord and ventral neural tube, tissues that express Sonic-type genes in vertebrates. This shows that amphioxus probably patterns its ventral neural tube using a molecular pathway conserved with vertebrates. AmphiHh was also expressed on the left side of the pharyngeal endoderm, reminiscent of the left-sided expression of Sonic hedgehog in chick embryos which forms part of a pathway controlling left/right asymmetric development. These data show that notochord, floor plate and possibly left/right asymmetric expression are ancestral sites of hedgehog expression in vertebrates and amphioxus. In vertebrates, all these features have been retained by Sonic-type genes. This may have freed Desert-type and Indian-type hedgehog genes from selective constraint, allowing them to diverge and take on new roles in different vertebrate taxa. Received: 20 July 1998 / Accepted: 23 September 1998  相似文献   

19.
PKD2 gene encodes a critical cation channel protein that plays important roles in various developmental processes and is usually evolutionarily conserved. In the present study, we analyzed the evolutionary patterns of PKD2 and its homologous genes (PKD2L1, PKD2L2) from nine mammalian species. In this study, we demonstrated the orthologs of PKD2 gene family evolved under a dominant purifying selection force. Our results in combination with the reported evidences from functional researches suggested the entire PKD2 gene family are conserved and perform essential biological roles during mammalian evolution. In rodents, PKD2 gene family members appeared to have evolved more rapidly than other mammalian lineages, probably resulting from relaxation of purifying selection. However, positive selection imposed on synonymous sites also potentially contributed to this case. For the paralogs, our results implied that PKD2L2 genes evolved under a weaker purifying selection constraint than PKD2 and PKD2L1 genes. Interestingly, some loop regions of transmembrane domain of PKD2L2 exhibited higher P N/P S ratios than expected, suggesting these regions are more functional divergent in organisms and worthy of special attention. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Chun Ye, Huan Sun have contributed equally to this work.  相似文献   

20.
Zhang  Bin  Li  Pan  Su  Tongbing  Li  Peirong  Xin  Xiaoyun  Wang  Weihong  Zhao  Xiuyun  Yu  Yangjun  Zhang  Deshuang  Yu  Shuancang  Zhang  Fenglan 《Journal of Plant Growth Regulation》2020,39(1):72-86

The wall-associated kinase (WAK) gene family, a subfamily of the receptor-like kinase (RLK) gene family, is associated with the cell wall in plants, and has vital functions in cell expansion, pathogen resistance, and heavy metal stress tolerance because of their roles of the extracellular environment sensors to trigger intracellular signals in Arabidopsis. In the present study, 96 Chinese cabbage (Brassica rapa ssp. pekinensis) BrWAK gene family members were identified from the B. rapa genome using a reiterative database search and manual confirmation. The protein domain characterization, gene structure analysis, and phylogenetic analysis of the BrWAKs classified them into three gene groups. Comparative genomic analysis between WAK genes from Chinese cabbage and Arabidopsis revealed that the BrWAK genes have undergone the gene expansion and deletion events during evolution. Furthermore, the conserved motifs in the kinase domains of the WAK proteins and eukaryotic protein kinase family proteins were compared and some non-RD kinase proteins among the BrWAKs were identified. Ultimately, expression analysis of BrWAK genes in six tissues and under various stress conditions revealed that some tissue-specific WAK genes might function in callus cell growth and reproduction process; Bra012273, Bra016426, Bra016427, and Bra025882 might be involved in downy mildew resistance and high humidity stress; Bra012273, Bra025882, and Bra025883 might be responded to drought and heat stress. Taken together, this research was identified and classified the WAK gene family in Chinese cabbage and provided valuable resources to explore the potential roles of BrWAK genes in plant development and stress responses.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号