首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mature cyst of Acanthamoeba is highly resistant to various antibiotics and therapeutic agents. Cyst wall of Acanthamoeba are composed of cellulose, acid-resistant proteins, lipids, and unidentified materials. Because cellulose is one of the primary components of the inner cyst wall, cellulose synthesis is essential to the process of cyst formation in Acanthamoeba. In this study, we hypothesized the key and short-step process in synthesis of cellulose from glycogen in encysting Acanthamoeba castellanii, and confirmed it by comparing the expression pattern of enzymes involving glycogenolysis and cellulose synthesis. The genes of 3 enzymes, glycogen phosphorylase, UDP-glucose pyrophosphorylase, and cellulose synthase, which are involved in the cellulose synthesis, were expressed high at the 1st and 2nd day of encystation. However, the phosphoglucomutase that facilitates the interconversion of glucose 1-phosphate and glucose 6-phosphate expressed low during encystation. This report identified the short-cut pathway of cellulose synthesis required for construction of the cyst wall during the encystation process in Acanthamoeba. This study provides important information to understand cyst wall formation in encysting Acanthamoeba.  相似文献   

2.
When cells of Acanthamoeba castellanii are placed in a non-nutrient medium, they differentiate into cysts which possess cellulosic walls. In the present study, the source of the glucosyl unit for cyst wall cellulose was investigated by following the encystment of trophozoites grown in the presence of 14C-labeled fatty acids (uniformly labeled palmitate or oleate) or [3-3H]glucose. Cells were fractionated at the beginning and after 30 hr of encystment using a modified Schmidt-Tannhauser procedure. In cells grown on fatty acids, 90% of the labeled material was in the lipid fractions both before and after encystment with the total amount of label/cell changing very little. Both partial and complete acid hydrolysis of the glycogen of the acidsoluble fraction and the alkali-insoluble residue of the cyst wall indicated that the glucose of both fractions was not radioactive, although Acanthamoeba is known to have a functional glyoxylate pathway.Fractionation data of cells grown on [3H]glucose indicated a sevenfold increase in radioactivity in the wall insoluble fraction and a fivefold decrease in the acid-soluble fraction with the cpm/cell of the other fractions changing very little after 30 hr of encystment. Approximately 70% of the 3H-labeled material was recovered as glucose from the 30-hr wall insoluble fraction following complete acid hydrolysis. The specific radioactivity of glucose in the cyst wall insoluble fraction was the same as that of glycogen glucose isolated from the acid soluble fraction of trophozoites. Electron microscopic autoradiography showed that the majority of nonlipid radioactivity was due to glycogen in trophozoites. Autoradiograms failed to reveal Golgi bodies or any particular region of the cell as being the specialized site of cellulose synthesis. The results of the fractionation and autoradiographic studies are consistent with the concept that glycogen is a precursor of cyst wall cellulose, and that glucosyl units of glycogen and/or other glucose derivatives are converted to cellulose without significant dilution under the experimental conditions used.  相似文献   

3.
Acanthamoeba cysts are resistant to unfavorable physiological conditions and various disinfectants. Acanthamoeba cysts have 2 walls containing various sugar moieties, and in particular, one third of the inner wall is composed of cellulose. In this study, it has been shown that down-regulation of cellulose synthase by small interfering RNA (siRNA) significantly inhibits the formation of mature Acanthamoeba castellanii cysts. Calcofluor white staining and transmission electron microscopy revealed that siRNA transfected amoeba failed to form an inner wall during encystation and thus are likely to be more vulnerable. In addition, the expression of xylose isomerase, which is involved in cyst wall formation, was not altered in cellulose synthase down-regulated amoeba, indicating that cellulose synthase is a crucial factor for inner wall formation by Acanthamoeba during encystation.  相似文献   

4.
Free‐living amoebae are ubiquitous protozoa commonly found in water. Among them, Acanthamoeba and Vermamoeba (formerly Hartmannella) are the most represented genera. In case of stress, such as nutrient deprivation or osmotic stress, these amoebae initiate a differentiation process, named encystment. It leads to the cyst form, which is a resistant form enabling amoebae to survive in harsh conditions and resist disinfection treatments. Encystment has been thoroughly described in Acanthamoeba but poorly in Vermamoeba. Our study was aimed to follow the encystment/excystment processes by microscopic observations. We show that encystment is quite rapid, as mature cysts were obtained in 9 h, and that cyst wall is composed of two layers. A video shows that a locomotive form is likely involved in clustering cysts together during encystment. As for Acanthamoeba, autophagy is likely active during this process. Specific vesicles, possibly involved in ribophagy, were observed within the cytoplasm. Remarkably, mitochondria rearranged around the nucleus within the cyst, suggesting high needs in energy. Unlike Acanthamoeba and Naegleria, no ostioles were observed in the cyst wall suggesting that excystment is original. During excystment, large vesicles, likely filled with hydrolases, were found in close proximity to cyst wall and digest it. Trophozoite moves inside its cyst wall before exiting during excystment. In conclusion, Vermamoeba encystment/excystment displays original trends as compare to Acanthamoeba.  相似文献   

5.
Acanthamoeba castellanii is a facultative pathogen that has a two-stage life cycle comprising the vegetatively growing trophozoite stage and the dormant cyst stage. Cysts are formed when the cell encounters unfavorable conditions, such as environmental stress or food deprivation. Due to their rigid double-layered wall, Acanthamoeba cysts are highly resistant to antiamoebic drugs. This is problematic as cysts can survive initially successful chemotherapeutic treatment and cause relapse of the disease. We studied the Acanthamoeba encystment process by using two-dimensional gel electrophoresis (2DE) and found that most changes in the protein content occur early in the process. Truncated actin isoforms were found to abound in the encysting cell, and the levels of translation elongation factor 2 (EF2) were sharply decreased, indicating that the rate of protein synthesis must be low at this stage. In the advanced stage of encystment, however, EF2 levels and the trophozoite proteome were partly restored. The protease inhibitors PMSF (phenylmethylsulfonyl fluoride) and E64d [(2S,3S)-trans-epoxysuccinyl-l-leucylamido-3-methylbutane ethyl ester] inhibited the onset of encystment, whereas the protein synthesis inhibitor cycloheximide was ineffective. Changes in the protein profile, similar to those of encysting cells, could be observed with trophozoite homogenates incubated at room temperature for several hours. Interestingly, these changes could be inhibited significantly by cysteine protease inhibitors but not by inhibitors against other proteases. Taken together, we conclude that the encystment process in A. castellanii is of a bipartite nature consisting of an initial phase of autolysis and protein degradation and an advanced stage of restoration accompanied by the expression of encystment-specific genes.The bacteriovorous Acanthamoeba spp. occur ubiquitously in the environment (27) and have a two-stage life cycle consisting of the replicating and feeding trophozoite stage and the dormant, double-walled, cyst stage (16). Cysts are formed in order to survive in an inhospitable environment and are able to persist in a wide variety of habitats (4, 17). Indeed, the ubiquity of Acanthamoeba is made possible by the extreme resistance of the cyst against desiccation, temperature changes, chemicals, radiation, and prolonged starvation. Also, various antiamoebic agents, such as benzalkonium chloride and propamidine isethionate, have no effect on cysts (9, 13, 29). Since acanthamoebae are facultative pathogens that can cause Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE), encystment is also of medical relevance (16). An often occurring complication in the treatment of AK is the presence of viable cysts that remain in the corneal stroma after initial successful therapy, as these can eventually excyst again and lead to recurrent infections (23).According to Weisman (31), the encystment process comprises three phases: induction, wall synthesis, and dormancy. During the induction phase, trophozoites begin to lose their amoeboid appearance and become round. The first wall that is formed gives rise to the exocyst; this wall is 0.3 to 0.5 μm thick and consists mostly of acid-insoluble proteins. The endocyst is formed after the appearance of a well-defined layer whose major component is cellulose (31). Cell wall synthesis is usually accompanied by a decrease in cytoplasmic mass of approximately 80% through a gradual dehydration of the amoeba, thereby causing retraction of the protoplast from the cell wall (2). Rather early, autolysosomes appear and remain in the cytoplasm throughout the whole encystment process. In light of these dramatic changes in the cell''s physiology, it is surprising that the encysting cell can stop and revert the process until 15 h after induction (30). Afterwards, however, cells become committed to the completion of the encystment process.At the molecular level, a number of factors involved in the encystment process have been characterized thus far. For example, cyst-specific protein 21 (Csp21) is a cyst wall protein found in group II acanthamoebae and was reported to be synthesized approximately 12 h after induction (6). The expression of the respective gene is repressed under normal growth conditions via one or more repressor elements between the TATA box and nucleotide (nt) +63 (3). Furthermore, encystment requires serine protease activity (5, 20) and autophagy proteins (22), all of which are suggested to be involved in autolytic processes, and glycogen phosphorylase, which is necessary for the breakdown of glycogen (14). The glucose-1-phosphate that is thereby liberated is subsequently used for the buildup of cellulose in the cyst wall.In the search for additional factors, there have been several successful attempts in the past years to screen encysting Acanthamoeba castellanii for genes specifically expressed during encystment at the mRNA level (19, 21) as well as at the protein level (1, 24). However, there is still a lack of information on the extent of cellular reorganization during the encystment process at the protein level. In this study, we therefore aimed to monitor the encystment process in PAT06, a new clinical isolate of A. castellanii (10), by using two-dimensional gel electrophoresis (2DE) and to analyze the developmental and molecular processes at the proteomic level.  相似文献   

6.
Acanthamoeba is an opportunistic protozoan pathogen that can cause blinding keratitis as well as fatal granulomatous encephalitis. One of the distressing aspects in combating Acanthamoeba infections is the prolonged and problematic treatment. For example, current treatment against Acanthamoeba keratitis requires early diagnosis followed by hourly topical application of a mixture of drugs that can last up to a year. The aggressive and prolonged management is due to the ability of Acanthamoeba to rapidly adapt to harsh conditions and switch phenotypes into a resistant cyst form. One possibility of improving the treatment of Acanthamoeba infections is to inhibit the ability of these parasites to switch into the cyst form. The cyst wall is partially made of cellulose. Here, we tested whether a cellulose synthesis inhibitor, 2,6-dichlorobenzonitrile (DCB), can enhance the effects of the antiamoebic drug pentamidine isethionate (PMD). Our findings revealed that DCB can block Acanthamoeba encystment and may improve the antiamoebic effects of PMD. Using in vitro assays, the findings revealed that DCB enhanced the inhibitory effects of PMD on Acanthamoeba binding to and cytotoxicity of the host cells, suggesting the cellulose biosynthesis pathway as a novel target for the improved treatment of Acanthamoeba infections.  相似文献   

7.
Acanthamoeba castellanii differentiates when placed in a starvation medium. The mature cysts formed are characterized by a cellulosic wall synthesized from endogenous sources during encystment. A particulate enzyme system whose specific activity increases some 30-fold during encystment catalyzes the formation of an alkali-soluble and an alkali-insoluble β-(1 → 4)-glucan (cellulose). The activity in vitro of this enzyme extracted from populations of cells during encystment correlates with the formation in vivo of the mature cyst and the alkali-insoluble β-glucan of the cyst wall. The conclusion is based on the following observations:
1.
1. Both alkali-soluble and alkali-insoluble β-glucans similar to the enzymatic products of the isolated β-glucan synthetase occur in cyst walls.  相似文献   

8.
EXOCYTOSIS OF LATEX BEADS DURING THE ENCYSTMENT OF ACANTHAMOEBA   总被引:1,自引:0,他引:1  
Cells of Acanthamoeba castellanii (Neff) are known to form mature cysts characterized by a cellulose-containing cell wall when transferred to a nonnutrient medium. Amebas which engulfed latex beads before encystment formed mature cysts essentially devoid of bead material. The encystment of bead-containing cells appeared to be similar to that of control cells since no important differences between the two were observed with respect to cellular levels of glycogen or protein, cellulose synthetase activity, the amount of cyst wall polysaccharide formed, or the percentage of cysts formed. Actinomycin D and cycloheximide inhibited encystment as well as bead expulsion. Ultrastructural analysis revealed that the beads, which initially were contained in phagocytic vesicles, were released from the cell by fusion of vesicular membranes with the plasma membrane. Exocytosis was observed in cells after 3 hr of encystment, with most of the beads being lost before cyst wall formation. Each bead-containing vesicle involved in expulsion was conspicuously demarcated by an area of concentrated cytoplasm, which was more homogeneously granular than the surrounding cytoplasm. Beads were not observed in the cytoplasm of mature cysts but were occasionally found in the cyst wall.  相似文献   

9.
Some unicellular organisms are able to encyst as a protective response to a harmful environment. The cyst wall usually contains chitin as its main structural constituent, but in some cases, as in Acanthamoeba, it consists of cellulose instead. Specific cytochemical differentiation between cellulose and chitin by microscopy has not been possible, due to the similarity of their constituent β-1,4-linked hexose backbones. Thus, various fluorescent brightening agents and lectins bind to both cellulose and chitin. We have used a recombinant cellulose-binding protein consisting of two cellulose-binding domains (CBDs) from Trichoderma reesei cellulases linked together in combination with monoclonal anticellulase antibodies and anti-mouse immunoglobulin fluorescein conjugate to specifically stain cellulose in the cysts of Acanthamoeba strains for fluorescence microscopy imaging. Staining was observed in ruptured cysts and frozen sections of cysts but not in intact mature cysts. No staining reaction was observed with the chitin-containing cyst walls of Giardia intestinalis, Entamoeba dispar, or Pneumocystis carinii. Thus, the recombinant CBD can be used as a marker to distinguish between cellulose and chitin. Thirteen of 25 environmental or clinical isolates of amoebae reacted in the CBD binding assay. All 13 isolates were identified as Acanthamoeba spp. Five isolates of Hartmannella and seven isolates of Naegleria tested negative in the CBD binding assay. Whether cyst wall cellulose really is a unique property of Acanthamoeba spp. among free-living amoebae, as suggested by our findings, remains to be shown in more extensive studies.  相似文献   

10.
The aim of this study was to identify and characterize the receptor system involved in controlling encystment in Acanthamoeba using specific agonists and antagonists and to examine whether endogenous stores of catecholamines are produced by the organism. Acanthamoeba trophozoites suspended in axenic growth medium were exposed to adrenoceptor agonists and antagonists to determine which compounds promoted or prevented encystment. Second, trophozoites were cultured in medium containing a catecholamine synthesis inhibitor to investigate the effect this had on natural encystment. Nonspecific adrenoceptor agonists including epinephrine, isoprotenerol, and the selective β1 adrenoceptor agonist dobutamine were found to cause > 90% encystment of Acanthamoeba trophozoites compared to < 30% with the controls. The selective β1 antagonist metoprolol was able to inhibit epinephrine mediated encystment by > 55%. Cultures of Acanthamoeba with the catecholamine synthesis inhibitor α‐methyl‐p‐tyrosine significantly reduced the level of amoebic encystment compared to controls. In conclusion, Acanthamoeba appear to contain a functional adrenergic receptor system of unknown structure which is involved in initiating the encystment process that can be activated and blocked by β1 agonists and antagonists respectively. Furthermore, the presence of this receptor system in Acanthamoeba indicates that topical β adrenoceptor blockers may be effective adjunct therapy by reducing the transformation of trophozoites into the highly resistant cyst stage.  相似文献   

11.
Some protozoans are able to encyst as a protective response to a harmful environment. The cyst wall usually contains chitin as its main structural constituent. Acanthamoeba is an exception since its cyst wall contains cellulose. Specific cytochemical differentiation between cellulose and chitin by microscopy has not been possible due to the similarity of the constituent β-1,4-linked hexose backbones of these molecules. Thus, various fluorescent brightening agents and lectins bind to both cellulose and chitin. The identification of Acanthamoeba spp., which is based primarily on morphological and biochemical features, is labor-intensive and requires cloning and axenization. We describe a novel immunocytochemical method for identification of Acanthamoeba spp. based on selective binding of Trichoderma reesei cellulase to protozoan cyst wall cellulose. A recombinant cellulose-binding protein consisting of two cellulose-binding domains (CBDs) from T. reesei cellulases was coupled to the fluorescent dyes Alexa Fluor 350 and Alexa Fluor 568 or was labeled with biotin using EZ-Link sulfo-NHS-biotin. No staining reaction was observed with chitin-containing preparations of fungi. Thus, the recombinant CBDs can be used as a marker to distinguish between cellulose and chitin. This allows rapid identification of Acanthamoeba cyst wall cellulose in paraffin or frozen sections of infected tissues.Laboratory diagnosis of infections with Acanthamoeba spp. is based on identification of the parasite in infected tissue. Although various techniques, including immunocytological and molecular methods, have been described, recovery of viable parasites by cultivation on agar is still the basic procedure used (16). This method is usually associated with histopathological examination of the specimen to prove tissue invasion by the parasite.Recognition of parasites in tissue sections is often difficult and depends on the expertise of the pathologist. In addition to traditional histological staining methods, immunohistology using parasite-specific antibodies, lectin conjugates, and calcofluor white have been used for visualization of parasites in tissue sections (3).Some protozoan parasites have the ability to protect themselves by forming a cyst wall, which is resistant to environmental stresses such as desiccation, lack of nutrients, and variations in temperature and pH. In most pathogenic protozoans studied, chitin is the carbohydrate polymer providing the required structural toughness to the cyst wall. Acanthamoeba spp. are exceptions, as their cysts are made up of cellulose. Recently, cellulose has also been identified as a cyst wall component in a closely related amoeba, Balamuthia mandrillaris (15). Cellulose consists of β-d-glucosyl units linked by β-1,4-glucosidic bonds. Chitin is very similar but contains N-acetylglucosamine as the monomer. Both polymers form very similar crystalline macroscopic structures. Specific cytochemical differentiation between cellulose and chitin by microscopy has not been possible due to the similarity of the constituent β-1,4-linked hexose backbones. This is especially true for various fluorescent brightening agents, such as calcofluor white, used as cytochemical markers in microscopic diagnosis of protozoan and fungal infections. A two-domain structural organization is often observed in cellulose-degrading enzymes. Most Trichoderma reesei cellulases consist of a catalytic domain and a cellulose-binding domain (CBD) joined by a linker. The catalytic domain contains the active site with the amino acid residues responsible for the hydrolytic mechanism. The role of the CBD is to bind to the solid cellulose. The ability of CBDs to attach to cellulose can be utilized in various applications. Individual types of CBDs can vary significantly in their properties, such as affinity, preference for crystalline or amorphous cellulose, and cross-reactivity with other similar carbohydrates (7, 8, 9, 10).We have previously described a novel immunocytochemical method for identification of Acanthamoeba spp. based on selective binding of T. reesei cellulase to protozoan cyst wall cellulose (12). In that study we used a recombinant dimeric CBD (D-CBD) fusion protein in an indirect immunofluorescence analysis to specifically stain the cellulose and visualize its localization in the cyst wall. In preliminary studies, this method was also shown to be useful detection of parasites in tissue sections (11).The aim of the present study was to simplify the detection method by preparing D-CBDs as fluorescent and biotinylated conjugates that could be used for direct and rapid detection of cellulose in Acanthamoeba by both fluorescence and ordinary light microscopy.  相似文献   

12.
During encystation of Hartmannella culbertsoni induced by taurine or epinephrine, 60-70% of the reserve glycogen is degraded. Glycogen phosphorylase is activated and glycogen synthetase is inhibited after 6-8 hr of exposure to the encystation medium. The carbon skeleton of glycogen but not that of protein is utilised in the synthesis of cyst wall cellulose. Exogenously added glucose (225 and 550 mM) blocks encystation, degradation of glycogen and synthesis of cellulose. Cyclic AMP synthesis is also very much reduced in cells exposed to glucose.  相似文献   

13.
SYNOPSIS. Some aspects of the physiology of encystment of the soil amoeba Hartmannella castellanii in a replacement encystment medium consisting of 5 × 10-2 M MgCl2 have been investigated. It is suggested that measurement of the cellulose produced during encystment in the synthesis of the cyst wall is a more reliable measure of the process than other methods tried. The degree of encystment was dependent on the physiologic state of the amoebae and the composition of the growth medium, but the initial pH of the encystment medium (C. 4.0-8.5) had little effect on the process. The requirement for Mg during encystment was probably not due to its deficiency during growth. Encystment was inhibited to varying extents by inhibitors of protein synthesis, tetracycline and chloramphenicol and also by arsenate, arsenite and iodoacetate; sodium fluoride, malonate and 2, 4-dinitrophenol were without marked effect. Addition of glucose and α-ketoglutarate to the replacement medium led to improvement in the encystment response. The presence of glutamate and histidine during encystment led to cell death. Other carbon and nitrogen sources had no effect. During encystment there was an increase in the metabolic activity of the amoebae, as measured by their oxygen consumption. This was accompanied by a decrease of about 40% in cellular dry weight and protein content. Of the other chemical components, there were marked initial increases in the levels of total carbohydrates and pentose which were followed by their depletion during cellulose synthesis. Encystment was completed after about 64 hr when the synthesis of cellulose was complete and the oxygen uptake of the amoebae fell to an immeasurable level.  相似文献   

14.
Autophagy-related protein 8 (Atg8) is an essential component of autophagy formation and encystment of cyst-forming parasites, and some protozoa, such as, Acanthamoeba, Entamoeba, and Dictyostelium, have been reported to possess a type of Atg8. In this study, an isoform of Atg8 was identified and characterized in Acanthamoeba castellanii (AcAtg8b). AcAtg8b protein was found to encode 132 amino acids and to be longer than AcAtg8 protein, which encoded 117 amino acids. Real-time PCR analysis showed high expression levels of AcAtg8b and AcAtg8 during encystation. Fluorescence microscopy demonstrated that AcAtg8b is involved in the formation of the autophagosomal membrane. Chemically synthesized siRNA against AcAtg8b reduced the encystation efficiency of Acanthamoeba, confirming that AcAtg8b, like AcAtg8, is an essential component of cyst formation in Acanthamoeba. Our findings suggest that Acanthamoeba has doubled the number of Atg8 gene copies to ensure the successful encystation for survival when 1 copy is lost. These 2 types of Atg8 identified in Acanthamoeba provide important information regarding autophagy formation, encystation mechanism, and survival of primitive, cyst-forming protozoan parasites.  相似文献   

15.
The correlation between blood glucose levels, the concentration of glycogen, the activities of glycogen sythase and phosphorylase and their respective kinases and phosphatases was examined in liver of rat fetuses between day 18 of gestation and one day after birth. Between day 18 and 21 there is a rapid increase in the concentration of glycogen and in the activity of synthase a and a much slower increase in the activity of phosphorylase a. The activity of the respective kinases increased rapidly during this period and reached maximun on day 21. The activity of synthase phosphatase and phosphorylase phosphatase increased after day 18, to reach a maximum on day 19 and 20, respectively, but decreased again towards day 21. The possibility that the changes in glycogen concentration and enzyme activities were related to an effect of glucose of AMP on the respective phosphatases was considered. It was found that the Km of phosphatase for glucose in the prenatal period was 5–7 mM, as in the adult. Since the level of blood glucose during this period was constant (2.8 mM), an effect of glucose on phosphatase activity seems unlikely. AMP concentration increased between day 18 and 21 from 6–15 nmol/g. In view of the low level of phosphorylase a activity during this period, the increase in AMP concentration is not considered to be important in the regulation of glycogen breakdown at this time.Immediately after birth blood glucose levels dropped to 5 mg/dl. This was accompanied by a rapid decrease in glycogen concentration and in the activity of glycogen synthase and a rise in phosphorylase activity. Blood glucose levels returned to the initial level within 1 h after birth, whereas the changes in glycogen concentration and enzyme activities continued for at least 3 h after birth. On day 22 all parameters examined had reached the level found in adult rat liver.It is suggested that the rapid changes observed immediately after birth are due to an effect of hypoglycemia mediated by hormones and cannot be ascribed to direct effects of metabolites on the enzyme systems involved.  相似文献   

16.
Encysting cells of Acanthamoeba castellanii, Neff strain, have been examined with the electron microscope. The wall structure and cytoplasmic changes during encystment are described. The cyst wall is composed of two major layers: a laminar, fibrous exocyst with a variable amount of matrix material, and an endocyst of fine fibrils in a granular matrix. The two layers are normally separated by a space except where they form opercula in the center of ostioles (exits for excysting amebae). An additional amorphous layer is probably present between the wall and the protoplast in the mature cyst. Early in encystment the Golgi complex is enlarged and contains a densely staining material that appears to contribute to wall formation. Vacuoles containing cytoplasmic debris (autolysosomes) are present in encysting cells and the contents of some of the vacuoles are deposited in the developing cyst wall. Lamellate bodies develop in the mitochondria and appear in the cytoplasm. Several changes are associated with the mitochondrial intracristate granule. The nucleus releases small buds into the cytoplasm, and the nucleolus decreases to less than half its original volume. The cytoplasm increases in electron density and its volume is reduced by about 80%. The water expulsion vesicle is the only cellular compartment without dense content in the mature cyst. The volume fractions of lipid droplets, Golgi complex, mitochondria, digestive vacuoles, and autolysosomes have been determined at different stages of encystment by stereological analysis of electron micrographs. By chemical analyses, dry weight, protein, phospholipid, and glycogen are lower and neutral lipid is higher in the mature cyst than in the trophozoite.  相似文献   

17.
Type 2 diabetes is characterised by elevated blood glucose concentrations, which potentially could be normalised by stimulation of hepatic glycogen synthesis. Under glycogenolytic conditions, the interaction of hepatic glycogen-associated protein phosphatase-1 (PP1–GL) with glycogen phosphorylase a is believed to inhibit the dephosphorylation and activation of glycogen synthase (GS) by the PP1–GL complex, suppressing glycogen synthesis. Consequently, the interaction of GL with phosphorylase a has emerged as an attractive anti-diabetic target, pharmacological disruption of which could provide a novel mechanism to lower blood glucose levels by increasing hepatic glycogen synthesis. Here we report for the first time the in vivo consequences of disrupting the GL–phosphorylase a interaction, using a mouse model containing a Tyr284Phe substitution in the phosphorylase a-binding region of the GL protein. The resulting GLY284F/Y284F mice display hepatic PP1–GL activity that is no longer sensitive to allosteric inhibition by phosphorylase a, resulting in increased GS activity under glycogenolytic conditions, demonstrating that regulation of GL by phosphorylase a operates in vivo. GLY284F/Y284F and GLY284F/+ mice display improved glucose tolerance compared with GL+/+ littermates, without significant accumulation of hepatic glycogen. The data provide the first in vivo evidence in support of targeting the GL–phosphorylase a interaction for treatment of hyperglycaemia. During prolonged fasting the GLY284F/Y284F mice lose more body weight and display decreased blood glucose levels in comparison with their GL+/+ littermates. These results suggest that, during periods of food deprivation, the phosphorylase a regulation of GL may prevent futile glucose–glycogen cycling, preserving energy and thus providing a selective biological advantage that may explain the observed conservation of the allosteric regulation of PP1–GL by phosphorylase a in mammals.  相似文献   

18.
Here, we determined the staining properties of Balamuthia mandrillaris cysts, and assessed the effect of 2, 6-dichlorobenzonitrile (DCB), a cellulose synthesis inhibitor, and calcofluor white, a brightening agent, on its encystment. Periodic acid-Schiff reagent stained the inner wall intensely and middle and outer walls weakly suggesting that the cyst wall of B. mandrillaris may contain glycans. Furthermore, cysts, but not trophozoites, fluoresced when stained with calcofluor white. Calcofluor white and DCB, a cellulose synthesis inhibitor, inhibited B. mandrillaris encystment. This is the first report suggesting possible glycan biosynthesis in B. mandrillaris encystment, and this pathwaymay provide a potentially useful drug target and help improve treatment.  相似文献   

19.
SYNOPSIS. Hartmannella (Culbertson strain A-1) was found to undergo encystment (80–90% in 72 hr) on a non-nutrient agar containing 0.015 M MgCl2 and 0.02 M taurine. Encystment was completely inhibited by 1 × 10?5 M Mitomycin C, or 1 × 10?7 M cycloheximide or 1 × 10?6 M Actinomycin D. The ability of the amoebae to consume glucose increased fourfold within 24 hr incubation in this medium. The specific activities of cellulose synthetase, hexosephosphate transaminase and uridine diphosphosphoglucose pyrophosphorylase were also stimulated. Dehydrogenases mediating electron transfer from pyruvate, malate, succinate, α-ketoglutarate and α-glycerophosphate to triphenyltetrazolium and from glucose-6-phosphate to nicotinamide-adenine dinucleotide phosphate were, however, repressed during this period of incubation in the encystment medium. The results suggested that, during encystment of Hartmannella A-1, there was a metabolic switchover and the enzyme machinery of the amoeba was oriented more towards biosynthesis of cyst wall constituents than towards the aerobic breakdown of carbohydrates.  相似文献   

20.
We used metabolic engineering to produce wine yeasts with enhanced resistance to glucose deprivation conditions. Glycogen metabolism was genetically modified to overproduce glycogen by increasing the glycogen synthase activity and eliminating glycogen phosphorylase activity. All of the modified strains had a higher glycogen content at the stationary phase, but accumulation was still regulated during growth. Strains lacking GPH1, which encodes glycogen phosphorylase, are unable to mobilize glycogen. Enhanced viability under glucose deprivation conditions occurs when glycogen accumulates in the strain that overexpresses GSY2, which encodes glycogen synthase and maintains normal glycogen phosphorylase activity. This enhanced viability is observed under laboratory growth conditions and under vinification conditions in synthetic and natural musts. Wines obtained from this modified strain and from the parental wild-type strain don't differ significantly in the analyzed enological parameters. The engineered strain might better resist some stages of nutrient depletion during industrial use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号