首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Rho subfamily of the Rho small G protein family (Rho) regulates formation of stress fibers and focal adhesions in many types of cultured cells. In moving cells, dynamic and coordinate disassembly and reassembly of stress fibers and focal adhesions are observed, but the precise mechanisms in the regulation of these processes are poorly understood. We previously showed that 12-O-tetradecanoylphorbol-13-acetate (TPA) first induced disassembly of stress fibers and focal adhesions followed by their reassembly in MDCK cells. The reassembled stress fibers showed radial-like morphology that was apparently different from the original. We analyzed here the mechanisms of these TPA-induced processes. Rho inactivation and activation were necessary for the TPA-induced disassembly and reassembly, respectively, of stress fibers and focal adhesions. Both inactivation and activation of the Rac subfamily of the Rho family (Rac) inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly. Moreover, microinjection or transient expression of Rab GDI, a regulator of all the Rab small G protein family members, inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly, indicating that, furthermore, activation of some Rab family members is necessary for their TPA-induced reassembly. Of the Rab family members, at least Rab5 activation was necessary for the TPA-induced reassembly of stress fibers and focal adhesions. The TPA-induced, small G protein-mediated reorganization of stress fibers and focal adhesions was closely related to the TPA-induced cell motility. These results indicate that the Rho and Rab family members coordinately regulate the TPA-induced reorganization of stress fibers and focal adhesions that may cause cell motility.  相似文献   

2.
Fibroblast growth factors (FGFs) regulate a number of angiogenic cellular responses such as migration of endothelial cells. To examine the role of mitogen-activated protein kinase (MAPK) in endothelial cell migration, chemotaxis toward FGF-2 was determined in murine brain capillary endothelial cells, denoted IBE cells. PD98059, a specific inhibitor for MAPK/Erk kinase, inhibited FGF-2-induced chemotaxis of IBE cells. It has been reported that c-Src tyrosine kinase phosphorylates focal adhesion kinase at tyrosine 925 within focal adhesions, which in turn creates the binding site for Grb2, leading to MAPK activation. The Src family tyrosine kinase inhibitor, PP1, as well as overexpression of kinase-inactive c-Src, attenuated chemotaxis toward FGF-2. To investigate the signaling events involved in FGF-2-induced chemotaxis, MAPK activation was monitored in IBE cells by indirect immunofluorescence staining. Activated MAPK was initially observed in the cytoplasm and gradually moved into nuclei. A fraction of MAPK was activated by FGF-2 within focal adhesions, where FGF receptor-1 and Src family kinases were also colocalized. MAPK activation within focal adhesions was remarkably decreased in kinase-inactive c-Src-expressing IBE cells. Our data suggest that activation of MAPK by FGF-2 within focal adhesions may depend on c-Src activity and is crucial for FGF-2-induced migration of IBE cells.  相似文献   

3.
Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering through the tyrosine kinase-type HGF/SF receptor c-Met. We have previously shown that Rho small G protein (Rho) is involved in the HGF/SF-induced scattering of Madin-Darby canine kidney (MDCK) cells by regulating at least the assembly and disassembly of stress fibers and focal adhesions, but it remains unknown how c-Met regulates Rho activity. We have found here a novel signaling pathway of c-Met consisting of SHP-2-Rho that regulates the assembly and disassembly of stress fibers and focal adhesions in MDCK cells. SHP-2 is a protein-tyrosine phosphatase that contains src homology-2 domains. Expression of a dominant negative mutant of SHP-2 (SHP-2-C/S) markedly increased the formation of stress fibers and focal adhesions in MDCK cells and inhibited their scattering. C3, a Clostridium botulinum ADP-ribosyltransferase, and Y-27632, a specific inhibitor for ROCK, reversed the stimulatory effect of SHP-2-C/S on stress fiber formation and the inhibitory effect on cell scattering. Vav2 is a GDP/GTP exchange protein for Rho. Expression of a dominant negative mutant of Vav2 blocked the stimulatory effect of SHP-2-C/S on stress fiber formation. Conversely, expression of mutants of Vav2 that increased stress fiber formation inhibited HGF/SF-induced cell scattering. These results indicate that SHP-2 physiologically modulates the activity of Rho to form stress fibers and focal adhesions and thereby regulates HGF/SF-induced cell scattering. In addition, Vav2 may be involved in the SHP-2-Rho pathway.  相似文献   

4.
The alpha(v)beta(3) integrin is essential for fibroblast growth factor (FGF)-induced angiogenesis in vivo. However, the role of this integrin in FGF-2-mediated cellular responses by cultured endothelial cells is largely unknown. Cyclic RGDfV (cRGDfV) peptide is widely used to inhibit the binding of alpha(v)beta(3) integrin to vitronectin. To investigate the role of this integrin in FGF-2-mediated cellular responses, we used immortalized murine brain capillary endothelial cells, denoted IBE cells. Because IBE cells proliferate and migrate in response to FGF-2-treatment, when cultured on fibronectin-coated surface, we first examined the inhibitory activity of this peptide on the binding of alpha(v)beta(3) integrin to fibronectin as well as vitronectin. Solid phase binding assay revealed that cRGDfV peptide strongly inhibited the binding of purified alpha(v)beta(3) integrin to vitonectin- and fibronectin-coated plastic surfaces at a concentration of 50 microM. cRGDfV peptide at 50 microM inhibited spreading as well as adhesion of IBE cells on vitronectin-coated plastic surface but not on fibronectin. On fibronectin-coated substrata, cRGDfV at 50 microM attenuated FGF-2-mediated chemotaxis, but not FGF-2-induced proliferation, of IBE cells. We have previously demonstrated that mitogen-activated protein kinase (MAPK) activation within focal adhesions through c-Src activity was involved in FGF-2-induced chemotaxis of IBE cells. Treatment of cells with cRGDfV peptide was associated with reduced c-Src activity without tyrosine dephosphorylation. Immunofluorescent staining showed that cRGDfV inhibited redistribution of c-Src into focal adhesions. MAPK activation by FGF-2 within focal adhesions was also attenuated in the presence of cRGDfV peptide. Our results indicated that cRGDfV peptide inhibited redistribution of c-Src into focal adhesions, leading to impaired MAPK activation within focal adhesions and motility in FGF-2-treated endothelial cells.  相似文献   

5.
The small GTPase Rho acts on two effectors, ROCK and mDia1, and induces stress fibers and focal adhesions. However, how ROCK and mDia1 individually regulate signals and dynamics of these structures remains unknown. We stimulated serum-starved Swiss 3T3 fibroblasts with LPA and compared the effects of C3 exoenzyme, a Rho inhibitor, with those of Y-27632, a ROCK inhibitor. Y-27632 treatment suppressed LPA-induced formation of stress fibers and focal adhesions as did C3 exoenzyme but induced membrane ruffles and focal complexes, which were absent in the C3 exoenzyme-treated cells. This phenotype was suppressed by expression of N17Rac. Consistently, the amount of GTP-Rac increased significantly by Y-27632 in LPA-stimulated cells. Biochemically, Y-27632 suppressed tyrosine phosphorylation of paxillin and focal adhesion kinase and not that of Cas. Inhibition of Cas phosphorylation with PP1 or expression of a dominant negative Cas mutant inhibited Y-27632-induced membrane ruffle formation. Moreover, Crk-II mutants lacking in binding to either phosphorylated Cas or DOCK180 suppressed the Y-27632-induced membrane ruffle formation. Finally, expression of a dominant negative mDia1 mutant also inhibited the membrane ruffle formation by Y-27632. Thus, these results have revealed the Rho-dependent Rac activation signaling that is mediated by mDia1 through Cas phosphorylation and antagonized by the action of ROCK.  相似文献   

6.
Cell migration is regulated by focal adhesion (FA) turnover. Fibroblast growth factor-2 (FGF-2) induces FA disassembly in the murine brain capillary endothelial cell line IBE, leading to FGF-2-directed chemotaxis. We previously showed that activation of Src and Fes by FGF-2 was involved in chemotaxis of IBE cells. In this study, we examined the interplay between Src and Fes. FGF-2 treatment decreased the number of FA in IBE cells, but not in cells expressing dominant-negative Fes (denoted KE5-15 cells). FGF-2 induced the activation of Src and subsequent binding to and phosphorylation of Cas in IBE cells, but not in KE5-15 cells. Focal adhesion kinase (FAK) activation and tyrosine phosphorylation by Src were also delayed in KE5-15 cells compared to parental cells. FGF-2 induced activation of Src within FA in IBE cells, but not in KE5-15 cells. Downregulation of Fes or FAK using small interfering RNA diminished Src activation by FGF-2 within FA. These findings suggest that activation of Fes by FGF-2 enhances FAK-dependent activation of Src within FA, promoting FGF-2-induced disassembly of focal adhesions.  相似文献   

7.
Rho family GTPases regulate VEGF-stimulated endothelial cell motility   总被引:10,自引:0,他引:10  
Migration of endothelial cells induced by vascular endothelial growth factor (VEGF) is a critical step in angiogenesis. Stimulation of motility by growth factors such as VEGF requires interaction with the signal transduction pathways activated by the extracellular matrix (ECM). Here we demonstrate that the Rac GTPase is the critical intersection activated by type 1 collagen ECM and VEGF during stimulation of endothelial cell motility. To analyze the role of the Rho family GTPases in VEGF-stimulated endothelial cell chemotaxis and ECM-stimulated haptotaxis, we transduced the respective fusion proteins in human foreskin dermal endothelial cells using a Tat peptide from the human immunodeficiency virus Tat protein. VEGF signaling required Rac activation during chemotaxis, and Rac and Cdc42 were activated during haptotaxis on type I collagen. Similar to VEGF, Rac activation induced an increase in endothelial cell stress fiber and focal adhesion. Surprisingly, Rho activation was not present in collagen-induced haptotaxis or stimulation of chemotaxis by VEGF, although Rho induced stress fibers and focal adhesions similar to Rac activation. The result of constitutive Rho activation was an inhibition of haptotaxis. Thus, Rac is required and sufficient for the activation of endothelial cell haptotaxis and VEGF-stimulated chemotaxis.  相似文献   

8.
Rho, a member of the Rho small G protein family, regulates the formation of stress fibers and focal adhesions in various types of cultured cells. We investigated here the actions of ROCK and mDia, both of which have been identified to be putative downstream target molecules of Rho, in Madin-Darby canine kidney cells. The dominant active mutant of RhoA induced the formation of parallel stress fibers and focal adhesions, whereas the dominant active mutant of ROCK induced the formation of stellate stress fibers and focal adhesions, and the dominant active mutant of mDia induced the weak formation of parallel stress fibers without affecting the formation of focal adhesions. In the presence of C3 ADP-ribosyltransferase for Rho, the dominant active mutant of ROCK induced the formation of stellate stress fibers and focal adhesions, whereas the dominant active mutant of mDia induced only the diffuse localization of actin filaments. These results indicate that ROCK and mDia show distinct actions in reorganization of the actin cytoskeleton. The dominant negative mutant of either ROCK or mDia inhibited the formation of stress fibers and focal adhesions, indicating that both ROCK and mDia are necessary for the formation of stress fibers and focal adhesions. Moreover, inactivation and reactivation of both ROCK and mDia were necessary for the 12-O-tetradecanoylphorbol-13-acetate-induced disassembly and reassembly, respectively, of stress fibers and focal adhesions. The morphologies of stress fibers and focal adhesions in the cells expressing both the dominant active mutants of ROCK and mDia were not identical to those induced by the dominant active mutant of Rho. These results indicate that at least ROCK and mDia cooperatively act as downstream target molecules of Rho in the Rho-induced reorganization of the actin cytoskeleton.  相似文献   

9.
Capillary morphogenesis is a crucial angiogenic response of endothelial cells. Although fibroblast growth factor-2 (FGF-2) potently induces capillary morphogenesis, the contribution of vascular endothelial growth factor-A (VEGF-A) in this response has not been clarified well. Here we examined the role of VEGF signaling in FGF-2-induced capillary morphogenesis by murine brain capillary endothelial cells (IBE cells) and human umbilical vein endothelial cells. FGF-2-treated IBE cells rapidly extended on Matrigel in association with actin reorganization. Chimeric protein, of which the extracellular domain of VEGF receptor-1 (VEGFR-1) fused to immunoglobulin Fc, inhibited FGF-2-induced cell extension, resulting in decreased capillary morphogenesis. Blocking antibody against VEGFR-1 inhibited FGF-2-induced capillary formation. Also, anti-VEGF-A antibody inhibited FGF-2-induced capillary morphogenesis, which was restored by the addition of placental growth factor-1. Similar results were obtained by the experiments with human umbilical vein endothelial cells. Expression of kinase-inactive c-Akt in IBE cells showed impaired capillary morphogenesis promoted by FGF-2. Conversely, stable cell lines expressing activated c-Akt demonstrated ligand-independent capillaries, which were resistant to the treatment with anti-VEGFR-1 blocking antibody. Upstream of c-Akt, calmodulin-dependent signals seemed to be involved. Taken together, signals via VEGFR-1 were required for FGF-2-induced capillary morphogenesis by endothelial cells, and c-Akt activity seemed to be involved in this process.  相似文献   

10.
The CC chemokine eotaxin plays a pivotal role in local accumulation of eosinophils. Very little is known about the eotaxin signaling in eosinophils except the activation of the mitogen-activated protein (MAP) kinase family. The p21 G protein Rho and its substrate Rho-associated coiled-coil forming protein kinase (ROCK) regulate the formation of stress fibers and focal adhesions. In the present study, we studied the functional relevance of Rho and ROCK in eosinophils using the ROCK inhibitor (Y-27632) and exoenzyme C3, a specific Rho inhibitor. Eotaxin stimulates activation of Rho A and ROCK II in eosinophils. Exoenzyme C3 almost completely inhibited the ROCK activity, indicating that ROCK is downstream of Rho. We then examined the role of Rho and ROCK in eosinophil chemotaxis. The eotaxin-induced eosinophil chemotaxis was significantly inhibited by exoenzyme C3 or Y-27632. Because extracellular signal-regulated kinase (ERK)1/2 and p38 MAP kinases are activated by eotaxin and are critical for eosinophil chemotaxis, we investigated whether Rho and ROCK are upstream of these MAP kinases. C3 partially inhibited eotaxin-induced phosphorylation of ERK1/2 but not p38. In contrast, neither ERK1/2 nor p38 phosphorylation was abrogated by Y-27632. Both C3 and Y-27632 reduced reactive oxygen species production from eosinophils. We conclude that both Rho and ROCK are important for eosinophil chemotaxis and reactive oxygen species production. There is a dichotomy of downstream signaling pathways of Rho, namely, Rho-ROCK and Rho-ERK pathways. Taken together, eosinophil chemotaxis is regulated by multiple signaling pathways that involve at least ROCK, ERK, and p38 MAP kinase.  相似文献   

11.
The adaptor protein Crk has been reported to associate with focal adhesions and is thought to be involved in integrin-mediated signaling pathway. However, the precise mechanism of Crk-dependent regulation of cytoskeleton still remains under investigation. In this study, we have established a v-Crk-inducible cell line in rat fibroblasts 3Y1 cells and found that v-Crk activated Rho and induced actin stress fiber formation. In addition to the induction of tyrosine-phosphorylation of p130(Cas) and paxillin, we demonstrated that v-Crk induced threonine-phosphorylated bands sized at 72/78 kDa found specifically in 3Y1 cells. Both of the inhibitors of Rho and Rho-associated kinase, C3 and Y27632, respectively, inhibited these v-Crk-induced biochemical effects. Although v-Crk-induced cells exhibited a decrease of cell motility, integrin stimulation recovered the suppression of motility. Furthermore, v-Crk enhanced motility in chemotactic assay toward fibronectin with additional activation of Rho and the increase of levels of CD44 cleavage. These results suggest that v-Crk activated Rho and induced actin stress fiber formation and CD44 cleavage leading to the regulation of cell motility.  相似文献   

12.
Corneal keratocytes (stromal cells) are activated to fibroblasts and myofibroblasts during wound healing. Myofibroblast transdifferentiation is accompanied by the expression of α-smooth muscle actin (α-SMA) and the assembly of a robust stress fiber network and larger focal adhesions (FAs). The regulation of the assembly of stress fibers was evaluated in cultured corneal fibroblast and myofibroblast phenotypes. In both cell types, the inhibition of Rho GTPase activity by microinjecting C3 transferase into the cells resulted in the disassembly of stress fibers and FAs. However, the inhibition of the Rho-associated kinases ROKα and ROKβ with their inhibitor, Y27632, or by overexpression of their mutant kinase-dead forms resulted in only a partial loss of the stress fibers and FAs in myofibroblasts but a total loss in fibroblasts. ROK inhibitor-sensitive and -resistant stress fibers in myofibroblasts contained α-SMA, nonmuscle myosin II, tropomyosin, and calponin. The ROK inhibition-resistant stress fibers and FAs were lost upon the overexpression of the dominant-negative form of mDia1 (a mammalian homolog of Drosophila diaphanous protein). These findings indicated that while the assembly of stress fibers in fibroblasts critically involves both ROK and mDia1, in myofibroblasts, the assembly of α-SMA-containing stress fibers also occurs independently of ROK and involves Rho/mDia1.  相似文献   

13.
Phorbol dibutyrate (PDBu) induced the formation of podosome-like structures together with partial disassembly of actin stress fibers in A7r5 smooth muscle cells. These podosomes contained alpha-actinin, F-actin, and vinculin and exhibit a tubular, column-like structure arising perpendicularly from the bottom of PDBu-treated cells. The conventional protein kinase C (PKC) antagonist, GO6976, inhibited PDBu-induced cytoskeletal remodeling at 0.1 microM, whereas the novel PKC antagonist, rottlerin, was ineffective at 10 microM. PDBu induced the translocation of the conventional PKC-alpha but not the novel PKC-delta to the sites of podosome formation in A7r5 cells. Although partial disassembly of actin stress fibers was observed in both Y-27632- and PDBu-treated cells, focal adhesions were much reduced in number and size only in Y-27632-treated cells. Furthermore, PDBu restored focal adhesions in Y-27632-treated cells. Live video fluorescence microscopy of alpha-actinin GFP revealed a lag phase of about 20 min prior to the rapid formation and dynamic reorganization of podosomes during PDBu treatment. These findings suggest that conventional PKCs mediate PDBu-induced formation of dynamic podosome-like structures in A7r5 cells, and Rho-kinase is unlikely to be the underlying mechanism. The podosome columns could represent molecular scaffolds where PKC-alpha phosphorylates regulatory proteins necessary for Ca(2+) sensitization in smooth muscle cells.  相似文献   

14.
Rho plays a regulatory role in the formation of actin stress fibers and focal adhesions, and it is also involved in integrin-mediated signaling events. To study the role of Rho in alpha(v)beta(3)/gelsolin-dependent signaling, the HIV-Tat peptide, hemagglutinin (HA)-tagged Rho(Val-14) (constitutively active) and Rho(Asn-19) (dominant negative) were transduced into avian osteoclasts. Protein transduction by HA-Tat was highly efficient, and 90-100% of the cells were transduced with HA-tagged proteins. We demonstrate here that Rho(Val-14) transduction (100 nM) stimulated gelsolin-associated phosphatidylinositol 3-kinase activity, podosome assembly, stress fiber formation, osteoclast motility, and bone resorption, mimicking osteoclast stimulation by osteopontin/alpha(v)beta(3.) The effects of Rho(Val-14) transduction stimulation was time-dependent. C3 exoenzyme blocked the effects of Rho(Val-14) and induced podosome disassembly, loss of motility, and inhibition of bone resorption. Transduction of Rho(Asn-19) produced podosome disassembly, and blocked osteopontin stimulation. These data demonstrate that integrin-dependent activation of phosphoinositide synthesis, actin stress fiber formation, podosome reorganization for osteoclast motility, and bone resorption require Rho stimulation.  相似文献   

15.
Fibroblast growth factor-2 (FGF-2)-induced migration of endothelial cells is involved in angiogenesis in vivo. However, signal transduction pathways leading to FGF-2-induced chemotaxis of endothelial cells are largely unknown. Previous studies have shown that the cytoplasmic protein-tyrosine kinase c-Fes is expressed in vascular endothelial cells and may influence angiogenesis in vivo. To investigate the contribution of c-Fes to FGF-2 signaling, we expressed wild-type or kinase-inactive human c-Fes in the murine brain capillary endothelial cell line, IBE (Immortomouse brain endothelial cells). Wild-type c-Fes was tyrosine-phosphorylated upon FGF-2-stimulation in transfected cells, whereas kinase-inactive c-Fes was not. Overexpression of wild-type c-Fes promoted FGF-2-independent tube formation of IBE cells. Tube formation was not observed with endothelial cells expressing kinase-inactive c-Fes, indicating a requirement for c-Fes kinase activity in this biological response. Expression of kinase-defective c-Fes suppressed endothelial cell migration following FGF-2 treatment, suggesting that activation of endogenous c-Fes may be required for the chemotactic response. Expression of either wild-type c-Fes or the kinase-inactive mutant did not affect the tyrosine phosphorylation FRS2, Shc, or phospholipase C-gamma, nor did it influence the kinetics of mitogen-activated protein kinase activation. These results implicate c-Fes in FGF-2-induced chemotaxis of endothelial cells through signaling pathways not linked to mitogenesis.  相似文献   

16.
Interactions of cell adhesions, Rho GTPases and actin in the endothelial cells' response to external forces are complex and not fully understood, but a qualitative understanding of the mechanosensory response begins to emerge. Here, we formulate a mathematical model of the coupled dynamics of cell adhesions, small GTPases Rac and Rho and actin stress fibers guiding a directional reorganization of the actin cytoskeleton. The model is based on the assumptions that the interconnected cytoskeleton transfers the shear force to the adhesion sites, which in turn transduce the force into a chemical signal that activates integrins at the basal surface of the cell. Subsequently, activated and ligated integrins signal and transiently de-activate Rho, causing the disassembly of actin stress fibers and inhibiting the maturation of focal complexes into focal contacts. Focal complexes and ligated integrins activate Rac, which in turn enhances focal complex assembly. When Rho activity recovers, stress fibers re-assemble and promote the maturation of focal complexes into focal contacts. Merging stress fibers self-align, while the elevated level of Rac activity at the downstream edge of the cell is translated into an alignment of the cells and the newly forming stress fibers in the flow direction. Numerical solutions of the model equations predict transient changes in Rac and Rho that compare well with published experimental results. We report quantitative data on early alignment of the stress fibers and its dependence on cell shape that agrees with the model.  相似文献   

17.
The first cell migration event in the mouse embryo is the movement of parietal endoderm cells from the surface of the inner cell mass facing the blastocoel cavity to line the inner surface of the trophectoderm. F9 embryoid bodies provide an in vitro model for this event. They have an inner core of undifferentiated stem cells surrounded by an outer visceral endoderm layer. When plated on a laminin coated substrate, visceral endoderm transitions to parietal endoderm and migrates onto the dish, away from the attached embryoid body. We now show that this outgrowth contains abundant focal complexes and focal adhesions, as well as lamellipodia and filopodia. Treatment with the ROCK inhibitor Y-27632 promotes a 2-fold increase in outgrowth, and a transition from focal adhesions and associated stress fibers, to focal complexes and a decrease in stress fibers. ROCK inhibition also leads to an increase in lamellipodia. Inhibition of RhoA by transfection of a vector encoding C3 transferase, direct administration of the C3 enzyme, or transfection of a vector encoding p190 Rho GTPase Activating Protein also promotes outgrowth and an apparent transition from focal adhesions to focal complexes. Parietal endoderm outgrowth generated using vinculin-deficient F9 stem cells migrates 2-fold further than wild type cultures, but this outgrowth retains the morphology of wild type parietal endoderm, including focal adhesions and stress fibers. Addition of Y-27632 to vinculin-null outgrowth cultures further stimulates migration an additional 2-fold, supporting the conclusion that Rho/ROCK and vinculin regulate parietal endoderm outgrowth by distinct pathways.  相似文献   

18.
The first cell migration event in the mouse embryo is the movement of parietal endoderm cells from the surface of the inner cell mass facing the blastocoel cavity to line the inner surface of the trophectoderm. F9 embryoid bodies provide an in vitro model for this event. They have an inner core of undifferentiated stem cells surrounded by an outer visceral endoderm layer. When plated on a laminin coated substrate, visceral endoderm transitions to parietal endoderm and migrates onto the dish, away from the attached embryoid body. We now show that this outgrowth contains abundant focal complexes and focal adhesions, as well as lamellipodia and filopodia. Treatment with the ROCK inhibitor Y-27632 promotes a 2-fold increase in outgrowth, and a transition from focal adhesions and associated stress fibers, to focal complexes and a decrease in stress fibers. ROCK inhibition also leads to an increase in lamellipodia. Inhibition of RhoA by transfection of a vector encoding C3 transferase, direct administration of the C3 enzyme, or transfection of a vector encoding p190 Rho GTPase Activating Protein also promotes outgrowth and an apparent transition from focal adhesions to focal complexes. Parietal endoderm outgrowth generated using vinculin-deficient F9 stem cells migrates 2-fold further than wild type cultures, but this outgrowth retains the morphology of wild type parietal endoderm, including focal adhesions and stress fibers. Addition of Y-27632 to vinculin-null outgrowth cultures further stimulates migration an additional 2-fold, supporting the conclusion that Rho/ROCK and vinculin regulate parietal endoderm outgrowth by distinct pathways.  相似文献   

19.
Fibronectin (FN) fibrillogenesis is an essential biological process mediated by α5β1 integrin and cellular contractile forces. Assembly of a FN matrix by activated endothelial cells occurs during angiogenic blood vessel remodeling and signaling components that control this event represent attractive therapeutic targets. Here we examined the role of individual Rho GTPases in FN matrix remodeling by selectively attenuating their expression in cultured endothelial cells. Whereas pharmacological ablation of myosin-regulated contractility abrogated matrix assembly, no significant decrease was detected in the amount of FN deposited by RhoA, RhoB-, RhoC-, Rac1-, or Cdc42-depleted cells. Rather, distinct differences in fiber arrangement were observed. Most strikingly, RhoA silenced cells assembled a fine FN meshwork beneath α5β1 integrin-based fibrillar adhesions, in the absence of classical focal adhesions and actin stress fibers, indicating that α5β1 integrin translocation and FN fibril elongation can occur in low tension states such as those encountered by newly-forming vessels in tissue. In contrast, highly contractile Cdc42-deficient cells deposited FN globules and Rac-deficient cells assembled long arrays, reflecting their increased motility. We propose that regulation of FN scaffolds by Rho GTPase signaling impacts bidirectional communications and mechanical interactions between endothelial cells and their extracellular matrix during vascular morphogenesis.  相似文献   

20.
Fibroblast-collagen matrix contraction has been used as a model system to study how cells organize connective tissue. Previous work showed that lysophosphatidic acid (LPA)-stimulated floating collagen matrix contraction is independent of Rho kinase while platelet-derived growth factor (PDGF)-stimulated contraction is Rho kinase-dependent. The current studies were carried out to determine the signaling mechanisms of basic fibroblast growth factor (bFGF)-stimulated fibroblast-collagen matrix contraction. Both bFGF and LPA promoted equally collagen matrix contraction well. Three different inhibitors, LY294002 for phosphatidylinositol-3-kinase (PI3K), C3 exotransferase for Rho and Y27632 for Rho kinase, suppressed the bFGF-stimulated fibroblast-collagen matrix contraction. With bFGF stimulation, fibroblasts spread with prominent stress fiber network formation and focal adhesions. In the presence of Rho kinase inhibitor, focal adhesions and stress fibers were mostly lost. We demonstrated that bFGF stimulation for fibroblast caused transient Rac and Rho activation but did not activate Cdc42. In addition, bFGF enhanced fibroblast migration in wound healing assay. The present study implicates PI3K, Rac, Rho, and Rho kinase as being involved in bFGF-stimulated collagen matrix contraction. The elucidation of bFGF-triggered signal transduction may be an important clue to understand the roles of bFGF in wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号