共查询到20条相似文献,搜索用时 15 毫秒
1.
C L Schultz K S Kunert R White 《Journal of industrial microbiology & biotechnology》2000,24(2):113-115
Staphylococcus aureus ATCC 6538 and a clinical isolate of S. aureus from a bacterial keratitis patient were examined for their ability to adhere to etafilcon A, polymacon, silafocon, and pauflufocon
A, B and C contact lenses. Both isolates adhered more to the rigid gas permeable (RGP) materials than to the hydrogel lenses
tested (P < 0.05). S. aureus ATCC 6538 adhered to the etafilcon A material to a greater extent than did the clinical isolate (P < 0.05). there were no statistically significant differences in the recovery of staphylococci from unworn lens materials
when surface area, composition and ionicity were evaluated for either the hydrogel or rgp lenses tested against lenses of
a similar type. however, differences were observed when hydrogel lenses were evaluated against rgp lenses (P < 0.05). these differences may be related to water content. Journal of Industrial Microbiology & Biotechnology (2000) 24, 113–115.
Received 12 August 1999/ Accepted in revised form 02 November 1999 相似文献
2.
AbstractCorneal infection is a devastating sight-threatening complication that is associated with contact lens (CL) wear, commonly caused by Pseudomonas aeruginosa. Lately, Achromobacter xylosoxidans, Delftia acidovorans, and Stenotrophomonas maltophilia have been associated with corneal infection. This study investigated the adhesion of these emerging pathogens to CLs, under the influence of an artificial tear solution (ATS) containing a variety of components commonly found in human tears. Two different CL materials, etafilcon A and senofilcon A, either soaked in an ATS or phosphate buffered saline, were exposed to the bacteria. Bacterial adhesion was investigated using a radio-labeling technique (total counts) and plate count method (viable counts). The findings from this study revealed that in addition to P. aeruginosa, among the emerging pathogens evaluated, A. xylosoxidans showed an increased propensity for adherence to both CL materials and S. maltophilia showed lower viability. ATS influenced the viable counts more than the total counts on CLs. 相似文献
3.
A modified Robbins device (MRD) has frequently been used as a model system to study adhesion and biofilm formation. This study investigates the reproducibility of attachment and whether a statistically significant gradient of adhesion exists along the 25 sampling ports of a MRD. A simple, quantitative, non‐destructive, bioluminescence assay was developed in order to measure attachment of bioluminescent P. veronii BL146bio cells to plastic discs of Thermanox? in newly modified Robbins devices (nMRD). No statistically significant difference in mean bioluminescence values occurred between pairs of nMRDs run in parallel, but there was a significant difference in bioluminescence values between different batches of bacteria (p < 0.05). Generalised Linear Modelling showed that the position of the sample disc influenced the numbers attaching. In 50% of devices a significant positive gradient of attachment occurred and bioluminescence values varied from disc 1 to disc 25 by 29.6–58.0%. In the other 50% of nMRDs there was a smaller, non‐significant gradient. A disc sampling regime was devised to take this gradient into account and used to prove a positive correlation between bioluminescence and numbers of viable P. veronii BL146bio cells during a 6h biofilm accumulation period. 相似文献
4.
The invasion of a soft contact lens by Exophiala jeanselmei is documented. All species in this genus are pathogenic. In humans E. jeanselmei is a recognized cause of mycetoma, phaeohyphomycosis and keratomycosis. This fungus has not been previously listed among lens invaders. 相似文献
5.
M.D.P. Willcox E.B.H. Hume Y. Aliwarga N. Kumar N. Cole 《Journal of applied microbiology》2008,105(6):1817-1825
Aims: To develop an antimicrobial peptide with broad spectrum activity against bacteria implicated in biomaterial infection of low toxicity to mammalian cells and retaining its antimicrobial activity when covalently bound to a biomaterial surface. Methods and Results: A synthetic peptide (melimine) was produced by combining portions of the antimicrobial cationic peptides mellitin and protamine. In contrast to the parent peptide melittin which lysed sheep red blood cells at >10 μg ml?1, melimine lysed sheep red blood cells only at concentrations >2500 μg ml?1, well above bactericidal concentrations. Additionally, melimine was found to be stable to heat sterilization. Evaluation by electron microscopy showed that exposure of both Pseudomonas aeruginosa and Staphylococcus aureus to melimine at the minimal inhibitory concentration (MIC) produced changes in the structure of the bacterial membranes. Further, repeated passage of these bacteria in sub‐MIC concentrations of melimine did not result in an increase in the MIC. Melimine was tested for its ability to reduce bacterial adhesion to contact lenses when adsorbed or covalently attached. Approximately 80% reduction in viable bacteria was seen against both P. aeruginosa and S. aureus for 500 μg per lens adsorbed melimine. Covalently linked melimine (18 ± 4 μg per lens) showed >70% reduction of these bacteria to the lens. Conclusions: We have designed and tested a synthetic peptide melimine incorporating active regions of protamine and mellitin which may represent a good candidate for development as an antimicrobial coating for biomaterials. Significance and Impact of the Study: Infection associated with the use of biomaterials remains a major barrier to the long‐term use of medical devices. The antimicrobial peptide melimine is an excellent candidate for development as an antimicrobial coating for such devices. 相似文献
6.
Negar Babaei Omali Zhenjun Zhao Ling Zhong Mark J. Raftery Hua Zhu Jerome Ozkan 《Biofouling》2013,29(7):697-709
This study was designed to use multiple reaction monitoring (MRM) for accurate quantification of contact lens protein deposits. Worn lenses used with a multipurpose disinfecting solution were collected after wear. Individual contact lenses were extracted and then digested with trypsin. MRM in conjunction with stable-isotope-labeled peptide standards was used for protein quantification. The results show that lysozyme was the major protein detected from both lens types. The amount of protein extracted from contact lenses was affected by the lens material. Except for keratin-1 (0.83 ± 0.61 vs 0.77 ± 0.20, p = 0.81) or proline rich protein-4 (0.11 ± 0.04 vs 0.15 ± 0.12, p = 0.97), the amounts of lysozyme, lactoferrin, or lipocalin-1 extracted from balafilcon A lenses (12.9 ± 9.01, 0.84 ± 0.50 or 2.06 ± 1.6, respectively) were significantly higher than that extracted from senofilcon A lenses (0.88 ± 0.13, 0.50 ± 0.10 or 0.27 ± 0.23, respectively) (p < 0.05). The amount of protein extracted from contact lenses was dependent on both the individual wearer and the contact lens material. This may have implications for the development of clinical responses during lens wear for different people and with different types of contact lenses. The use of MRM-MS is a powerful analytical tool for the quantification of specific proteins from single contact lenses after wear. 相似文献
7.
We have prepared antisera in rabbits to the “contact sites A” glycoprotein (gp80) purified from Dictyostelium discoideum. IgG isolated from these anti-sera reacts with a number of different proteins in D discoideum lysates, as analyzed by immune precipitation and by antibody staining of gel electropherograms transferred to nitrocellulose. Blocking experiments indicate that this cross-reactivity reflects the presence of common antigeneic determinants on gp80 and other cellular proteins, rather than the presence of extraneous antibodies in the antisera. The spectrum of reactive proteins is different a: different stages of development. In particular, gp80 itself is synthesized only for a restricted period during the cell aggregation phase. The protein persists throughout development and can be detected in spores. Anti-gp80 Fab fragments bind to the surface of developing D discoideum cells and specifically block their developmentally regulated adhesion. After absorption with vegetative cells, the IgG stains only gp80 and (to a lesser extent) one other band in lysates of aggregation-competent cells. The absorbed antibodies also can block adhesion. Several proteins that appear late in development also arc stained by the absorbed IgG. 相似文献
8.
A wide variety of biomaterials and bioactive molecules have been applied as scaffolds in neuronal tissue engineering. However, creating devices that enhance the regeneration of nervous system injuries is still a challenge, due the difficulty in providing an appropriate environment for cell growth and differentiation and active stimulation of nerve regeneration. In recent years, bacterial cellulose (BC) has emerged as a promising biomaterial for biomedical applications because of its properties such as high crystallinity, an ultrafine fiber network, high tensile strength, and biocompatibility. The small signaling peptides found in the proteins of extracellular matrix are described in the literature as promoters of adhesion and proliferation for several cell lineages on different surfaces. In this work, the peptide IKVAV was fused to a carbohydrate-binding module (CBM3) and used to modify BC surfaces, with the goal of promoting neuronal and mesenchymal stem cell (MSC) adhesion. The recombinant proteins IKVAV-CBM3 and (19)IKVAV-CBM3 were successfully expressed in E. coli, purified through affinity chromatography, and stably adsorbed to the BC membranes. The effect of these recombinant proteins, as well as RGD-CBM3, on cell adhesion was evaluated by MTS colorimetric assay. The results showed that the (19)IKVAV-CBM3 was able to significantly improve the adhesion of both neuronal and mesenchymal cells and had no effect on the other cell lineages tested. The MSC neurotrophin expression in cells grown on BC membranes modified with the recombinant proteins was also analyzed. 相似文献
9.
Shen Y Nakajima M Kojima S Homma M Fukuda T 《Biochemical and biophysical research communications》2011,(2):160-165
Cell’s adhesion is important to cell’s interaction and activates. In this paper, a novel method for cell–cell adhesion force measurement was proposed by using a nano-picker. The effect of the contact time on the cell–cell adhesion force was studied. The nano-picker was fabricated from an atomic force microscopy (AFM) cantilever by nano fabrication technique. The cell–cell adhesion force was measured based on the deflection of the nano-picker beam. The result suggests that the adhesion force between cells increased with the increasing of contact time at the first few minutes. After that, the force became constant. This measurement methodology was based on the nanorobotic manipulation system inside an environmental scanning electron microscope. It can realize both the observation and manipulation of a single cell at nanoscale. The quantitative and precise cell–cell adhesion force result can be obtained by this method. It would help us to understand the single cell interaction with time and would benefit the research in medical and biological fields potentially. 相似文献
10.
The influence of fibronectin (Fn) coated surfaces patterned with poly(ethylene glycol) microgels having inter-gel spacings between 0.5 and 3.0 μm on the adhesion of Staphylococcus aureus strains with and without Fn-binding proteins and cellular adhesion/spreading was investigated. Quantitative force measurements between a S. aureus cell and a patterned surface showed that the adhesion force between the bacterium and the patterned surface increased substantially after Fn adsorption, regardless of the strain used, but decreased with decreasing inter-gel spacing. In flow-chamber experiments, the Fn-binding strain adhered at a higher rate after Fn adsorption than the strain lacking Fn-binding proteins. In both cases, the adhesion rates decreased with decreasing inter-gel spacing. Osteoblast-like cells could bind to patterned surfaces despite the microgels, and adsorbed Fn substantially amplified this effect. Even under highly non-adhesive conditions associated with closely spaced microgels, adsorbed Fn preserves a window of inter-gel spacing around 1 μm where the adhesion of staphylococcal cells is hindered while cells can still adhere and spread. 相似文献
11.
Thermodynamics of contact angle phenomena is strongly affected by the presence of thin liquid films. However, at present, studies for CO2/brine/mineral systems only consider the films apart from contact angles. In this paper, molecular dynamics (MD) simulations have been performed to simultaneously investigate the interrelationship between water film thicknesses and water contact angles. Two types of contact angles were considered namely Young’s contact angle (no water film is present) and contact angle with film (a stable film is present). The results showed that as Young’s contact angle increased, film thickness decreased which leading to increasing of contact angle with film. The effects of CO2-mineral pre-contact have also been investigated and it has been found that on mediate hydrophilic surfaces (Q3), water films were present when CO2 droplets were placed above the surfaces, however, water films were absent when CO2 droplets directly contact with the surfaces. This phenomenon implies that water films on mineral surfaces have a possibility to rupture and a film rupture mechanism for CO2 adhesion on hydrated mineral surfaces was proposed. These results may provide new information on interactions among CO2, water/brine and mineral to better understand the behaviour of CO2 during geologic sequestration. 相似文献
12.
Roger A. Sauer 《Computer methods in biomechanics and biomedical engineering》2013,16(6):627-640
A 3D multiscale model is presented which describes the adhesion and deformation of a gecko seta. The multiscale approach combines three models at different length scales: at the top level, on the order of several micrometers, a nonlinear finite element beam model is chosen to capture the branched microstructure of the gecko seta. At the intermediate level, on the order of several nanometers, a second finite element model is used to capture the detailed behaviour of the seta tips, the so-called spatulae. At the lowest level, on the order of a few angstroms, a molecular interaction potential is used to describe the van der Waals adhesion forces between spatulae and substrate. Coarse-graining techiques are used to bridge the scale between the model levels. To illustrate and validate the proposed gecko seta model, numerical pull-off simulations are shown and compared to experimental data from the literature. 相似文献
13.
A parallel-plate flow chamber was used to measure the attachment and detachment rates of Escherichia coli to a glass surface at various fluid velocities. The effect of flagella on adhesion was investigated by performing experiments with several E. coli strains: AW405 (motile); HCB136 (nonmotile mutant with paralyzed flagella); and HCB137 (nonmotile mutant without flagella). We compared the total attachment rates and the fraction of bacteria retained on the surface to determine how the presence and movement of the flagella influence transport to the surface and adhesion strength in this dynamic system. At the lower fluid velocities, there was no significant difference in the total attachment rates for the three bacterial strains; nonmotile strains settled at a rate that was of the same order of magnitude as the diffusion rate of the motile strain. At the highest fluid velocity, the effect of settling was minimized to better illustrate the importance of motility, and the attachment rates of both nonmotile strains were approximately five times slower than that of the motile bacteria. Thus, different processes controlled the attachment rate depending on the parameter regime in which the experiment was performed. The fractions of motile bacteria retained on the glass surface increased with increasing velocity, whereas the opposite trend was found for the nonmotile strains. This suggests that the rotation of the flagella enables cells to detach from the surface (at the lower fluid velocities) and strengthens adhesion (at higher fluid velocities), whereas nonmotile cells detach as a result of shear. There was no significant difference in the initial attachment rates of the two nonmotile species, which suggests that merely the presence of flagella was not important in this stage of biofilm development. 相似文献
14.
Brink M Todorov SD Martin JH Senekal M Dicks LM 《Journal of applied microbiology》2006,100(4):813-820
AIMS: Screening of five bile salt-resistant and low pH-tolerant lactic acid bacteria for inhibitory activity against lactic acid bacteria and bacterial strains isolated from the faeces of children with HIV/AIDS. Determining the effect of prebiotics and soy milk-base on cell viability and adhesion of cells to intestinal mucus. METHODS AND RESULTS: Lactobacillus plantarum 423, Lactobacillus casei LHS, Lactobacillus salivarius 241, Lactobacillus curvatus DF 38 and Pediococcus pentosaceus 34 produced the highest level of antimicrobial activity (12,800 AU ml(-1)) when grown in MRS broth supplemented with 2% (m/v) dextrose. Growth in the presence of Raftilose Synergy1, Raftilose L95 and Raftiline GR did not lead to increased levels of antimicrobial activity. Cells grown in the presence of Raftilose Synergy1 took longer to adhere to intestinal mucus, whilst cells grown in the absence of prebiotics showed a linear rate of binding. CONCLUSIONS: A broad range of gram-positive and gram-negative bacteria were inhibited. Dextrose stimulated the production of antimicrobial compounds. Adhesion to intestinal mucus did not increase with the addition of prebiotics. SIGNIFICANCE AND IMPACT OF THE STUDY: The strains may be incorporated in food supplements for HIV/AIDS patients suffering from gastro-intestinal disorders. 相似文献
15.
Eleftherios Siamantouras Claire E. Hills Mustafa Y.G. Younis Paul E. Squires Kuo-Kang Liu 《FEBS letters》2014
In this study we use a novel approach to quantitatively investigate mechanical and interfacial properties of clonal β-cells using AFM-Single Cell Force Spectroscopy (SCFS). MIN6 cells were incubated for 48 h with 0.5 mM Ca2+ ± the calcimimetic R568 (1 μM). AFM-SCFS adhesion and indentation experiments were performed by using modified tipless cantilevers. Hertz contact model was applied to analyse force–displacement (F–d) curves for determining elastic or Young’s modulus (E). Our results show CaSR-evoked increases in cell-to-cell adhesion parameters and E modulus of single cells, demonstrating that cytomechanics have profound effects on cell adhesion characterization. 相似文献
16.
A comparative study of the adhesion of epiphytic bacteria and marine free-living, saprophytic, and pathogenic bacteria on seagrass leaves and abiotic surfaces was performed to prove the occurrence of true epiphytes of Zostera marina and to elucidate the bacterium-plant symbiotrophic relationships. It was shown that in the course of adhesion to the seagrass leaves of two taxonomically different bacteria, Cytophaga sp. KMM 3552 and Pseudoalteromonas citrea KMM 461, isolated from the seagrass surface, the number of viable cells increased 3–7-fold after 60 h of incubation, reaching 1.0–2.0 × 105 cells/cm2; however, in the case of adhesion of these bacteria to abiotic surfaces, such as glass or metal, virtually no viable cells were observed after 60 h of incubation. Such selectivity of cell adhesion was not observed in the case of three other bacterial species studied, viz., Vibrio alginolyticus KMM 3551, Bacillus subtilis KMM 430, and Pseudomonas aeruginosa KMM 433. The amount of viable cells of V. alginolyticus KMM 3551 absorbed on glass and metal surfaces increased twofold after 40 h of incubation. The cells of saprophytic B. subtilis KMM 430 and pathogenic P. aeruginosa KMM 433 adsorbed on three studied substrata remained viable for 36 h and died by the 60th hour of incubation. 相似文献
17.
An atomic force microscope has been used to study the adhesion of Bacillus mycoides spores to a hydrophilic glass surface and a hydrophobic-coated glass surface. AFM images of spores attached to the hydrophobic-coated mica surface allowed the measurement of spore dimensions in an aqueous environment without desiccation. The spore exosporium was observed to be flexible and to promote the adhesion of the spore by increasing the area of spore contact with the surface. Results from counting procedures using light microscopy matched the density of spores observed on the hydrophobic-coated glass surface with AFM. However, no spores were observed on the hydrophilic glass surface with AFM, a consequence of the weaker adhesion of the spores at this surface. AFM was also used to quantify directly the interactions of B. mycoides spores at the two surfaces in an aqueous environment. The measurements used "spore probes" constructed by immobilizing a single spore at the apex of a tipless AFM cantilever. The data showed that stretching and sequential bond breaking occurred as the spores were retracted from the hydrophilic glass surface. The greatest spore adhesion was measured at the hydrophobic-coated glass surface. An attractive force on the spores was measured as the spores approached the hydrophobic-coated surface. At the hydrophilic glass surface, only repulsive forces were measured during the approach of the spores. The AFM force measurements were in qualitative agreement with the results of a hydrodynamic shear adhesion assay that used a spinning disk technique. Quantitatively, AFM measurements of adhesive force were up to 4 x 10(3) times larger than the estimates made using the spinning disk data. This is a consequence of the different types of forces applied to the spore in the different adhesion assays. AFM has provided some unique insights into the interactions of spores with surfaces. No other instrument can make such direct measurements for single microbiological cells. 相似文献
18.
Tserenchimed Purevsuren Batbayar Khuyagbaatar Kyungsoo Kim 《Computer methods in biomechanics and biomedical engineering》2019,22(3):243-250
In this study, the effects of medial collateral ligament (MCL) release and the limb correction strategies with pre-existing MCL laxity on tibiofemoral contact force distribution after high tibial osteotomy (HTO) were investigated. The medial and lateral contact forces of the knee were quantified during simulated standing using computational modeling techniques. MCL slackness had a primary influence on contact force distribution of the knee, while there was little effect of simulated limb correction. Anterior and middle bundle release, which involved the partial release of two-thirds of the superficial MCL, was shown to be an optimal surgical method in HTO, achieving balanced contact distribution in simulated weight-bearing standing. 相似文献
19.
Iracema Utsch Braga Daniel Neves Rocha Ricardo Luiz Utsch Estevam Barbosa Las Casas Roberto Márcio Andrade Renato Natal Jorge 《Computer methods in biomechanics and biomedical engineering》2013,16(9):954-962
This paper presents a method for prediction of forces and displacements in the expansion screw of a modified mandibular Schwarz appliance and the contact pressure distributions on the mucosa during malocclusions treatment. A 3D finite element biomechanical model of the complete mandible–mucosa–apparatus set was built using computerised tomographic images of a patient's mandible and constructive solid geometry by computer software. An iterative procedure was developed to handle a boundary condition that takes into account the mandibular asymmetries. The results showed asymmetries in the contact pressure distributions that indicated with precision the patient's malocclusion diagnosis. In vivo measurements of contact pressure using piezoelectric sensors agreed with the computational results. It was shown that the left and right ends of the expansion screw move differently with respect to the patient mandible, even though the expansion screw has an opening mechanism to ensure equal stretching at both ends. The contact pressures between the apparatus and the mucosa vary linearly with applied forces, which can simplify the analysis of the biomechanical behaviour of the expander mandible apparatus. The biomechanical modelling proposed in this paper can be a useful tool to improve malocclusions treatment, safely avoiding the use of forces acting on live structures beyond the biological tolerance, which could result in traumatic effects. 相似文献
20.
A 6-m-deep lake has been sampled to measure the temporal and depth-wise distribution of heterotrophic bacteria and biological activity in the water. Surface, mid-depth and bottom waters were analysed at monthly intervals for a period of one year. The coefficient of heterotrophic activity, alkaline phosphatase activity and biological oxygen demand are used as an index of biological activity. The bacterial community was at maximum during spring, coinciding with high values of biological activity. Highest biological activity was observed in the bottom waters. Dissolved organic carbon showed a significant positive correlation with most of the biological activity parameters. This suggests that biological activity, as measured by the coefficient of heterotrophic activity, was more closely related to the concentration of substrates than to population density of heterotrophic bacteria. 相似文献