首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: BACKGROUND: Quantitative trait locus (QTL) studies show that variation in salinity tolerance in Arctic charr and rainbow trout has a genetic basis, even though both these species have low to moderate salinity tolerance capacities. QTL were observed to localize to homologous linkage group segments within putative chromosomal regions possessing multiple candidate genes. We compared salinity tolerance QTL in rainbow trout and Arctic charr to those detected in a higher salinity tolerant species, Atlantic salmon. The highly derived karyotype of Atlantic salmon allows for the assessment of whether disparity in salinity tolerance in salmonids is associated with differences in genetic architecture. To facilitate these comparisons, we examined the genomic synteny patterns of key candidate genes in the other model teleost fishes that have experienced three whole-genome duplication (3R) events which preceded a fourth (4R) whole genome duplication event common to all salmonid species. RESULTS: Nine linkage groups contained chromosome-wide significant QTL (AS-2, -4p, -4q, -5, -9, -12p, -12q, -14q -17q, -22, and [MINUS SIGN]23), while a single genome-wide significant QTL was located on AS-4q. Salmonid genomes shared the greatest marker homology with the genome of three-spined stickleback. All linkage group arms in Atlantic salmon were syntenic with at least one stickleback chromosome, while 18 arms had multiple affinities. Arm fusions in Atlantic salmon were often between multiple regions bearing salinity tolerance QTL. Nine linkage groups in Arctic charr and six linkage group arms in rainbow trout currently have no synteny alignments with stickleback chromosomes, while eight rainbow trout linkage group arms were syntenic with multiple stickleback chromosomes. Rearrangements in the stickleback lineage involving fusions of ancestral arm segments could account for the 21 chromosome pairs observed in the stickleback karyotype. CONCLUSIONS: Salinity tolerance in salmonids from three genera is to some extent controlled by the same loci. Synteny between QTL in salmonids and candidate genes in stickleback suggests genetic variation at candidate gene loci could affect salinity tolerance in all three salmonids investigated. Candidate genes often occur in pairs on chromosomes, and synteny patterns indicate these pairs are generally conserved in 2R, 3R, and 4R genomes. Synteny maps also suggest that the Atlantic salmon genome contains three larger syntenic combinations of candidate genes that are not evident in any of the other 2R, 3R, or 4R genomes examined. These larger synteny tracts appear to have resulted from ancestral arm fusions that occurred in the Atlantic salmon ancestor. We hypothesize that the superior hypo-osmoregulatory efficiency that is characteristic of Atlantic salmon may be related to these clusters.  相似文献   

2.
We updated the genetic map of rainbow trout (Oncorhynchus mykiss) for 2 outcrossed mapping panels, and used this map to assess the putative chromosome structure and recombination rate differences among linkage groups. We then used the rainbow trout sex-specific maps to make comparisons with 2 other ancestrally polyploid species of salmonid fishes, Arctic charr (Salvelinus alpinus) and Atlantic salmon (Salmo salar) to identify homeologous chromosome affinities within each species and ascertain homologous chromosome relationships among the species. Salmonid fishes exhibit a wide range of sex-specific differences in recombination rate, with some species having the largest differences for any vertebrate species studied to date. Our current estimate of female:male recombination rates in rainbow trout is 4.31:1. Chromosome structure and (or) size is associated with recombination rate differences between the sexes in rainbow trout. Linkage groups derived from presumptive acrocentric type chromosomes were observed to have much lower sex-specific differences in recombination rate than metacentric type linkage groups. Arctic charr is karyotypically the least derived species (i.e., possessing a high number of acrocentric chromosomes) and Atlantic salmon is the most derived (i.e., possessing a number of whole-arm fusions). Atlantic salmon have the largest female:male recombination ratio difference (i.e., 16.81:1) compared with rainbow trout, and Arctic charr (1.69:1). Comparisons of recombination rates between homologous segments of linkage groups among species indicated that when significant experiment-wise differences were detected (7/24 tests), recombination rates were generally higher in the species with a less-derived chromosome structure (6/7 significant comparisons). Greater similarity in linkage group syntenies were observed between Atlantic salmon and rainbow trout, suggesting their closer phylogenetic affinities, and most interspecific linkage group comparisons support a model that suggests whole chromosome arm translocations have occurred in the evolution of this group. However, some possible exceptions were detected and these findings are discussed in relation to their influence on segregation distortion patterns. We also report unusual meiotic segregation patterns in a female parent involving the duplicated (homeologous) linkage group pair 12/16 and discuss several models that may account for these patterns.  相似文献   

3.
In salmonid fishes, life-history changes may often be coupled to early individual growth trajectories. We identified quantitative trait loci (QTL) for body weight (BW), condition factor (K) and age at sexual maturation (MT) in two full-sib families of Arctic charr (Salvelinus alpinus) to ascertain if QTL for MT were confounded with BW QTL intervals. Three significant QTL for BW, three QTL for MT and one significant QTL for K were identified. A BW QTL with major effect was localized to linkage group 8 (AC-8) and explained more than 34% of the phenotypic variation. Markers on AC-8 have previously been identified as being associated with variation in fork length and BW in this species. Similarly, a major QTL (PEV = 23%) with an influence on the female MT was localized to AC-23. Some of these regions are homologous to those in the genomes of rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar), where similar QTL effects have been detected. Our results also suggest the conservation of MT QTL on the homeologous linkage group pair AC-3/24 in Arctic charr. We further identified chromosomal regions that harbor QTL for multiple traits. In particular, markers on AC-4, -20 and -36 had detectable QTL for all traits studied. Significant MT QTL detected on AC-23, -24, and -27 were autonomous of any BW QTL regions, suggesting that the regulation of MT may be more independent of BW control within this species than in other species of salmonids.  相似文献   

4.
We hypothesized that correlation between growth traits and upper thermal tolerance (UTT) in rainbow trout (Oncorhynchus mykiss) might be explained by quantitative trait loci (QTL) localized to the same linkage groups. Microsatellites on three autosomal linkage groups carrying UTT QTL in rainbow trout were tested for associations with fork length (FL) and condition factor (K) in half-sib families of outbred rainbow trout and in backcrosses of trout lines selected on UTT. Additionally, we used a sex-linked microsatellite (OmyFGT19TUF) to test for marker-trait associations at the sex chromosomes. The sex-linked marker OmyFGT19TUF was significantly associated with FL and UTT, accounting for up to 9.6% and 9.7% of variance in these traits, respectively. Male advantages in FL (and, to a lesser extent, UTT) relative to their female sibs were dependent on the origin of the Y chromosome and thus varied among grandsire lines. However, males had higher K in a manner unrelated to Y chromosomal origin, suggesting a partially sex-limited expression of this trait. Omy325UoG was significantly associated with K in one of the outbred half-sib families, but no other significant autosomal marker-trait associations were detected. Our findings illustrate minor evidence that correlation between UTT and FL is partially determined by one or more sex-chromosomal QTL.  相似文献   

5.
Genotypes at 91 microsatellite loci in three full-sib families were used to search for QTL affecting body weight (BW) and condition factor in North American Atlantic salmon (Salmo salar). More than one informative marker was identified on 16-18 linkage groups in each family, allowing at least one chromosomal interval to be analyzed per linkage group. Two significant QTL for BW on linkage groups AS-8 and AS-11, and four significant QTL for condition factor on linkage groups AS-2, AS-5, AS-11, and AS-14 were identified. QTL for both BW and condition factor were located on linkage groups AS-1, 6, 8, 11, and 14 when considering both significant and suggestive QTL effects. The largest QTL effects for BW (AS-8) and for condition factor (AS-14) accounted for 20.1 and 24.9% of the trait variation, respectively. Three of the QTL for BW occur on linkage groups where similar effects have been detected on the homologous regions in either rainbow trout (Oncorhynchus mykiss) or Arctic charr (Salvelinus alpinus).  相似文献   

6.
The high commercial value from the aquaculture of salmonid fishes has prompted many studies into the genetic architecture of complex traits and the need to identify genomic regions that have repeatable associations with trait variation both within and among species. We searched for quantitative trait loci (QTL) for body weight (BW), condition factor (CF) and age of sexual maturation (MAT) in families of Arctic charr (Salvelinus alpinus) from an Icelandic breeding program. QTL with genome-wide significance were detected for each trait on multiple Arctic charr (AC) linkage groups (BW: AC-4, AC-20; CF: AC-7, AC-20, AC-23, AC-36; MAT: AC-13/34, AC-39). In addition to the genome-wide significant QTL for both BW and CF on AC-20, linkage groups AC-4, AC-7, AC-8, and AC-16 contain QTL for both BW and CF with chromosome-wide significance. These regions had effects (albeit weaker) on MAT with the exception of the region on AC-8. Comparisons with a North American cultured strain of Arctic charr, as well as North American populations of Atlantic salmon (Salmo salar), and rainbow trout (Oncorhynchus mykiss), reveal some conservation in QTL location and structure, particularly with respect to the joint associations of QTL influencing BW and CF. The detection of some differences in genetic architecture between the two aquaculture strains of Arctic charr may be reflective of the differential evolutionary histories experienced by these fishes, and illustrates the importance of including different strains to investigate genetic variation in a species where the intent is to use that variation in selective breeding programs.  相似文献   

7.
Genomic sequences of gonadotropin-releasing hormone genes were amplified and examined for sequence divergence among members of three different genera of the subfamily Salmoninae: rainbow trout (Oncorhynchus mykiss), Atlantic salmon (Salmo salar), and Arctic charr (Salvelinus alpinus). Sequences of GNRH3A and GNRH3B (formerly known as sGnRH1 and sGnRH2) were 97-99% similar in coding regions and 94-98% similar in non-coding regions among genera, but comparisons within species between GNRH3A and GNRH3B were only 90-92% similar in coding regions and 83-89% similar in non-coding regions. Polymorphisms in the parents of mapping families for each species allowed for linkage mapping of the GNRH3B gene in all three species and the GNRH3A gene in rainbow trout. GNRH3B maps to linkage group 6 in rainbow trout, linkage group 16 in Atlantic salmon and linkage group 25 in Arctic charr. GNRH3A mapped to linkage group 30 in rainbow trout.  相似文献   

8.
Quantitative protein requirements of Arctic charr, Salvelinus alpinus (L)   总被引:1,自引:0,他引:1  
Arctic charr, Salvelinus alpinus , require diets with protein energy (PE): total energy (TE) ratios of at least 0.35 in order to maintain good rates of growth. The protein requirement is, therefore, similar to that of rainbow trout, Salmo gairdneri . Protein retention efficiency (PPV) declined as the protein content of the diet was increased, the relationship being described by the equation: It is suggested that charr will maintain good rates of growth if fed on diets used for commercial culture of rainbow trout and special formulations for charr should not be necessary.  相似文献   

9.
Wild brook charr populations (Salvelinus fontinalis) completely introgressed with the mitochondrial genome (mtDNA) of arctic charr (Salvelinus alpinus) are found in several lakes of northeastern Québec, Canada. Mitochondrial respiratory enzymes of these populations are thus encoded by their own nuclear DNA and by arctic charr mtDNA. In the present study we performed a comparative sequence analysis of the whole mitochondrial genome of both brook and arctic charr to identify the distribution of mutational differences across these two genomes. This analysis revealed 47 amino acid replacements, 45 of which were confined to subunits of the NADH dehydrogenase complex (Complex I), one in the cox3 gene (Complex IV), and one in the atp8 gene (Complex V). A cladistic approach performed with brook charr, arctic charr, and two other salmonid fishes (rainbow trout [Oncorhynchus mykiss] and Atlantic salmon [Salmo salar]) revealed that only five amino acid replacements were specific to the charr comparison and not shared with the other two salmonids. In addition, five amino acid substitutions localized in the nad2 and nad5 genes denoted negative scores according to the functional properties of amino acids and, therefore, could possibly have an impact on the structure and functional properties of these mitochondrial peptides. The comparison of both brook and arctic charr mtDNA with that of rainbow trout also revealed a relatively constant mutation rate for each specific gene among species, whereas the rate was quite different among genes. This pattern held for both synonymous and nonsynonymous nucleotide positions. These results, therefore, support the hypothesis of selective constraints acting on synonymous codon usage.  相似文献   

10.
We report the identification of a single major chromosomal region controlling natural killer (NK) cell-like activity in rainbow trout (Oncorhynchus mykiss). A genetic map based on 484 AFLP and 39 microsatellite genotypes from 106 doubled haploid fish was constructed. These fish were produced by androgenesis from a hybrid of two clonal lines divergent in NK-like activity. NK-like activities for 75 of the doubled haploids were quantified by an in vitro chromium release assay utilizing 51Cr-labeled YAC-1 target cells. Composite interval mapping revealed a single major quantitative trait locus (QTL) associated with NK-like activity in this rainbow trout model. Genetic mapping revealed this QTL to also be unlinked to: fragmented MHC class I and MHC class II regions, the leukocyte receptor cluster, the natural killer cell enhancement factor (NKEF) gene, the RAG-1 gene, and two QTL associated with resistance to infectious pancreatic necrosis virus in rainbow trout. Collectively, these results extend the utility of rainbow trout as an immunological model and are consistent with the idea that a single chromosomal region homologous to the natural killer cell complex (NKC) located on syntenic portions of mouse chromosome (Chr) 6, human Chr 12, and rat Chr 4 may exist in a lower vertebrate model.  相似文献   

11.
Whole-genome duplication in the ancient ray-finned fish and subsequent tetraploidization in the ancestor to the salmonids have complicated genomic and candidate gene studies in these organisms as many genes with multiple copies are present throughout their genomes. In an attempt to identify genes with a potential influence on growth and development, we investigated the genomic positions of insulin-like growth factors 1 and 2 (IGF1, IGF2), myogenic factors 5 and 6 (MYF5, MYF6) and growth hormone-releasing factor/pituitary adenylate cyclase-activating polypeptide (GRF/PACAP) in three salmonid species: rainbow trout (Oncorhynchus mykiss), Atlantic salmon (Salmo salar) and Arctic charr (Salvelinus alpinus). Our results suggest a tight association between the IGF1, MYF5 and MYF6 genes in all three species. We further localized the duplicated copies of IGF1 to the homeologous linkage groups RT-7/15 in rainbow trout and AC-3/24 in Arctic charr, and the two copies of MYF6 to homeologous linkage groups AS-22/24 in Atlantic salmon. Localization of GRF/PACAP to RT-7, AS-31 and AC-27 and IGF2 to RT-27, AS-2 and AC-4 in rainbow trout, Atlantic salmon and Arctic charr respectively is consistent with previously reported homologies among these chromosomal segments identified using other genetic markers. However, localization of the second copy of GRF/PACAP to RT-19 and AC-14 and the duplicated copy of IGF2 to AC-19 suggest a possible new homology/homeology between these chromosomes. These results might also be an indication of a more ancient polyploidization event that occurred deep in the ray-finned fish lineage.  相似文献   

12.
Little research has been conducted on effects of iteroparous anadromous fishes on Arctic lakes. We investigated trophic ecology, fish growth, and food web structure in six lakes located in Nunavut, Canada; three lakes contained anadromous Arctic charr (Salvelinus alpinus) whereas three lakes did not contain Arctic charr. All lakes contained forage fishes and lake trout (Salvelinus namaycush; top predator). Isotope ratios (δ13C, δ15N) of fishes and invertebrates did not differ between lakes with and without anadromous Arctic charr; if anadromous Arctic charr deliver marine-derived nutrients and/or organic matter to freshwater lakes, these inputs could not be detected with δ13C and/or δ15N. Lake trout carbon (C):nitrogen (N) and condition were significantly higher in lakes with Arctic charr (C:N = 3.42, K = 1.1) than in lakes without Arctic charr (C:N = 3.17, K = 0.99), however, and ninespine stickleback (Pungitius pungitius) condition was significantly lower in lakes with Arctic charr (K = 0.58) than in lakes without Arctic charr (K = 0.64). Isotope data indicated that pre-smolt and resident Arctic charr may be prey for lake trout and compete with ninespine stickleback. Linear distance metrics applied to isotope data showed that food webs were more compact and isotopically redundant in lakes where Arctic charr were present. Despite this, lake trout populations in lakes with Arctic charr occupied a larger isotope space and showed greater inter-individual isotope differences. Anadromous Arctic charr appear to affect ecology and feeding of sympatric freshwater species, but effects are more subtle than those seen for semelparous anadromous species.  相似文献   

13.
The heavy and light subunits of myosin from white and red muscles of Atlantic salmon parr, smolt and adult individuals were analyzed by SDS-PAGE and two-dimensional electrophoresis. Tropomyosin was identified by comigration with rat tropomyosins in two-dimensional gels in the presence and absence of urea. These myofibrillar proteins were compared to those of Arctic charr.
  • 1.1. The myosin heavy chain from Atlantic salmon red muscles was associated with two types of light chain, 1S and 2S, that comigrated with the light chains 1S and 2S of Arctic charr.
  • 2.2. As in the Arctic charr, four myosin light chain spots were detected in white muscles: two fast myosin light chains type 1, one of which comigrated with its analogous in the Arctic charr; one fast myosin light chain type 2, differing slightly in isoelectric point from that of Arctic charr; and one fast myosin light chain type 3 with higher electrophoretic mobility than that of Arctic charr.
  • 3.3. Three tropomyosin spots were detected. White muscles contained only one type of β-tropomyosin and red muscles two types of α-tropomyosin. These three tropomyosin spots comigrated with those of Arctic charr.
  • 4.4. Two myosin heavy chain bands were observed in red muscles of salmon parrs but only one in the rest of the red muscles analyzed.
  • 5.5. Only one myosin heavy chain band was detected in white muscles by SDS-glycerol-polyacrylamide gel electrophoresis. Alfa-chymotryptic peptide mapping of these white myosin heavy chain bands revealed differences attributed to the presence of a new type of myosin heavy chain first detected several months after smoltification.
  相似文献   

14.
Whirling disease, caused by the pathogen Myxobolus cerebralis, leads to skeletal deformation, neurological impairment and under certain conditions, mortality of juvenile salmonid fishes. The disease has impacted the propagation and survival of many salmonid species over six continents, with particularly negative consequences for rainbow trout. To assess the genetic basis of whirling disease resistance in rainbow trout, genome-wide mapping was initiated using a large outbred F(2) rainbow trout family (n=480) and results were confirmed in three additional outbred F(2) families (n=96 per family). A single quantitative trait locus (QTL) region on chromosome Omy9 was identified in the large mapping family and confirmed in all additional families. This region explains 50-86% of the phenotypic variance across families. Therefore, these data establish that a single QTL region is capable of explaining a large percentage of the phenotypic variance contributing to whirling disease resistance. This is the first genetic region discovered that contributes directly to the whirling disease phenotype and the finding moves the field closer to a mechanistic understanding of resistance to this important disease of salmonid fish.  相似文献   

15.
The effects of stocking density on the demand feeding behaviour of Arctic charr Salvelinus alpinus and rainbow trout Oncorhynchus mykiss were evaluated using demand feeders in combination with a monitoring system based on automatic passive integrated transponders. The proportion of total bites accounted for by top-ranked charr and trout decreased from 87 to 15% and from 66 to 15%, respectively, when moving from the lowest to the highest densities, indicating that the ability of the highest-ranked fish to monopolize the demand feeders was reduced at high densities. However, when the individuals were grouped into quartiles, based on their individual rank, both charr and trout ranked within the upper quartile accounted for the majority of bites independent of stocking density (87 and 72% of the total, respectively). Instead of there being a single dominant individual, as was the case under low density conditions, a small group of individuals dominated the actuation of the trigger at high densities. The two species responded differently to crowding, with the total daily bite activity of charr increasing linearly with increasing density, whereas the corresponding relationship was quadratic for rainbow trout, with a peak value at 24 to 36kg m−3.  相似文献   

16.
The annual variability in growth and life history traits of brown trout (Salmo trutta L.) and Arctic charr (Salvelinus alpinus (L.)) in Lake Atnsjøen, a Norwegian subalpine lake, was studied over a period of 13 years (1985–1997). The extent to which life-history characteristics recorded on one occasion can be regarded as representative for the population was explored. We found inter-cohort variation in growth for both species; estimates of asymptotic length (L ) in ten cohorts ranged between 225–305 mm (CV = 10.5%) for brown trout and 273–301 mm (CV = 4.1%) for Arctic charr. However, this variation was much lower than inter-population variation for brown trout based on single samples from 169 populations (CV = 24.6%). In Lake Atnsjøen, annual growth increment correlated highly with the number of days warmer than 7?°C (R 2=0.60–0.89) for brown trout, and days warmer than 10?°C (R 2=0.40–0.58) for Arctic charr. Females of Arctic charr were younger at sexual maturity than males, while no such difference was found in brown trout. Generally speaking, early maturing individuals of both species grew faster, particularly from age-2 and onwards, than immature individuals. Early maturing individuals, however, were smaller at maturity than those maturing one year older. Age and size at maturity were significantly correlated with asymptotic lengths only in Arctic charr females.  相似文献   

17.
Habitat utilization and the life history of browntrout Salmo trutta and Arctic charr Salvelinus alpinus were investigated in fivesympatric populations and five allopatric brown troutpopulations in Høylandet catchment, a atmosphaericlow deposition area in Mid Norway. There was asignificant inverse correlation in abundance ofepibenthic Arctic charr and brown trout in theselakes, indicating that the latter species is dominant.The largest numbers of sympatric brown trout andArctic charr were caught in epibenthic habitat. In twolakes, brown trout to some extent also occurredpelagically, while pelagic individuals of Arctic charrwere found in all five lakes. The main food items forboth epibenthic and pelagic brown trout wereterrestrial surface insects and chironomid pupae.Zooplankton was the primary food item for Arctic charrin both habitats. Although the age distribution wasvery different in the populations, neither speciesseem to suffer from recruitment failure. There was nosignificant difference in survival rates betweensympatric populations of brown trout and Arctic charr.We found a significant inverse correlation betweenepibenthic catches of brown trout and the mean weightof 4+ fish, the most abundant age group. However, ifusing weight data for three-year-old fish, no suchrelationship was found for Arctic charr. Brown troutand Arctic charr reached asymptotic lengths of197–364 mm and 259–321 mm, respectively. Both speciestypically reached sexual maturity at age 2–3, and nomaturation-induced mortality was evident. We concludethat fish populations in Høylandet lakes areregulated throughout their lifes by inter- andintraspecific competition.  相似文献   

18.
Selection on Arctic charr generated by competition from brown trout   总被引:4,自引:0,他引:4  
We experimentally explored population‐ and individual‐level effects on Arctic charr (Salvelinus alpinus) resulting from resource competition with its common European competitor, the brown trout (Salmo trutta). At the population level, we compared performance of the two species in their natural sympatric state with that of Arctic charr in allopatry. At the individual level, we established selection gradients for morphological traits of Arctic charr in allopatric and in sympatric conditions. We found evidence for interspecific competition likely by interference at the population level when comparing differences in average performance between treatments. The growth and feeding rates did not differ significantly between allopatric and sympatric Arctic charr despite lower charr densities (substitutive design) in sympatric enclosures indicating that inter‐ and intraspecific competition are of similar strength. The two species showed distinct niche segregation in sympatry, and brown trout grew faster than Arctic charr. Arctic charr did not expand their niche in allopatry, indicating that the two species compete to a limited degree for the same resources and that interference may suppress the growth of charr in sympatric enclosures. At the individual level, however, we found directional selection in sympatric enclosures against individual Arctic charr with large head and long fins and against individuals feeding on zoobenthos rather than zooplankton indicating competition for common resources (possibly exploitative) between trout and these charr individuals. In allopatric enclosures these relations were not significant. Diets were correlated to the morphology supporting selection against the benthic‐feeding type, i.e. individuals with morphology and feeding behaviour most similar to their competitor, the benthic feeding brown trout. Thus, this study lends support to the hypothesis that Arctic charr have evolved in competition with brown trout, and through ecological character displacement adapted to their present niche.  相似文献   

19.
To identify quantitative trait loci (QTL) influencing early maturation (EM) in rainbow trout (Oncorhynchus mykiss), a genome scan was performed using 100 microsatellite loci across 29 linkage groups. Six inter-strain paternal half-sib families using three inter-strain F(1) brothers (approximately 50 progeny in each family) derived from two strains that differ in the propensity for EM were used in the study. Alleles derived from both parental sources were observed to contribute to the expression of EM in the progeny of the brothers. Four genome-wide significant QTL regions (i.e., RT-8, -17, -24, and -30) were observed. EM QTL detected on RT-8 and -24 demonstrated significant and suggestive QTL effects in both male and female progeny. Furthermore, within both male and female full-sib groupings, QTL on RT-8 and -24 were detected in two or more of the five parents used. Significant genome-wide and several strong chromosome-wide QTL for EM localized to different regions in males and females, suggesting some sex-specific control. Namely, QTL detected on RT-13, -15, -21, and -30 were associated with EM only in females, and those on RT-3, -17, and -19 were associated with EM only in males. Within the QTL regions identified, a comparison of syntenic EST markers from the rainbow trout linkage map with the zebrafish (Danio rerio) genome identified several putative candidate genes that may influence EM.  相似文献   

20.
We studied habitat choice, diet, food consumption and somatic growth of Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) during the ice-covered winter period of a subarctic lake in northern Norway. Both Arctic charr and brown trout predominantly used the littoral zone during winter time. Despite very cold winter conditions (water temperature <1°C) and poor light conditions, both fish species fed continuously during the ice-covered period, although at a much lower rate than during the summer season. No somatic growth could be detected during the ice-covered winter period and the condition factor of both species significantly declined, suggesting that the winter feeding rates were similar to or below the maintenance requirements. Also, the species richness and diversity of ingested prey largely decreased from summer to winter for both fish species. The winter diet of Arctic charr <20 cm was dominated by benthic insect larvae, chironomids in particular, and Gammarus lacustris, but zooplankton was also important in December. G. lacustris was the dominant prey of charr >20 cm. The winter diet of brown trout <20 cm was dominated by insect larvae, whereas large-sized trout mainly was piscivorous, feeding on juvenile Arctic charr. Piscivorous feeding behaviour of trout was in contrast rarely seen during the summer months when their encounter with potential fish prey was rare as the small-sized charr mainly inhabited the profundal. The study demonstrated large differences in the ecology and interactions of Arctic charr and brown trout between the winter and summer seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号