首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The fluorescence spectrum of a distinct isometric and conformational intermediate formed on the 10(-11) s time scale during the bacteriorhodopsin (BR) photocycle is observed at room temperature using a two laser, pump-probe technique with picosecond time resolution. The BR photocycle is initiated by pulsed (8 ps) excitation at 565 nm, whereas the fluorescence is generated by 4-ps laser pulses at 590 nm. The unstructured fluorescence extends from 650 to 880 nm and appears in the same general spectral region as the fluorescence spectrum assigned to BR-570. The transient fluorescence spectrum can be distinguished from that assigned to BR-570 by a larger emission quantum yield (approximately twice that of BR-570) and by a maximum intensity near 731 nm (shifted 17 nm to higher energy from the maximum of the BR-570 fluorescence spectrum). The fluorescence spectrum of BR-570 only is measured with low energy, picosecond pulsed excitation at 590 nm and is in good agreement with recent data in the literature. The assignment of the transient fluorescence spectrum to the K-590 intermediate is based on its appearance at time delays longer than 40 ps. The K-590 fluorescence spectrum remains unchanged over the entire 40-100-ps interval. The relevance of these fluorescence data with respect to the molecular mechanism used to model the primary processes in the BR photocycle also is discussed.  相似文献   

2.
Picosecond transient absorption (PTA) in the 568-660-nm region is measured over the initial 80 ns of the bacteriorhodopsin photocycle. After photocycle initiation with 573-nm excitation (7-ps pulsewidth), these PTA data reflect the formation during the initial 40 ps of two long-recognized intermediates with red-shifted (relative to that of BR-570) absorption bands, namely J-625 and K-590. PTA signals at 568, 628, and 652 nm are unchanged for the remainder of the 80-ns photocycle interval measured, demonstrating that no other intermediates, including the proposed KL, are observable by absorption changes. Picosecond time-resolved fluorescence (PTRF), measured at 740 nm, is initiated by 7 ps excitation of the species present at various time delays after the photocycle begins. PTRF signals change rapidly over the initial 40 ps, reflecting, first, the depletion of the ground state BR-570 population and, subsequently, the formation of K-590. The PTRF signal then decreases monotonically with a time constant of 5.5 ± 0.5 ns from its maximum near a 50-ps delay until it reaches a minimum at a delay of ≈ 13 ns. For time delays between 13 and 80 ns, the PTRF signal remains unchanged and slightly higher than that measured from BR-570 alone. The rapid decrease in PTRF signals over the same photocycle interval in which the PTA signals remain unchanged suggests that the retinal-protein interactions involving electronically excited K-590 (K*) are being significantly altered.  相似文献   

3.
I Grieger  G H Atkinson 《Biochemistry》1985,24(20):5660-5665
An investigation of the photolytic conditions used to initiate and spectroscopically monitor the bacteriorhodopsin (BR) photocycle utilizing time-resolved resonance Raman (TR3) spectroscopy has revealed and characterized two photoinduced reactions that interrupt the thermal pathway. One reaction involves the photolytic interconversion of M-412 and M', and the other involves the direct photolytic conversion of the BR-570/K-590 photostationary mixture either to M-412 and M' or to M-like intermediates within 10 ns. The photolytic threshold conditions describing both reactions have been quantitatively measured and are discussed in terms of experimental parameters.  相似文献   

4.
Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optically initiated by pulsed (< 3 ps, 1.75 nJ) excitation. Although K-590 remains structurally unchanged throughout the 50-ps to 1-ns time interval, distinct structural changes do appear over the 1-ns to 260-ns period. Specifically, comparisons of the 50-ps PTR/CARS spectra with those recorded with time delays of 1 ns to 260 ns reveal 1) three types of changes in the hydrogen-out-of-plane (HOOP) region: the appearance of a strong, new feature at 984 cm-1; intensity decreases for the bands at 957 cm-1, 952 cm-1, and 939 cm-1; and small changes intensity and/or frequency of bands at 855 cm-1 and 805 cm-1; and 2) two types of changes in the C-C stretching region: the intensity increase in the band at 1196 cm-1 and small intensity changes and/or frequency shifts for bands at 1300 cm-1 and 1362 cm-1. No changes are observed in the C = C stretching region, and no bands assignable to the Schiff base stretching mode (C = NH+) mode are found in any of the PTR/CARS spectra assignable to K-590. These PTR/CARS data are used, together with vibrational mode assignments derived from previous work, to characterize the retinal structural changes in K-590 as it evolves from its 3.5-ps formation (ps/K-590) through the nanosecond time regime (ns/K-590) that precedes the formation of L-550. The PTR/CARS data suggest that changes in the torsional modes near the C14-C15 = N bonds are directly associated with the appearance of ns/K-590, and perhaps with the KL intermediate proposed in earlier studies. These vibrational data can be primarily interpreted in terms of the degree of twisting of the C14-C15 retinal bond. Such twisting may be accompanied by changes in the adjacent protein. Other smaller, but nonetheless clear, spectral changes indicate that alterations along the retinal polyene chain also occur. The changes in the retinal structure are preliminary to the deprotonation of the Schiff base nitrogen during the formation of M-412. The time constant for the ps/ns K-590 transformation is estimated from the amplitude change of four vibrational bands in the HOOP region to be 40-70 ns.  相似文献   

5.
The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment containing a structurally modified all-trans retinal chromphore with a six-membered ring bridging the C11=C12-C13 positions (BR6.11) are measured by picosecond transient absorption and picosecond time-resolved fluorescence spectroscopy. Time-dependent intensity and spectral changes in absorption in the 570-650-nm region are monitored for delays as long as 5 ns after the 7-ps, 573-nm excitation of BR6.11. Two intermediates, J6.11 and K6.11/1, both with enhanced absorption to the red (> 600 nm) of the BR6.11 spectrum are observed within approximately 50 ps. The J6.11 intermediate decays with a time constant of 12 +/- 3 ps to form K6.11/1. The K6.11/1 intermediate decays with an approximately 100-ps time constant to form a third intermediate, K6.11/2, which is observed through diminished 650-nm absorption (relative to that of K6.11/1). No other transient absorption changes are found during the remainder of the initial 5-ns period of the BR6.11 photoreaction. Fluorescence in the 650-900-nm region is observed from BR6.11, K6.11/1, and K6.11/2, but no emission assignable to J6.11 is found. The BR6.11 fluroescence spectrum has a approximately 725-nm maximum which is blue-shifted by approximately 15 nm relative to that of native BR-570 and is 4.2 +/- 1.5 times larger in intensity (same sample optical density). No differences in the profile of the fluorescence spectra of BR6.11 and the intermediates K6.11/1 and K6.11/2 are observed. Following ground-state depletion of the BR6.11 population, the time-resolved fluroescence intensity monitored at 725 nm increases with two time constants, 12 +/- 3 and approximately 100 ps, both of which correlate well with changes in the picosecond transient absorption data.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Air dried films of purple membranes (PM) from Halobacterium halobium containing the photochromic protein bacteriorhodopsin (BR) were prepared and the BR-photocycle of this material analyzed. The absorption maxima of the initial state Bmax = 570 nm) and the photochemical intermediate Mmax = 412 nm), which is the longest living intermediate in suspension (τ ≈ 10 ms), were spectrally well separated. Light-induced population gratings between B and M were used for reversible holographic recording in these dry PM films. The resolution (>5,000 lines/mm) of PM films was comparable to the corresponding values of conventional photochromic recording materials. The longterm stability toward photochemical degradation of PM films is excellent (> 100.000 recording cycles). The spectral bandwidth (400-680 nm) of such films covers nearly the whole visible spectrum. Both the photochemical transition from BM with wavelengths in the green-red range and from MB with blue light were utilized for holographic recording. The latter possibility (MB) seems to be advantageous for several applications because the holographic grating is only formed during reconstruction. Higher reading intensities lead to higher population of the M-state and result in an increase of the fringe contrast instead of decreasing it. New possibilities for the further development of holographic media based on bacteriorhodopsin are raised by the availability of PM variants with modified optical properties. By the use of the variant BR-326, which differs from the wildtype PM by a single amino acid exchange (aspartate-96 → asparagine), the sensitivity of PM films is increased by ~50% from 12 cm2/J to 19 cm2/J for recording with 568 nm. The sensitivity for recording with 413 nm (33 cm2/J) is not influenced by the amino acid exchange. The observed diffraction efficiency η of PM films with BR-326 is twice that of BR-wildtype (BR-WT) films and is in the range of conventional organic photochromics (≈ 1%). In dried films of both BR-WT and BR-326 the M-decay was shown to be at least biexponential.  相似文献   

7.
Integrin ανβ6 is highly expressed in a range of human cancers and frequently correlates with patient survival. This study examines correlations between ανβ6 expression and patient clinico-pathological features in Stage B and Stage C rectal cancer, including overall survival. Expression of ανβ6 was measured in 362 Stage B or C rectal cancer tissue samples at the tumour central region, invasive tumour front and adjacent non-neoplastic mucosa using immunohistochemistry. Distribution of ανβ6 was found to be significantly higher at the invasive front compared to central regions of the tumour (p<0.001) or adjacent non-neoplastic mucosa (p<0.001) suggesting ανβ6 plays a role in tumour cell invasion. However, integrin ανβ6 expression was not associated with clinico-pathological features or overall survival indicating it is not an independent prognostic marker differentiating Stage B or C rectal cancer. Previous ανβ6 studies have suggested the expression of ανβ6 is involved in the earlier stages (i.e. Stages A/B) of tumour progression rather than the later stages (i.e. Stages C/D). However, our study has revealed that in rectal cancer ανβ6 expression does not increase between Stages B and C, but may occur earlier, namely before or during Stage B cancer.  相似文献   

8.
Ultrafast infrared spectroscopy of bacteriorhodopsin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Picosecond infrared spectroscopy is developed and used for the first time to study the dynamics of photoexcited bacteriorhodopsin (BR). Both spectral and time-resolved data are obtained. The results open an entirely new approach to investigations of the BR photocycle. The infrared difference spectrum (K minus BR570) recorded at ambient temperature between 1,560 and 1,700 cm-1 is not identical with the spectrum reported for a frozen sample. Three bands of the K state at 1,622, 1,610, and 1,580 cm-1 and the bleaching at 1,637 cm-1 (C = NH stretch) are seen. These new spectral lines appear in less than 10 ps.  相似文献   

9.
Lactobacillus reuteri 121 uses the glucosyltransferase A (GTFA) enzyme to convert sucrose into large amounts of the α-d-glucan reuteran, an exopolysaccharide. Upstream of gtfA lies another putative glucansucrase gene, designated gtfB. Previously, we have shown that the purified recombinant GTFB protein/enzyme is inactive with sucrose. Various homologs of gtfB are present in other Lactobacillus strains, including the L. reuteri type strain, DSM 20016, the genome sequence of which is available. Here we report that GTFB is a novel α-glucanotransferase enzyme with disproportionating (cleaving α1→4 and synthesizing α1→6 and α1→4 glycosidic linkages) and α1→6 polymerizing types of activity on maltotetraose and larger maltooligosaccharide substrates (in short, it is a 4,6-α-glucanotransferase). Characterization of the types of compounds synthesized from maltoheptaose by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS), methylation analysis, and 1-dimensional 1H nuclear magnetic resonance (NMR) spectroscopy revealed that only linear products were made and that with increasing degrees of polymerization (DP), more α1→6 glycosidic linkages were introduced into the final products, ranging from 18% in the incubation mixture to 33% in an enriched fraction. In view of its primary structure, GTFB clearly is a member of the glycoside hydrolase 70 (GH70) family, comprising enzymes with a permuted (β/α)8 barrel that use sucrose to synthesize α-d-glucan polymers. The GTFB enzyme reaction and product specificities, however, are novel for the GH70 family, resembling those of the GH13 α-amylase type of enzymes in using maltooligosaccharides as substrates but differing in introducing a series of α1→6 glycosidic linkages into linear oligosaccharide products. We conclude that GTFB represents a novel evolutionary intermediate between the GH13 and GH70 enzyme families, and we speculate about its origin.  相似文献   

10.
The structural alterations which occur in bacteriorhodopsin (bR) during dark adaptation (BR570----BR548) and the primary phototransition of the dark photocycle (BR548----KD610) have been investigated by Fourier transform infrared and UV difference spectroscopy. Possible contributions of tyrosine to the Fourier transform infrared difference spectra of these transitions were assigned by incorporating ring per-deuterated tyrosine into bR. Based on these data and UV difference measurements, we conclude that a stable tyrosinate exists in BR570 at physiological temperature and that it protonates during formation of BR548. A tyrosinate protonation has also been observed at low temperature during the primary phototransition of BR570 to the red-shifted photoproduct K630 (1). However, we now find that no tyrosine protonation change occurs during the primary phototransition of BR548 to the red-shifted intermediate KD610. Through analysis of bR containing isotopically labeled retinals, it was also determined that the chromophore of KD610 exits in a 13-trans, 15-cis configuration. On the basis of this evidence and previous studies on the structure of the chromophore in BR570, BR548, and K630, it appears that only the 13-trans,15-trans configuration of the protonated chromophore leads to a stable tyrosinate group. It is proposed that a tyrosinate residue is stabilized due to its interaction with the Schiff base positive charge in the BR570 chromophore. Isomerization of the chromophore about either the C13 = C14 or C = N bond disrupts this interaction causing a protonation of the tyrosinate.  相似文献   

11.
Individual species of the photochemical cycle of bacteriorhodopsin, a retinal-protein complex of Halobacteria, were studied in aqueous suspensions of the "purple membrane" at room temperature by resonance Raman (RR) spectroscopy with flow systems. Two pronounced deuterium shifts were found in the RR spectra of the all-trans complex BR-570 in H2O-D2O suspensions. The first is ascribed to C=NH+ (C=ND+) stretching vibrations of the protonated Schiff base which links retinal to opsin. The second is assigned tentatively to an "X-H" ("X-D") bending mode, where "X" is an atom which carries an exchangeable proton. A RR spectrum of the 13-cis-retinal complex "BR-548" could be deduced from spectra of the dark-adapted purple membrane. The RR spectrum of the M-412 intermediate was monitored in a double-beam pump-probe experiment. The main vibrational features of the intermediate M' in the reaction M-412 in equilibrium hv M' leads to delta BR-570 could be deduced from a photostationary mixture of M-412 and M'. Difference procedures were applied to obtain RR spectra of the L-550 intermediate and of two new long-lived species, R1'-590 and R2-550. From kinetic data it is suggested that T1'-590 links the proton-translocating cycle to the "13-cis" cycle of BR-548. The protonation and isomeric states of the different species are discussed in light of the new spectroscopic and kinetic data. It is found that conformational changes during the photochemical cycle play an important role.  相似文献   

12.
Excitation of bacteriorhodopsin (BR) in its β absorption band drives a photocycle identical in the millisecond range, to that excited in the α band of BR. The relative contribution of the two transition dipoles distinguished in the β band to the initiation of the photocycle was established by photoselection experiments. Having this information the orientation of the chromophoric plane was specified by electric dichroism measurements.  相似文献   

13.
T. Gillbro 《BBA》1978,504(1):175-186
The reaction cycle of light adapted bacteriorhodopsin (BR) in aqueous purple membrane suspensions was studied by laser flash photolysis at different temperatures (2–49°C) and pH values (3–10). The activation energy for several reaction steps was determined at pH 7.6. The kinetics of O-bacteriorhodopsin (one of the last intermediates in the cycle) were analyzed in some detail and it was found that the simple consecutive reaction scheme M-BR → O-BR → BR may explain the kinetics of O-bacteriorhodopsin as measured at 680 nm. Since the pH change in neutral aqueous suspensions of purple membrane follows a similar kinetics as O-bacteriorhodopsin it is suggested that protons are released during the reaction M-BR → O-BR and taken up again during the reaction O-BR → BR.Another long-lived intermediate, which absorbs to a greater extent than bacteriorhodopsin at 570 nm and less than bacteriorhodopsin at 420 nm, was identified with the strongly fluorescing species, pseudo- or P-bacteriorhodopsin. The decay of P-bacteriorhodopsin in bacteriorhodopsin had an activation energy of only approx. 1.2 kcal/mol, which suggests that the last step of the photocycle is a relaxation around a single bond.At pH 9–10, the simple first-order kinetics of all the intermediates were changed into a kinetics consisting of two first-order decays. This change of kinetics was accompanied by a drastic decrease in the rotational diffusion relaxation time.To explain the results obtained in this work and those of others, a model involving proton uptake and release by the Schiff base nitrogen combined with an isomerization reaction is finally proposed.  相似文献   

14.
Kinetics were determined for the four transients K590, L540, M410, O660 of the photochemical cycle of bacteriorhodopsin (BR570) both in 1H2O and in 2H2O over a wide temperature range. Breaks in the Arrhenius plots, observed at 25 degrees-32 degrees for the longest-lived transients coincide with a transition point in the microviscosity of the membrane as measured by depolarization of an added fluorescent probe. The earliest isotope effect occurs in the decay of L540, and is present in the subsequent formation and decay of M410 and O660. Thus in the light-driven proton pump of BR570, proton ejection from the Schiff base correlates with decay of L540 and reprotonation occurs with the decay of both M410 and O660 back to BR570.  相似文献   

15.
菌紫质(BR)是嗜盐菌紫膜中的唯一蛋白质,野生型的BR分子含有248个氨基酸残基,其中一个视黄醛通过希夫碱基连结在第216位赖氨酸上,它具有质子泵的功能.光照下,BR进行光循环,光循环又与质子泵过程相关联.菌紫质的结构和功能方面的研究已有很大进展,但其光循环途径和质子泵的机理还不太清楚.文章概述了近年来对菌紫质结构,光循环和质子泵机理研究的进展,尤其对争论较大的菌紫质光循环途径的四类模型作了较详细的介绍.  相似文献   

16.
Polymer films made with photosensitive chromophore protein bacteriorhodopsin (BR) from the extreme halophile Halobacterium salinarium as well as films made with BR derivatives exhibit a nonlinear photoinduced anisotropy. Two different methods can be used to induce anisotropy in polymer BR films. The first method is based on the anisotropic properties of the initial form of the photocycle, BR570 (B-type anisotropy). Another method is based on the anisotropic properties of the longest-lived photocycle intermediate M412 (M-type anisotropy). CW gas lasers were employed to induce a reversible anisotropy in polymer BR films. Nonlinear photoinduced anisotropy is discussed in the context of a model for the anisotropic photoselection of BR molecules under linearly polarized light. A comparison of the experimental dependencies of nonlinear photoinduced anisotropy on laser intensity with similar calculated dependencies enables one to determine the molecular dichroism of BR and its derivatives not only for the initial form of the photocycle, B but also for the longest-lived intermediate M. Here we present the data showing the correlation between the laser induced nonlinear anisotropic properties and chromophore/protein interactions in BR. The effect of polymer binder on the nonlinear photoanisotropic properties of polymer BR films is also described.  相似文献   

17.
The aim was to develop niosomal gel as a transdermal nanocarrier for improved systemic availability of lopinavir. Niosomes were prepared using thin-film hydration method and optimized for molar quantities of Span 40 and cholesterol to impart desirable characteristics. Comparative evaluation with ethosomes was performed using ex vivo skin permeation, fluorescence microscopy, and histopathology studies. Clinical utility via transdermal route was acknowledged using in vivo bioavailability study in male Wistar rats. The niosomal formulation containing lopinavir, Span 40, and cholesterol in a molar ratio of 1:0.9:0.6 possessed optimally high percentage of drug entrapment with minimum mean vesicular diameter. Ex vivo skin permeation studies of lopinavir as well as fluorescent probe coumarin revealed a better deposition of ethosomal carriers but a better release with niosomal carriers. Histopathological studies indicated the better safety profile of niosomes over ethosomes. In vivo bioavailability study in male Wistar rats showed a significantly higher extent of absorption (AUC0→∞, 72.87 h × μg/ml) of lopinavir via transdermally applied niosomal gel as compared with its oral suspension. Taken together, these findings suggested that niosomal gel holds a great potential of being utilized as novel, nanosized drug delivery vehicle for transdermal lopinavir delivery.KEY WORDS: ethosomes, lopinavir, niosomes, transdermal  相似文献   

18.
The role of tyrosines in the bacteriorhodopsin (bR) photocycle has been investigated by using Fourier transform infrared (FTIR) and UV difference spectroscopies. Tyrosine contributions to the BR570----M412 FTIR difference spectra recorded at several temperatures and pH's were identified by isotopically labelling tyrosine residues in bacteriorhodopsin. The frequencies and deuterium/hydrogen exchange sensitivities of these peaks and of peaks in spectra of model compounds in several environments suggest that at least two different tyrosine groups participate in the bR photocycle during the formation of M412. One group undergoes a tyrosinate----tyrosine conversion during the BR570----K630 transition. A second tyrosine group deprotonates between L550 and M412. Low-temperature UV difference spectra in the 220--350-nm region of both purple membrane suspensions and rehydrated films support these conclusions. The UV spectra also indicate perturbation(s) of one or more tryptophan group(s). Several carboxyl groups appear to undergo a series of protonation changes between BR570 and M412, as indicated by infrared absorption changes in the 1770--1720-cm-1 region. These results are consistent with the existence of a proton wire in bacteriorhodopsin that involves both tyrosine and carboxyl groups.  相似文献   

19.
Dark and light adaptation of bacteriorhodopsin in purple membrane multilayers at less than 100% relative humidity differs from that seen in suspensions. Equilibrium between the two bacteriorhodopsin isomers (bR cis 550 and bR trans 570) in the light-adapted state becomes dependent on the wavelength of actinic light. Excitation at the red edge of the visible absorption band causes dark adaptation in a light-adapted sample. Using polarized actinic and measuring light, we show that acceleration of the dark adaptation through heating by actinic light cannot explain this observation. A light-driven bR trans 570 to bR cis 550 reaction that competes with the well-known 13 cis-to-all-trans light adaptation reaction must exist under our experimental conditions. Trans-to-cis conversion is a one-photon process distinct from the two photon process observed by others in purple membrane suspensions (Sperling, W., C. N. Rafferty, K. D. Kohl, and N. A. Dencher, 1978, FEBS (Fed. Eur. Biochem. Soc.) Lett. 97:129-132). Its quantum efficiency increases monotonously on reducing the hydration level, and is paralleled by an increase in the lifetime of the M410 intermediate of the trans photocycle. We suggest that at this point a branch leads from the all-trans into the 13-cis photocycle. It is probably the same reaction that causes the reduced light adaptation in monomeric bacteriorhodopsin (Casadio, R., H. Gutowitz, P. Mowery, M. Taylor, and W. Stoeckenius, 1980, Biochim. Biophys. Acta. 590:13-23; Casadio, R., and W. Stoeckenius, 1980, Biochemistry. 19:3374-3381).  相似文献   

20.
Studies have shown that trans-cis isomerization of retinal is the primary photoreaction in the photocycle of the light-driven proton pump bacteriorhodopsin (BR) from Halobacterium salinarum, as well as in the photocycle of the chloride pump halorhodopsin (HR). The transmembrane proteins HR and BR show extensive structural similarities, but differ in the electrostatic surroundings of the retinal chromophore near the protonated Schiff base. Point mutation of BR of the negatively charged aspartate D85 to a threonine T (D85T) in combination with variation of the pH value and anion concentration is used to study the ultrafast photoisomerization of BR and HR for well-defined electrostatic surroundings of the retinal chromophore. Variations of the pH value and salt concentration allow a switch in the isomerization dynamics of the BR mutant D85T between BR-like and HR-like behaviors. At low salt concentrations or a high pH value (pH 8), the mutant D85T shows a biexponential initial reaction similar to that of HR. The combination of high salt concentration and a low pH value (pH 6) leads to a subpopulation of 25% of the mutant D85T whose stationary and dynamic absorption properties are similar to those of native BR. In this sample, the combination of low pH and high salt concentration reestablishes the electrostatic surroundings originally present in native BR, but only a minor fraction of the D85T molecules have the charge located exactly at the position required for the BR-like fast isomerization reaction. The results suggest that the electrostatics in the native BR protein is optimized by evolution. The accurate location of the fixed charge at the aspartate D85 near the Schiff base in BR is essential for the high efficiency of the primary reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号