首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Progression through mitosis requires the sequential ubiquitination of cell cycle regulators by the anaphase-promoting complex, resulting in their proteasomal degradation. Although several mechanisms contribute to APC/C regulation during mitosis, the APC/C is able to discriminate between its many substrates by exploiting differences in the processivity of ubiquitin chain assembly. Here, we discuss how the APC/C achieves processive ubiquitin chain formation to trigger the sequential degradation of cell cycle regulators during mitosis.  相似文献   

2.
Background: Accurate chromosome segregation during mitosis requires the coordinated destruction of the mitotic regulators securin and cyclins. The anaphase-promoting complex (APC) is a multisubunit ubiquitin-protein ligase that catalyzes the polyubiquitination of these and other proteins and thereby promotes their destruction. How the APC recognizes its substrates is not well understood. In mitosis, the APC activator Cdc20 binds to the APC and is thought to recruit substrates by interacting with a conserved target protein motif called the destruction box. A related protein, called Cdh1, performs a similar function during G1. Recent evidence, however, suggests that the core APC subunit Doc1 also contributes to substrate recognition. Results: To better understand the mechanism by which Doc1 promotes substrate binding to the APC, we generated a series of point mutations in Doc1 and analyzed their effects on the processivity of substrate ubiquitination. Mutations that reduce Doc1 function fall into two classes that define spatially and functionally distinct regions of the protein. One region, which includes the carboxy terminus, anchors Doc1 to the APC but does not influence substrate recognition. The other region, located on the opposite face of Doc1, is required for Doc1 to enhance substrate binding to the APC. Importantly, stimulation of binding by Doc1 also requires that the substrate contain an intact destruction box. Cells carrying DOC1 mutations that eliminate substrate recognition delay in mitosis with high levels of APC substrates. Conclusions: Doc1 contributes to recognition of the substrate destruction box by the APC. This function of Doc1 is necessary for efficient substrate proteolysis in vivo.  相似文献   

3.
Messenger RNA decay plays a central role in the regulation and surveillance of eukaryotic gene expression. The conserved multidomain exoribonuclease Xrn1 targets cytoplasmic RNA substrates marked by a 5' monophosphate for processive 5'-to-3' degradation by an unknown mechanism. Here, we report the crystal structure of an Xrn1-substrate complex. The single-stranded substrate is held in place by stacking of the 5'-terminal trinucleotide between aromatic side chains while a highly basic pocket specifically recognizes the 5' phosphate. Mutations of residues involved in binding the 5'-terminal nucleotide impair Xrn1 processivity. The substrate recognition mechanism allows Xrn1 to couple processive hydrolysis to duplex melting in RNA substrates with sufficiently long single-stranded 5' overhangs. The Xrn1-substrate complex structure thus rationalizes the exclusive specificity of Xrn1 for 5'-monophosphorylated substrates, ensuring fidelity of mRNA turnover, and posits a model for translocation-coupled unwinding of structured RNA substrates.  相似文献   

4.
Ubiquitin-mediated proteolysis of securin and mitotic cyclins is essential for exit from mitosis. The final step in ubiquitination of these and other proteins is catalysed by the anaphase-promoting complex (APC), a multi-subunit ubiquitin-protein ligase (E3). Little is known about the molecular reaction resulting in APC-dependent substrate ubiquitination or the role of individual APC subunits in the reaction. Using a well-defined in vitro system, we show that highly purified APC from Saccharomyces cerevisiae ubiquitinates a model cyclin substrate in a processive manner. Analysis of mutant APC lacking the Doc1/Apc10 subunit (APC(doc1 Delta)) indicates that Doc1 is required for processivity. The specific molecular defect in APC(doc1 Delta) is identified by a large increase in apparent K(M) for the cyclin substrate relative to the wild-type enzyme. This suggests that Doc1 stimulates processivity by limiting substrate dissociation. Addition of recombinant Doc1 to APC(doc1 Delta) fully restores enzyme function. Doc1-related domains are found in mechanistically distinct ubiquitin-ligase enzymes and may generally stimulate ubiquitination by contributing to substrate-enzyme affinity.  相似文献   

5.
The proteasome is the degradation machine at the center of the ubiquitin-proteasome system and controls the concentrations of many proteins in eukaryotes. It is highly processive so that substrates are degraded completely into small peptides, avoiding the formation of potentially toxic fragments. Nonetheless, some proteins are incompletely degraded, indicating the existence of factors that influence proteasomal processivity. We have quantified proteasomal processivity and determined the underlying rates of substrate degradation and release. We find that processivity increases with species complexity over a 5-fold range between yeast and mammalian proteasome, and the effect is due to slower but more persistent degradation by proteasomes from more complex organisms. A sequence stretch that has been implicated in causing incomplete degradation, the glycine-rich region of the NFκB subunit p105, reduces the proteasome's ability to unfold its substrate, and polyglutamine repeats such as found in Huntington's disease reduce the processivity of the proteasome in a length-dependent manner.  相似文献   

6.
The anaphase-promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators. Cdh1p is an APC coactivator that directly binds APC substrates. A genetic screen in budding yeast identified residues within Cdh1p critical for its function. Cdh1p proteins containing mutations within the "C box" or the "IR" motif could bind substrate, but not the APC, whereas mutants that only bound the APC were not identified, suggesting an ordered assembly of the ternary APC-Cdh1p-substrate complex. Supporting this hypothesis, we found that substrate binding to wild-type Cdh1p enhanced its association with the APC in yeast cells. We used peptide competition assays to demonstrate that Cdh1p interacts directly with the D box and the KEN box, two motifs within APC substrates known to be required for APC-mediated degradation. Moreover, an intact D box domain within a substrate was required to stimulate the association between the Cdh1p-substrate complex and the APC.  相似文献   

7.
8.
《FEBS letters》2014,588(24):4620-4624
Glycoside hydrolases depolymerize polysaccharides. They can subtract single carbohydrate chains from polymer crystals and cleave glycosidic bonds without dissociating from the substrate after each catalytic event. This processivity is thought to conserve energy during polysaccharide degradation. Herein, we compare the processivity of components of the chitinolytic machinery of Serratia marcescens. The two processive chitinases ChiA and ChiB, the ChiB-W97A mutant, and the endochitinase ChiC were analyzed for the extent of degradation of three different chitin substrates. Moreover, enzyme processivity was assessed on the basis of the [(GlcNAc)2]/[GlcNAc] product ratio. The results show that the apparent processivity (Papp) greatly diminishes with the extent of degradation and confirm the hypothesis that Papp is limited by the length of obstacle free path on the substrate.  相似文献   

9.
The ubiquitin protein ligase anaphase-promoting complex or cyclosome (APC/C) controls mitosis by promoting ordered degradation of securin, cyclins, and other proteins. The mechanisms underlying the timing of APC/C substrate degradation are poorly understood. We explored these mechanisms using quantitative fluorescence microscopy of GFP-tagged APC/CCdc20 substrates in living budding yeast cells. Degradation of the S cyclin, Clb5, begins early in mitosis, followed 6 min later by the degradation of securin and Dbf4. Anaphase begins when less than half of securin is degraded. The spindle assembly checkpoint delays the onset of Clb5 degradation but does not influence securin degradation. Early Clb5 degradation depends on its interaction with the Cdk1–Cks1 complex and the presence of a Cdc20-binding “ABBA motif” in its N-terminal region. The degradation of securin and Dbf4 is delayed by Cdk1-dependent phosphorylation near their Cdc20-binding sites. Thus, a remarkably diverse array of mechanisms generates robust ordering of APC/CCdc20 substrate destruction.  相似文献   

10.
The anaphase promoting complex (APC) is a ubiquitin ligase that promotes the degradation of cell-cycle regulators by the 26S proteasome. Cdc20 and Cdh1 are WD40-containing APC co-activators that bind destruction boxes (DB) and KEN boxes within substrates to recruit them to the APC for ubiquitination. Acm1 is an APC(Cdh1) inhibitor that utilizes a DB and a KEN box to bind Cdh1 and prevent substrate binding, although Acm1 itself is not a substrate. We investigated what differentiates an APC substrate from an inhibitor. We identified the Acm1 A-motif that interacts with Cdh1 and together with the DB and KEN box is required for APC(Cdh1) inhibition. A genetic screen identified Cdh1 WD40 domain residues important for Acm1 A-motif interaction and inhibition that appears to reside near Cdh1 residues important for DB recognition. Specific lysine insertion mutations within Acm1 promoted its ubiquitination by APC(Cdh1) whereas lysine removal from the APC substrate Hsl1 converted it into a potent APC(Cdh1) inhibitor. These findings suggest that tight Cdh1 binding combined with the inaccessibility of ubiquitinatable lysines contributes to pseudosubstrate inhibition of APC(Cdh1).  相似文献   

11.
Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 and Cdh1 leads to ubiquitin-dependent degradation of securin and cyclin B and thereby promotes the initiation of anaphase and exit from mitosis. Cyclin B and securin ubiquitination depend on a destruction box (D box) sequence in these proteins, but how APC/C bound to Cdc20 or Cdh1 recognizes the D box is poorly understood. By using site-specific photocrosslinking in combination with mutational analyses, we show that the D box directly interacts with an evolutionarily conserved surface on the predicted WD40 propeller structure of Cdh1 and that this interaction is essential for processive substrate ubiquitination. We further show that Cdh1 specifically crosslinks to the APC/C subunit Cdc27 and that Cdh1 binding to APC/C depends on the presence of Cdc27. Our data imply that APC/C is activated by the association of Cdh1 with Cdc27, which enables APC/C to recognize the D box of substrates via Cdh1's propeller domain.  相似文献   

12.
The anaphase-promoting complex (APC) regulates the eukaryotic cell cycle by targeting specific proteins for proteasomal degradation. Its activity must be strictly controlled to ensure proper cell cycle progression. The co-activator proteins Cdc20 and Cdh1 are required for APC activity and are important regulatory targets. Recently, budding yeast Acm1 was identified as a Cdh1 binding partner and APC(Cdh1) inhibitor. Acm1 disappears in late mitosis when APC(Cdh1) becomes active and contains conserved degron-like sequences common to APC substrates, suggesting it could be both an inhibitor and substrate. Surprisingly, we found that Acm1 proteolysis is independent of APC. A major determinant of Acm1 stability is phosphorylation at consensus cyclin-dependent kinase sites. Acm1 is a substrate of Cdc28 cyclin-dependent kinase and Cdc14 phosphatase both in vivo and in vitro. Mutation of Cdc28 phosphorylation sites or conditional inactivation of Cdc28 destabilizes Acm1. In contrast, inactivation of Cdc14 prevents Acm1 dephosphorylation and proteolysis. Cdc28 stabilizes Acm1 in part by promoting binding of the 14-3-3 proteins Bmh1 and Bmh2. We conclude that the opposing actions of Cdc28 and Cdc14 are primary factors limiting Acm1 to the interval from G(1)/S to late mitosis and are capable of establishing APC-independent expression patterns similar to APC substrates.  相似文献   

13.
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase composed of approximately 13 distinct subunits required for progression through meiosis, mitosis, and the G1 phase of the cell cycle. Despite its central role in these processes, information concerning its composition and structure is limited. Here, we determined the structure of yeast APC/C by cryo-electron microscopy (cryo-EM). Docking of tetratricopeptide repeat (TPR)-containing subunits indicates that they likely form a scaffold-like outer shell, mediating assembly of the complex and providing potential binding sites for regulators and substrates. Quantitative determination of subunit stoichiometry indicates multiple copies of specific subunits, consistent with a total APC/C mass of approximately 1.7 MDa. Moreover, yeast APC/C forms both monomeric and dimeric species. Dimeric APC/C is a more active E3 ligase than the monomer, with greatly enhanced processivity. Our data suggest that multimerisation and/or the presence of multiple active sites facilitates the APC/C's ability to elongate polyubiquitin chains.  相似文献   

14.
In Escherichia coli, ClpYQ (HslUV) is a two-component ATP-dependent protease composed of ClpY (HslU), an ATPase with unfolding activity, and ClpQ (HslV), a peptidase. In the ClpYQ proteolytic complex, the hexameric rings of ClpY (HslU) are responsible for protein recognition, unfolding, and translocation into the proteolytic inner chamber of the dodecameric ClpQ (HslV). Each of the three domains, N, I, and C, in ClpY has its own distinct activity. The double loops (amino acids [aa] 137 to 150 and 175 to 209) in domain I of ClpY are necessary for initial recognition/tethering of natural substrates such as SulA, a cell division inhibitor protein. The highly conserved sequence GYVG (aa 90 to 93) pore I site, along with the GESSG pore II site (aa 265 to 269), contribute to the central pore of ClpY in domain N. These two central loops of ClpY are in the center of its hexameric ring in which the energy of ATP hydrolysis allows substrate translocation and then degradation by ClpQ. However, no data have been obtained to determine the effect of the central loops on substrate binding or as part of the processivity of the ClpYQ complex. Thus, we probed the features of ClpY important for substrate engagement and protease processivity via random PCR or site-specific mutagenesis. In yeast two-hybrid analysis and pulldown assays, using isolated ClpY mutants and the pore I or pore II site of ClpY, each was examined for its influence on the adjoining structural regions of the substrates. The pore I site is essential for the translocation of the engaged substrates. Our in vivo study of the ClpY mutants also revealed that an ATP-binding site in domain N, separate from its role in polypeptide (ClpY) oligomerization, is required for complex formation with ClpQ. Additionally, we found that the tyrosine residue at position 408 in ClpY is critical for stabilization of hexamer formation between subunits. Therefore, our studies suggest that stepwise activities of the ClpYQ protease are necessary to facilitate the processive degradation of its natural substrates.  相似文献   

15.
The APC/C is an E3 ubiquitin ligase that, by targeting substrates for proteasomal degradation, plays a major role in cell cycle control. In complex with one of two WD40 activator proteins, Cdc20 or Cdh1, the APC/C is active from early mitosis through to late G1 and during this time targets many critical regulators of the cell cycle for degradation. However, this destruction is carefully ordered to ensure that cell cycle events are executed in a timely fashion. Recent studies have begun to shed light on how the APC/C selects different substrates at different times in the cell cycle. One particular problem is how the APC/C recognizes its first set of substrates, Nek2A and cyclin A, in early mitosis when, at this time, the spindle assembly checkpoint (SAC) inhibits most APC/C-dependent degradation. The answer may lie in how substrates are recruited to the APC/C. While checkpoint-dependent substrates appear to require Cdc20 for recruitment, experiments on the early mitotic substrate Nek2A demonstrate that it can bind the APC/C in the absence of Cdc20. The direct interaction of substrates with core subunits of the APC/C could allow their degradation to proceed unhindered even when the SAC is active.  相似文献   

16.
The anaphase-promoting complex (APC) is a multisubunit E3 ubiquitin ligase that targets specific cell cycle-related proteins for degradation, regulating progression from metaphase to anaphase and exit from mitosis. The APC is regulated by binding of the coactivator proteins Cdc20p and Cdh1p, and by phosphorylation. We have developed a purification strategy that allowed us to purify the budding yeast APC to near homogeneity and identify two novel APC-associated proteins, Swm1p and Mnd2p. Using an in vitro ubiquitylation system and a native gel binding assay, we have characterized the properties of wild-type and mutant APC. We show that both the D and KEN boxes contribute to substrate recognition and that coactivator is required for substrate binding. APC lacking Apc9p or Doc1p/Apc10 have impaired E3 ligase activities. However, whereas Apc9p is required for structural stability and the incorporation of Cdc27p into the APC complex, Doc1p/Apc10 plays a specific role in substrate recognition by APC-coactivator complexes. These results imply that Doc1p/Apc10 may play a role to regulate the binding of specific substrates, similar to that of the coactivators.  相似文献   

17.
Poly(A)-specific ribonuclease (PARN) is an oligomeric, processive, and cap-interacting 3' exonuclease. We have studied how the m7G(5')ppp(5')G cap structure affects the activity of PARN. It is shown that the cap has four distinct effects: (i) It stimulates the rate of deadenylation if provided in cis; (ii) it inhibits deadenylation if provided at high concentration in trans; (iii) it stimulates deadenylation if provided at low concentration in trans; and (iv) it increases the processivity of PARN when provided in cis. It is shown that the catalytic and cap binding sites on PARN are separate. The important roles of the 7-methyl group and the inverted guanosine residue of the cap are demonstrated. An active deadenylation complex, consisting of the poly(A)-tailed RNA substrate and PARN, has been identified. Complex formation does not require a cap structure on the RNA substrate. The multiple effects of cap are all accounted for by a simple, kinetic model that takes the processivity of PARN into account.  相似文献   

18.
19.
The Anaphase Promoting Complex/Cyclosome (APC/C) in complex with its co‐activator Cdc20 is responsible for targeting proteins for ubiquitin‐mediated degradation during mitosis. The activity of APC/C–Cdc20 is inhibited during prometaphase by the Spindle Assembly Checkpoint (SAC) yet certain substrates escape this inhibition. Nek2A degradation during prometaphase depends on direct binding of Nek2A to the APC/C via a C‐terminal MR dipeptide but whether this motif alone is sufficient is not clear. Here, we identify Kif18A as a novel APC/C–Cdc20 substrate and show that Kif18A degradation depends on a C‐terminal LR motif. However in contrast to Nek2A, Kif18A is not degraded until anaphase showing that additional mechanisms contribute to Nek2A degradation. We find that dimerization via the leucine zipper, in combination with the MR motif, is required for stable Nek2A binding to and ubiquitination by the APC/C. Nek2A and the mitotic checkpoint complex (MCC) have an overlap in APC/C subunit requirements for binding and we propose that Nek2A binds with high affinity to apo‐APC/C and is degraded by the pool of Cdc20 that avoids inhibition by the SAC.  相似文献   

20.
The APC/CCdh1 (Anaphase Promoting Complex/Cyclosome) targets numerous cell cycle proteins for ubiquitin mediated degradation in late mitosis and G1. The KEN box is one of two major recognition motifs of APC/CCdh1 substrates. This motif is however very common and shared by a tenth of the human proteome, the vast majority of which are obviously not APC/C substrates. We have observed that most known functional KEN boxes are followed by a proline residue and show that this proline plays a role in APC/CCdh1 specific degradation. This insight can be instrumental for identifying novel APC/CCdh1 substrates. We used this KENxP motif to identify human Aurora B and Kid as APC/CCdh1 substrates. The degradation of Xenopus XKid at metaphase by APC/CCdc20 is essential for chromatid segregation. Human Kid in contrast is degraded later and its APC/CCdh1 specific degradation is not required for mitotic progress. It is thus likely that Kid inactivation in G1 takes place both by nuclear sequestration and degradation by the APC/CCdh1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号