首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breakpoints on chromosome 22 in the translocation t(9;22) found in Philadelphia positive acute lymphoblastic leukaemia patients fall within two categories. In the first the breakpoint is localized within the breakpoint cluster region of the BCR gene, analogous to the chromosome 22 breakpoint in chronic myeloid leukaemia. The second category has a breakpoint 5' of this area, but still within the BCR gene. We have previously shown that these breakpoints occur within the first intron of the BCR gene and cloned the 9q+ junction from such a patient. We have now determined the sequences around the breakpoints on both translocation partners from this patient as well as the germline regions. The chromosome 9 ABL sequence around the breakpoint shows homology to the consensus Alu sequence whereas the chromosome 22 BCR sequence does not. At the junction there is a 6 bp duplication of the chromosome 22 sequence which is present both in the 9q+ and in the 22q- translocation products. Possible mechanisms for the generation of the translocation are discussed.  相似文献   

2.
We have been able to assign the human catechol-O-methyltransferase gene (COMT) to chromosome 22q11.2 by using Southern blot analysis of panels of somatic cell hybrids and chromosomal in situ hybridization. Furthermore, Southern blot analysis of DNA from blood and bone marrow samples of a patient with chronic myeloid leukemia (CML), having an extra Philadelphia chromosome (Ph1) in addition to the one produced by the reciprocal translocation between chromosomes 9 and 22, showed increased COMT and BCR gene dosage as compared to DNAs originating from CML patients with only one Ph1 chromosome or from chromosomally normal individuals. Control hybridizations of the same blot with TCRG- and TCRA-specific probes showed corresponding signal intensities in all samples. A relatively frequent two-allele COMT gene RFLP (PIC = 0.37) was recognized in DNAs digested with BglI. Our gene mapping result is in concordance with that previously reported by Brahe et al. (1986), who used an autoradiozymogram assay on different somatic cell hybrids to map this gene to chromosome 22.  相似文献   

3.
A number of Xp22;Yq11 translocations involving the transposition of Yq material to the distal short arm of the X chromosome have been described. The reciprocal product, i.e. the derivative Y chromosome resulting from the translocation of a portion of Xp to Yq, has never been recovered. We searched for this reciprocal product by performing dosage analysis of Xp22-pter loci in 9 individuals carrying a non-fluorescent Y chromosome. In three mentally retarded and dysmorphic patients, dosage analysis indicated the duplication of Xp22 loci. Use of the highly polymorphic probe CRI-S232 demonstrated the inheritance of paternal Xp-specific alleles in the probands. In situ hybridization, performed in one case, confirmed that 29CL pseudoautosomal sequences were present, in addition to Xpter and Ypter, in the telomeric portion of Yq. To our knowledge, these are the first cases in which the translocation of Xp material to Yq has been demonstrated. The X and Y breakpoints were mapped in the three patients by dosage and deletion analysis. The X breakpoint falls, in the three cases, in a region of Xp22 that is not recognized as sharing sequence similarities with the Y chromosome, thus suggesting that these translocations are not the result of a homologous recombination event.  相似文献   

4.
Summary Human-Chinese hamster somatic cell hybrids were obtained using circulating leucocytes from a chronic myeloid leukaemia (CML) patient carrying a complex Philadelphia (Ph1) translocation (1p-; 9q+; 22q-). Hybrid clones which showed segregation of the translocation chromosomes were studied. The chromosome 22 markers ACO2, ARSA, and NAGA segregated with the 1p- derivative; and the chromosome 1 markers UMPK, PGD, and ENO1 segregated with the 9q+ derivative. Hence, molecular evidence has been obtained for the translocation of the distal part of 22q to chromosome 1 and for the translocation of the distal part of 1p to chromosome 9. No conclusions could be drawn either about translocation of chromosome 9 material or about a possible difference in breakpoint in chromosome 22 when compared with six cases of 9;22 translocations similarly studied and previously reported. In addition, a more precise mapping of PGM1 was obtained, the gene being proximal to UMPK and the breakpoint in 1p32.  相似文献   

5.
Summary A patient with chronic myelocytic leukaemia (CML) had the Philadelphia chromosome from the standard 9/22 translocation, a partial trisomy 1 secondary to an unbalanced 1/17 translocation, and a more recent clone with the addition of trisomy 22. This is the third case of partial trisomy 1 associated with the Philadelphia chromosome. Trisomy 1 in haematological disorders is discussed with reference to its clinical significance in CML, the segment of chromosome no. 1 involved, and the mechanisms of origin of the partial trisomies. Anomalies of chromosome 1, although not specific to any of them, seem to be important in the development of myeloproliferative disorders and of neoplasms in general.  相似文献   

6.
The Philadelphia chromosome is found in more than 90 percent of chronic myeloid leukemia (CML) patients. In most cases, it results from the reciprocal t(9;22)(q34;q11), with the ABL proto-oncogene from 9q34 fused to the breakpoint cluster region (BCR) locus on 22q11. In 5 to 10 percent of patients with CML, the Ph originates from variant translocations, involving various breakpoints in addition to 9q34 and 22q11. Here we report a rare case of a Philadelphia positive CML patient carrying t(5;9)(q13;q34) and deletion of ABL/BCR on der(9) as a separate event.  相似文献   

7.
Dbl protein and DH (Dbl homology) domains are key regulators of RhoGTPases and promote GDP release from the complex with GTPase. About 70 DH-containing proteins are found. DH domain is localized in tandem with PH (pleckstrin homology) domain in many proteins. Bcr protein is a partner of Abl in reciprocal translocation t(9;22) which leads to Philadelphia chromosome formation. In the present study we have cloned Bcr DH and PH domains into the vector for mammalian expression. GEF activity of Bcr DH domain was studied alone and together with PH domain. Our data suggest, that Bcr DH domains does not reveal GEF activity against RhoGTPases RhoA, Cdc42 and Racl subfamilies in vivo.  相似文献   

8.
The development of chronic myeloid leukemia (CML) is the result of a reciprocal translocation between chromosomes 9 and 22 due to the emergence of Philadelphia chromosome. The product of this mutation is a hybrid oncoprotein Bcr-Abl. According to the results of mass spectrometric analysis, USP1 protein was identified as a potential candidate for interaction with the PH domain Bcr-Abl oncoprotein. Due to the deubiquitination properties, USP1 protein can prevent proteasomal degradation of Bcr-Abl oncoprotein in a cell and, consequently, contribute to its accumulation, and the progression of the disease. In this work, creating the genetic constructs, we detected the USP1 protein localization in the cell. Also, a nuclear colocalization of USP1 protein with PH domain of Bcr-Abl oncoprotein in HEK293T cells was shown. The results are important for understanding the implications of the Philadelphia chromosome emergence, and the development of new methods for CML treatment, since the recent techniques are not always effective due to the emergence of numerous mutations that cause drug resistance and relapse of the disease.  相似文献   

9.
10.
Summary A phenotypically normal male with azoospermia was found to have a translocation between the short arm of the Y chromosome and the distal long arm of a chromosome 4. By cytogenetic analysis it could not be determined whether the translocation was reciprocal, nor whether it was balanced. In situ DNA hybridization with two pseudoautosomal and one Y-specific probe demonstrated that the breakpoint was on distal Yp and that there was Y chromosome material on 4q. Thus the translocation was reciprocal and could be characterized as t(Y;4)(pll;q32). There was no evidence for loss of Y-DNA sequences as judged by Southern blotting with Y-DNA probes. Thus the translocation may be balanced. We conclude that DNA hybridization can be used to refine considerably the cytogenetic analysis of such translocations.  相似文献   

11.
Partial trisomy 7q in two siblings   总被引:1,自引:0,他引:1  
Trisomy for 7q32 leads to 7qter and monosomy for 9p24 leads to 9pter is observed in a sister and a brother, due to a balanced reciprocal translocation between the long arm of the chromosome 7 and the short arm of the chromosome 9 in the mother. The siblings are retarded mentally as well as in statomotoric development. This paper discusses the correlation between chromosomal states and certain deformities in patients with trisomies of different segments of 7q.  相似文献   

12.
G Gradl  H Tesch  G Schwieder  T Wagner  C Fonatsch 《Blut》1989,58(6):279-285
In a case of CML with a variant Philadelphia translocation (Ph1 or Ph) t(22;22) (q11;q13) in bone marrow cells and unstimulated peripheral blood cells, no cytogenetically detectable involvement of chromosome 9 was observed. Southern blot experiments using probes specific for bcr and c-sis however revealed rearrangement of the bcr, but not of PDGFB (c-sis) gene. Northern blot analysis of bone marrow RNA showed a very weak signal with the c-sis probe, while in a lymph-node biopsy PDGFB m-RNA could not be detected. Chromosomal in situ hybridization gave evidence for translocation of c-abl from chromosome 9 to Ph and of PDGFB from chromosome 22 to chromosome 9, as the result of a threefold translocation t(9;22;22).  相似文献   

13.
C-abl and bcr are rearranged in a Ph1-negative CML patient.   总被引:5,自引:0,他引:5       下载免费PDF全文
Chromosomal analysis of a patient with chronic myelocytic leukemia (CML) revealed a translocation (9;12) (q34;q21) without a detectable Philadelphia chromosome (Ph1). Using molecular approaches we demonstrate (i) a rearrangement within the CML breakpoint cluster region (bcr) on chromosome 22, and (ii) a joint translocation of bcr and c-abl oncogene sequences to the derivative chromosome 12. These observations support the view that sequences residing on both chromosome 9 (c-abl) and 22 (bcr) are involved in the generation of CML and suggest that a subset of Ph1-negative patients may in fact belong to the clinical entity of Ph1-positive CML.  相似文献   

14.
Summary The presence of two markers on chromosome 9, both a balanced reciprocal translocation and an inversion, allows morphologic demonstration of recombination between the normal and rearranged homologues. In the family under discussion 50% of the progeny studied (two of four) received a translocated 9 without the inversion from a parent with a translocated and inverted 9, indicating crossing-over between members of the chromosome 9 pair. Thus the morphology of the chromosomes allows a recombinat event which is normally invisible to be seen cytologically. Theoretically after crossing-over the balanced reciprocal translocation heterozygote results from adjacent-1 segregation and unbalanced derivative chromosome combinations from alternate segregation. Therefore it cannot be assumed that the balanced progeny necessarily result from alternate segregation and the unbalanced from adjacent-1. The prenatal diagnostic studies presented in this report also show that chromosome analysis of other family members is required when the recombination between homologues produces differences in chromosome morphology between parent and fetus.  相似文献   

15.
The secondary constriction region (h) of human chromosome 9 was evaluated in 55 chronic myelogenous leukemia (CML) patients with respect to its size and position. Each case was examined by C-banding and distamycin A-4,6-diamidino-2-phenylindole techniques for the expression of the h regions. When one h region of chromosome 9 was larger, it was more frequently involved in the reciprocal translocation with chromosome 22. In addition, there was a higher incidence of pericentric inversions in the h regions in the translocated chromosome 9 when compared with normal homologues. The role of the constitutive heterochromatin of chromosome 9 as a possible influencing factor during 9q;22q translocation in CML is suggested.  相似文献   

16.
Chronic myeloid leukemia (CML) is characterized by the reciprocal translocation t(9;22)(q34;q11.2) which fuses the ABL1 oncogene on chromosome 9 with the BCR gene on chromosome 22. It is the BCR/ABL protein that drives the neoplasm and the ABL/BCR is not necessary for the disease. In the majority of CML cases, the BCR/ABL fusion gene is cytogenetically recognizable as a small derivative chromosome 22(der 22), which is known as the Philadelphia (Ph) chromosome. However, approximately 2-10% of patients with CML involve cryptic or complex variant translocations with deletions on the der(9) and/or der(22) occuring in roughly 10-15% of CML cases. Fluorescence in situ hybridization (FISH) analysis can help identify deletions and complex or cryptic rearrangements. Various BCR/ABL FISH probes are available, which include dual color single fusion, dual color extra signal (ES), dual color dual fusion and tri color dual fusion probes. To test the utility of these probes, six patients diagnosed with CML carrying different complex variant Ph translocations were studied by G-banding and FISH analysis using the BCR/ABL ES, BCR/ABL dual color dual fusion, and BCR/ABL tricolor probes. There are differences among the probes in their ability to detect variant rearrangements, with or without accompanying chromoso me 9 and/or 22 deletions, and low level disease.  相似文献   

17.
Reciprocal translocation is one of the most common structural chromosomal rearrangements in human beings; it is widely recognized to be associated with male infertility. This association is mainly based on the abnormal chromosome behavior of the translocated chromosomes and sex chromosomes during meiosis prophase I in reciprocal translocation carriers. However, the underlying mechanisms are not completely known. Here we report a reciprocal translocation carrier of t(8;15), who is oligozoospermic due to apoptosis of primary spermatocytes and to premature germ cell desquamation from seminiferous tubules. Further analysis showed abnormal synapsis and recombination frequency in this patient, indicating a connection between chromosome behavior and apoptosis of primary spermatocytes. We also compared these observations with recently reported findings on spermatogenesis defects in reciprocal translocation carriers, and discuss the possible mechanisms underlying both common and unique phenotypes of reciprocal translocations involving different chromosomes with the aim of further understanding the regulation of human spermatogenesis.  相似文献   

18.
The Philadelphia chromosome (t9:22;q34:q11) is found in more than 90% of patients with chronic myelogenous leukemia, in 10 to 20% of patients with acute lymphocytic leukemia, and in 1 to 2% of patients with acute myelogenous leukemia. Alternative chimeric oncogenes are formed by splicing different sets of BCR gene exons on chromosome 22 across the translocation breakpoint to a common set of ABL oncogene sequences on chromosome 9. This results in an 8.7-kilobase mRNA that encodes the P210 BCR-ABL gene product commonly found in patients with chronic myelogenous leukemia or a 7.0-kilobase mRNA that produces the P185 BCR-ABL gene product found in most Philadelphia chromosome-positive patients with acute lymphocytic leukemia. To compare the efficiency of growth stimulation by these two proteins, we derived cDNA clones for each with identical 5' and 3' untranslated regions and expressed them from retrovirus vectors. Matched stocks were compared for potency to transform immature B-lymphoid lineage precursors. The growth-stimulating effects of P185 for this cell type were found to be significantly greater than those of P210. Structural changes in BCR may regulate the effectiveness of the ABL tyrosine kinase function, as monitored by lymphocyte growth response. Changes in mitogenic potency may help to explain the more acute leukemic presentation usually associated with expression of the P185 BCR-ABL oncogene.  相似文献   

19.
Somatic cell hybrids, obtained after fusion of translocation (11;22)-positive Ewing sarcoma cells and Chinese hamster fibroblasts, were assayed for the presence of immunoglobulin C lambda, Philadelphia chromosome breakpoint cluster region, and c-sis oncogene sequences. It was found that c-sis was translocated from chromosome 22 to chromosome 11 in the Ewing sarcoma cells used, indicating that the breakpoint must be proximal to this locus. Moreover, we found that the chromosome 22-linked C lambda and breakpoint cluster region sequences are not translocated. This result confirms an earlier cytogenetic observation that the Ewing sarcoma-associated breakpoint in chromosome 22 is distal to those observed in translocation (8;22)-positive Burkitt lymphoma and in Philadelphia chromosome-positive chronic myeloid leukemia.  相似文献   

20.
BCR/ABL oncogenic tyrosine kinase is responsible for the pathogenesis of Philadelphia chromosome-positive human leukemia and is generated by a specific reciprocal chromosome translocation, t(9;22)(q34-;q11+). We examined the role of DNA repair in therapeutic drug resistance to idarubicin in the murine pro-B lymphoid cell line BaF3 and its BCR/ABL -transformed clone. These cells can be used as models of human leukemias. The MTT assay revealed that BCR/ABL -transformed cells displayed resistance to idarubicin in the range 0.3-0.5 microm, compared with the control BaF3 cells. Idarubicin at 0.3 and 1 microm induced DNA damage in the form of strand-breaks and/or alkali labile sites in both transformed and control cells in comet assays. The BCR/ABL -transformed cells needed only 60 min to remove damage to their DNA, whereas controls took 120 min. We hypothesize that this observed increase in the efficacy of repair in BCR/ABL- positive cells is involved in their resistance to idarubicin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号