首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human Serum Albumin (HSA) exerted a significant lipid peroxidase activity with the use of a thiol-reducing equivalent such as dithiothreitol (DTT). Carboxyl group-modified HSA (CM-HSA) showed a 10-fold stronger lipid peroxidase activity (1.6 nmol/min/mg) than that of HSA (0.17 nmol/min/mg). Instead of DTT, thioredoxin (Trx) also supported reducing equivalent to the reduction of lipid hydroperoxide by CM-HSA. Contrast to CM-HSA, HSA did not reduce lipid peroxide with the use of Trx. In the presence of palmitoyl coenzyme A (palmitoyl-CoA) however, HSA used Trx as an electron donor to the reduction of lipid hydroperoxide. The Trx-linked peroxidase activity of HSA sharply increased with elongation in the carbon chain of the acyl moiety of acyl-CoA, showing an optimum activity in the presence of palmitoyl-CoA. Fluorescence study indicates the conformational changes of HSA induced by palmitoyl-CoA. Together, these data suggest that palmitoyl-CoA-bound HSA has a capability to remove lipid peroxide with the use of electrons given by Trx system.  相似文献   

2.
Some members of the glutathione peroxidase (GPx) family have been reported to accept thioredoxin as reducing substrate. However, the selenocysteine-containing ones oxidise thioredoxin (Trx), if at all, at extremely slow rates. In contrast, the Cys homolog of Drosophila melanogaster exhibits a clear preference for Trx, the net forward rate constant, k'(+2), for reduction by Trx being 1.5x10(6) M(-1) s(-1), but only 5.4 M(-1) s(-1) for glutathione. Like other CysGPxs with thioredoxin peroxidase activity, Drosophila melanogaster (Dm)GPx oxidized by H(2)O(2) contained an intra-molecular disulfide bridge between the active-site cysteine (C45; C(P)) and C91. Site-directed mutagenesis of C91 in DmGPx abrogated Trx peroxidase activity, but increased the rate constant for glutathione by two orders of magnitude. In contrast, a replacement of C74 by Ser or Ala only marginally affected activity and specificity of DmGPx. Furthermore, LC-MS/MS analysis of oxidized DmGPx exposed to a reduced Trx C35S mutant yielded a dead-end intermediate containing a disulfide between Trx C32 and DmGPx C91. Thus, the catalytic mechanism of DmGPx, unlike that of selenocysteine (Sec)GPxs, involves formation of an internal disulfide that is pivotal to the interaction with Trx. Hereby C91, like the analogous second cysteine in 2-cysteine peroxiredoxins, adopts the role of a "resolving" cysteine (C(R)). Molecular modeling and homology considerations based on 450 GPxs suggest peculiar features to determine Trx specificity: (i) a non-aligned second Cys within the fourth helix that acts as C(R); (ii) deletions of the subunit interfaces typical of tetrameric GPxs leading to flexibility of the C(R)-containing loop. Based of these characteristics, most of the non-mammalian CysGPxs, in functional terms, are thioredoxin peroxidases.  相似文献   

3.
We verified and generalized the catalytic features that selenocysteine (Sec) and cysteine (Cys) contribute to the reduction of methionine-R-sulfoxide using an anaerobic bacterial MsrB from Clostridium sp. OhILA as a model protein. The Sec-containing Clostridium MsrB form exhibited 100-fold higher activity than its Cys-containing form, revealing that Sec provided the catalytic advantage of higher activity. However, a resolving Cys was required for the thioredoxin (Trx)-dependent recycling process of the Sec-containing form. Thus, Trx could reduce the selenenylsulfide bond, but its Trx-dependent recycling process was much less efficient compared to that for the disulfide bond in the Cys-containing form, demonstrating an obvious catalytic disadvantage. These data agreed well with our previous data on mammalian MsrBs, and therefore suggested that the catalytic mechanisms, as well as the catalytic advantages and disadvantages provided by the Sec and Cys residues, are most likely conserved from anaerobic bacteria to mammals. Taken together, we propose that the use of Sec in MsrB may depend on a balance between the catalytic advantage of higher activity and the disadvantage of a less efficient regeneration process provided by this residue.  相似文献   

4.
The mammalian cytosolic/nuclear thioredoxin system, comprising thioredoxin (Trx), selenoenzyme thioredoxin reductase (TrxR), and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. The active site of reduced Trx comprises Cys(32)-Gly-Pro-Cys(35) thiols that catalyze target disulfide reduction, generating a disulfide. Human Trx1 has also three structural Cys residues in positions 62, 69, and 73 that upon diamide oxidation induce a second Cys(62)-Cys(69) disulfide as well as dimers and multimers. We have discovered that after incubation with H(2)O(2) only monomeric two-disulfide molecules are generated, and they are inactive but able to regain full activity in an autocatalytic process in the presence of NADPH and TrxR. There are conflicting results regarding the effects of S-nitrosylation on Trx antioxidant functions and which residues are involved. We found that S-nitrosoglutathione-mediated S-nitrosylation at physiological pH is critically dependent on the redox state of Trx. Starting from fully reduced human Trx, both Cys(69) and Cys(73) were nitrosylated, and the active site formed a disulfide; the nitrosylated Trx was not a substrate for TrxR but regained activity after a lag phase consistent with autoactivation. Treatment of a two-disulfide form of Trx1 with S-nitrosoglutathione resulted in nitrosylation of Cys(73), which can act as a trans-nitrosylating agent as observed by others to control caspase 3 activity (Mitchell, D. A., and Marletta, M. A. (2005) Nat. Chem. Biol. 1, 154-158). The reversible inhibition of human Trx1 activity by H(2)O(2) and NO donors is suggested to act in cell signaling via temporal control of reduction for the transmission of oxidative and/or nitrosative signals in thiol redox control.  相似文献   

5.
Cysteine glutathione peroxidases (CysGPxs) control oxidative stress levels by reducing hydroperoxides at the expense of cysteine thiol (‐SH) oxidation, and the recovery of their peroxidatic activity is generally accomplished by thioredoxin (Trx). Corynebacterium glutamicum mycothiol peroxidase (Mpx) is a member of the CysGPx family. We discovered that its recycling is controlled by both the Trx and the mycothiol (MSH) pathway. After H2O2 reduction, a sulfenic acid (‐SOH) is formed on the peroxidatic cysteine (Cys36), which then reacts with the resolving cysteine (Cys79), forming an intramolecular disulfide (S‐S), which is reduced by Trx. Alternatively, the sulfenic acid reacts with MSH and forms a mixed disulfide. Mycoredoxin 1 (Mrx1) reduces the mixed disulfide, in which Mrx1 acts in combination with MSH and mycothiol disulfide reductase as a biological relevant monothiol reducing system. Remarkably, Trx can also take over the role of Mrx1 and reduce the Mpx‐MSH mixed disulfide using a dithiol mechanism. Furthermore, Mpx is important for cellular survival under H2O2 stress, and its gene expression is clearly induced upon H2O2 challenge. These findings add a new dimension to the redox control and the functioning of CysGPxs in general.  相似文献   

6.
All living organisms contain redox systems involving thioredoxins (Trx), proteins featuring an extremely conserved and reactive active site that perform thiol-disulfide interchanges with disulfide bridges of target proteins. In photosynthetic organisms, numerous isoforms of Trx coexist, as revealed by sequencing of Arabidopsis genome. The specific functions of many of them are still unknown. In an attempt to find new molecular targets of Trx in Chlamydomonas reinhardtii, an affinity column carrying a cytosolic Trx h mutated at the less reactive cysteine of its active site was used to trap Chlamydomonas proteins that form mixed disulfides with Trx. The major protein bound to the column was identified by amino-acid sequencing and mass spectrometry as a thioredoxin-dependent 2Cys peroxidase. Isolation and sequencing of its gene revealed that this peroxidase is most likely a chloroplast protein with a high homology to plant 2Cys peroxiredoxins. It is shown that the Chlamydomonas peroxiredoxin (Ch-Prx1) is active with various thioredoxin isoforms, functions as an antioxidant toward reactive oxygen species (ROS), and protects DNA against ROS-induced degradation. Expression of the peroxidase gene in Chlamydomonas was found to be regulated by light, oxygen concentration, and redox state. The data suggest a role for the Chlamydomonas Prx in ROS detoxification in the chloroplast.  相似文献   

7.
Methionine sulfoxide reductases A and B (MsrA and MsrB) have been known to be thioredoxin (Trx)-dependent enzymes that catalyze the reduction of methionine sulfoxide in a stereospecific manner. This work reports that glutaredoxin, another major thiol-disulfide oxidoreductase, can serve as a reductant for both MsrA and MsrB. Glutaredoxins efficiently reduced 1-Cys MsrA lacking a resolving Cys, which is not reducible by Trx. Glutaredoxins also reduced 3-Cys MsrA containing two resolving Cys. The glutaredoxin-dependent activity of the 3-Cys MsrA was comparable with the Trx-dependent activity. The kinetic data suggest that 1-Cys MsrA is more efficiently reduced by glutaredoxin than 3-Cys form. Also, glutaredoxins could function as a reductant for 1-Cys MsrB lacking a resolving Cys as previously reported. In contrast to the previous report, 2-Cys MsrB containing a resolving Cys was reducible by the glutaredoxins. Collectively, this study demonstrates that glutaredoxins reduce MsrAs and MsrBs with or without resolving Cys.  相似文献   

8.
Escherichia coli thiol peroxidase (Tpx, p20, scavengase) is part of an oxidative stress defense system that uses reducing equivalents from thioredoxin (Trx1) and thioredoxin reductase to reduce alkyl hydroperoxides. Tpx contains three Cys residues, Cys(95), Cys(82), and Cys(61), and the latter residue aligns with the N-terminal active site Cys of other peroxidases in the peroxiredoxin family. To identify the catalytically important Cys, we have cloned and purified Tpx and four mutants (C61S, C82S, C95S, and C82S,C95S). In rapid reaction kinetic experiments measuring steady-state turnover, C61S is inactive, C95S retains partial activity, and the C82S mutation only slightly affects reaction rates. Furthermore, a sulfenic acid intermediate at Cys(61) generated by cumene hydroperoxide (CHP) treatment was detected in UV-visible spectra of 4-nitrobenzo-2-oxa-1,3-diazole-labeled C82S,C95S, confirming the identity of Cys(61) as the peroxidatic center. In stopped-flow kinetic studies, Tpx and Trx1 form a Michaelis complex during turnover with a catalytic efficiency of 3.0 x 10(6) m(-1) s(-1), and the low K(m) (9.0 microm) of Tpx for CHP demonstrates substrate specificity toward alkyl hydroperoxides over H(2)O(2) (K(m) > 1.7 mm). Rapid inactivation of Tpx due to Cys(61) overoxidation is observed during turnover with CHP and a lipid hydroperoxide, 15-hydroperoxyeicosatetraenoic acid, but not H(2)O(2). Unlike most other 2-Cys peroxiredoxins, which operate by an intersubunit disulfide mechanism, Tpx contains a redox-active intrasubunit disulfide bond yet is homodimeric in solution.  相似文献   

9.
Rat 3-mercaptopyruvate sulfurtransferase (MST) contains three exposed cysteines as follows: a catalytic site cysteine, Cys(247), in the active site and Cys(154) and Cys(263) on the surface of MST. The corresponding cysteine to Cys(263) is conserved in mammalian MSTs, and Cys(154) is a unique cysteine. MST has monomer-dimer equilibrium with the assistance of oxidants and reductants. The monomer to dimer ratio is maintained at approximately 92:8 in 0.2 m potassium phosphate buffer containing no reductants under air-saturated conditions; the dimer might be symmetrical via an intersubunit disulfide bond between Cys(154) and Cys(154) and between Cys(263) and Cys(263), or asymmetrical via an intersubunit disulfide bond between Cys(154) and Cys(263). Escherichia coli reduced thioredoxin (Trx) cleaved the intersubunit disulfide bond to activate MST to 2.3- and 4.9-fold the levels of activation of dithiothreitol (DTT)-treated and DTT-untreated MST, respectively. Rat Trx also activated MST. On the other hand, reduced glutathione did not affect MST activity. E. coli C35S Trx, in which Cys(35) was replaced with Ser, formed some adducts with MST and activated MST after treatment with DTT. Thus, Cys(32) of E. coli Trx reacted with the redox-active cysteines, Cys(154) and Cys(263), by forming an intersubunit disulfide bond and a sulfenyl Cys(247). A consecutively formed disulfide bond between Trx and MST must be cleaved for the activation. E. coli C32S Trx, however, did not activate MST. Reduced Trx turns on a redox switch for the enzymatic activation of MST, which contributes to the maintenance of cellular redox homeostasis.  相似文献   

10.
Rat heme-binding protein 23 (HBP23)/peroxiredoxin (Prx I) belongs to the 2-Cys peroxiredoxin type I family and exhibits peroxidase activity coupled with reduced thioredoxin (Trx) as an electron donor. We analyzed the dimer-oligomer interconversion of wild-type and mutant HBP23/Prx I by gel filtration and found that the C52S and C173S mutants existed mostly as decamers, whereas the wild type was a mixture of various forms, favoring the decamer at higher protein concentration and lower ionic salt concentration and in the presence of dithiothreitol. The C83S mutant was predominantly dimeric, in agreement with a previous crystallographic analysis (Hirotsu, S., Abe, Y., Okada, K., Nagahara, N., Hori, H., Nishino, T., and Hakoshima, T. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 12333-12338). X-ray diffraction analysis of the decameric C52S mutant revealed a toroidal structure (diameter, approximately 130A; inside diameter, approximately 55A; thickness, approximately 45A). In contrast to human Prx I, which was recently reported to exist predominantly as the decamer with Cys(83)-Cys(83) disulfide bonds at all dimer-dimer interfaces, rat HBP23/Prx I has a Cys(83)-Cys(83) disulfide bond at only one dimer-dimer interface (S-S separation of approximately 2.1A), whereas the interactions at the other interfaces (mean S-S separation of 3.6A) appear to involve hydrophobic and van der Waals forces. This finding is consistent with gel filtration analyses showing that the protein readily interconverts between dimer and oligomeric forms. The C83S mutant exhibited similar peroxidase activity to the wild type, which is exclusively dimeric, in the Trx/Trx reductase system. At higher concentrations, where the protein was mostly decameric, less efficient attack of reduced Trx was observed in a [(14)C]iodoacetamide incorporation experiment. We suggest that the dimerdecamer interconversion may have a regulatory role.  相似文献   

11.
The interactions of the unpaired thiol residue (Cys34) of human serum albumin (HSA) with low-molecular-weight thiols and an Au(I)-based antiarthritic drug have been examined using electrospray ionization mass spectrometry. Early measurements of the amount of HSA containing Cys34 as the free thiol suggested that up to 30% of circulating HSA bound cysteine as a mixed disulfide. It has also been suggested that reaction of HSA with cysteine, occurs only on handling and storage of plasma. In our experiments, there were three components of HSA in freshly collected plasma from normal volunteers, HSA, HSA+cysteine, and HSA+glucose in the ratio approximately 50:25:25. We addressed this controversy by using iodoacetamide to block the free thiol of HSA in fresh plasma, preventing its reaction with plasma cysteine. When iodoacetamide was injected into a vacutaner tube as blood was collected, the HSA was modified by iodoacetamide, with 20-30% present as the mixed disulfide with cysteine (HSA+cys). These data provide strong evidence that 20-30% of HSA in normal plasma contains one bound cysteine. Reaction of HSA with [Au(S(2)O(3))(2)](3-) resulted in formation of the adducts HSA+Au(S(2)O(3)) and HSA+Au. Reaction of HSA with iodoacetamide prior to treatment with [Au(S(2)O(3))(2)](3-) blocked the formation of gold adducts.  相似文献   

12.
13.
Glutaredoxin (Grx) is a 12-kDa thioltransferase that reduces disulfide bonds of other proteins and maintains the redox potential of cells. In addition to its oxidoreductase activity, we report here that a rice Grx (OsGrx) can also function as a GSH-dependent peroxidase. Because of this antioxidant activity, OsGrx protects glutamine synthetase from oxidative damage. Individually replacing the conserved Cys residues in OsGrx with Ser shows that Cys(23), but not Cys(26), is essential for the thioltransferase and GSH-dependent peroxidase activities. Kinetic characterization of OsGrx reveals that the maximal catalytic efficiency (V(max)/K(m)) is obtained with cumene hydroperoxide rather than H(2)O(2) or t-butyl hydroperoxide.  相似文献   

14.
Thioredoxin peroxidase (TPx) has been reported to dominate the defense against H(2)O(2), other hydroperoxides, and peroxynitrite at the expense of thioredoxin (Trx) B and C in Mycobacterium tuberculosis (Mt). By homology, the enzyme has been classified as an atypical 2-C-peroxiredoxin (Prx), with Cys(60) as the "peroxidatic" cysteine (C(P)) forming a complex catalytic center with Cys(93) as the "resolving" cysteine (C(R)). Site-directed mutagenesis confirms Cys(60) to be C(P) and Cys(80) to be catalytically irrelevant. Replacing Cys(93) with serine leads to fast inactivation as seen by conventional activity determination, which is associated with oxidation of Cys(60) to a sulfinic acid derivative. However, in comparative stopped-flow analysis, WT-MtTPx and MtTPx C93S reduce peroxynitrite and react with TrxB and -C similarly fast. Reduction of pre-oxidized WT-MtTPx and MtTPx C93S by MtTrxB is demonstrated by monitoring the redox-dependent tryptophan fluorescence of MtTrxB. Furthermore, MtTPx C93S remains stable for 10 min at a morpholinosydnonimine hydrochloride-generated low flux of peroxynitrite and excess MtTrxB in a dihydrorhodamine oxidation model. Liquid chromatography-tandem mass spectrometry analysis revealed disulfide bridges between Cys(60) and Cys(93) and between Cys(60) and Cys(80) in oxidized WT-MtTPx. Reaction of pre-oxidized WT-MtTPx and MtTPx C93S with MtTrxB C34S or MtTrxC C40S yielded dead-end intermediates in which the Trx mutants are preferentially linked via disulfide bonds to Cys(60) and never to Cys(93) of the TPx. It is concluded that neither Cys(80) nor Cys(93) is required for the catalytic cycle of the peroxidase. Instead, MtTPx can react as a 1-C-Prx with Cys(60) being the site of attack for both the oxidizing and the reducing substrate. The role of Cys(93) is likely to conserve the oxidation equivalents of the sulfenic acid state of C(P) as a disulfide bond to prevent overoxidation of Cys(60) under a restricted supply of reducing substrate.  相似文献   

15.
16.
A cDNA, PHCC-TPx, specifying a protein highly homologous to known phospholipid hydroperoxide glutathione peroxidases was isolated from a Chinese cabbage cDNA library. PHCC-TPx encodes a preprotein of 232 amino acids containing a putative N-terminal chloroplast targeting sequence and three conserved Cys residues (Cys(107), Cys(136), and Cys(155)). The mature form of enzyme without the signal peptide was expressed in Escherichia coli, and the recombinant protein was found to utilize thioredoxin (Trx) but not GSH as an electron donor. In the presence of a Trx system, the protein efficiently reduces H(2)O(2) and organic hydroperoxides. Complementation analysis shows that overexpression of the PHCC-TPx restores resistance to oxidative stress in yeast mutants lacking GSH but fails to complement mutant lacking Trx, suggesting that the reducing agent of PHCC-TPx in vivo is not GSH but is Trx. Mutational analysis of the three Cys residues individually replaced with Ser shows that Cys(107) is the primary attacking site by peroxide, and oxidized Cys(107) reacts with Cys(155)-SH to make an intramolecular disulfide bond, which is reduced eventually by Trx. Tryptic peptide analysis by matrix-assisted laser desorption and ionization time of flight mass spectrometry shows that Cys(155) can form a disulfide bond with either Cys(107) or Cys(136).  相似文献   

17.
Thioredoxin peroxidase 1 (TPx1) of the malarial parasite Plasmodium falciparum is a 2-Cys peroxiredoxin involved in the detoxification of reactive oxygen species and - as shown here - of reactive nitrogen species. As novel electron acceptor of reduced TPx1, we characterised peroxynitrite; the rate constant for ONOO- reduction by the enzyme (1 x 10(6) M(-1) s(-1) at pH 7.4 and 37 degrees C) was determined by stopped-flow measurements. As reducing substrate of TPx1, we identified - aside from thioredoxin - plasmoredoxin; this 22-kDa protein occurs only in malarial parasites. When studying the potential roles of Cys74 and Cys170 of Tpx1 in catalysis, as well as in oligomerisation behaviour, we found that replacement of Cys74 by Ala influenced neither the dimerisation nor enzymatic activity of TPx1. In the C170A mutant, however, the kcat/Km for reduced Trx as a substrate was shown to be approximately 50-fold lower and, in contrast to the wild-type enzyme, covalently linked dimers were not formed. For the catalytic cycle of TPx1, we conclude that oxidation of the peroxidatic Cys50 by the oxidising substrate is followed by the formation of an intermolecular disulfide bond between Cys50 and Cys170' of the second subunit, which is then attacked by an external electron donor such as thioredoxin or plasmoredoxin.  相似文献   

18.
Thioredoxin (Trx) is a protein disulfide reductase that, together with nicotinamide adenine dinucleotide phosphate (NADPH) and thioredoxin reductase (TrxR), controls oxidative stress or redox signaling via thiol redox control. Human cytosolic Trx1 has Cys32 and Cys35 as the active site and three additional cysteine residues (Cys62, Cys69, and Cys73), which by oxidation generates inactive Cys62 to Cys69 two-disulfide Trx. This, combined with TrxR with a broad substrate specificity, complicates assays of mammalian Trx and TrxR. We sought to understand the autoregulation of Trx and TrxR and to generate new methods for quantification of Trx and TrxR. We optimized the synthesis of two fluorescent substrates, di-eosin–glutathione disulfide (Di-E–GSSG) and fluorescein isothiocyanate-labeled insulin (FiTC–insulin), which displayed higher fluorescence on disulfide reduction. Di-E–GSSG showed a very large increase in fluorescence quantum yield but had a relatively low affinity for Trx and was also a weak direct substrate for TrxR, in contrast to GSSG. FiTC–insulin was used to develop highly sensitive assays for TrxR and Trx. Reproducible conditions were developed for reactivation of modified Trx, commonly present in frozen or oxidized samples. Trx in cell extracts and tissue samples, including plasma and serum, were subsequently analyzed, showing highly reproducible results and allowing measurement of trace amounts of Trx.  相似文献   

19.
The glutathione peroxidase homologs (GPxs) efficiently reduce hydroperoxides using electrons from glutathione (GSH), thioredoxin (Trx), or protein disulfide isomerase (PDI). Trx is preferentially used by the GPxs of the majority of bacteria, invertebrates, plants, and fungi. GSH or PDI, instead, is preferentially used by vertebrate GPxs that operate by Sec or Cys catalysis, respectively. Mammalian GPx7 and GPx8 are unique homologs that contain a peroxidatic Cys (CP). Being reduced by PDI and located within the endoplasmic reticulum (ER), these enzymes have been involved in oxidative protein folding. Kinetic analysis indicates that oxidation of PDI by recombinant GPx7 occurs at a much faster rate than that of GSH. Nonetheless, activity measurement suggests that, at physiological concentrations, a competition between these two substrates takes place, with the rate of PDI oxidation by GPx7 controlled by the concentration of GSH, whereas the GSSG produced in the competing reaction contributes to the ER redox buffer. A mechanism has been proposed for GPx7 involving two Cys residues, in which an intramolecular disulfide of the CP is formed with an alleged resolving Cys (CR) located in the strongly conserved FPCNQ motif (C86 in humans), a noncanonical position in GPxs. Kinetic measurements and comparison with the other thiol peroxidases containing a functional CR suggest that a resolving function of C86 in the catalytic cycle is very unlikely. We propose that GPx7 is catalytically active as a 1-Cys-GPx, in which CP both reduces H2O2 and oxidizes PDI, and that the CP-C86 disulfide has instead the role of stabilizing the oxidized peroxidase in the absence of the reducing substrate.  相似文献   

20.
E4, which is a fruit-ripening gene that is strongly induced by ethylene, has been reported to be a member of the methionine sulfoxide reductase A (MSRA) gene. In the present study, we determined for the first time the enzymatic activity and delineated the catalytic mechanism of the E4 protein via site-directed mutagenesis. The disulfide intermolecular cross-linking, kinetics parameter, thiol content titration analysis of wild-type and mutated E4 proteins revealed that the cysteine at position 37 (Cys-37) was the key catalytic residue, and Cys-194, but not Cys-180 served as the first recycling Cys in the thioredoxin (Trx)-dependent regeneration system. In addition, the SlMSRA2 protein, which was encoded by another MSRA gene, shared high similarity with the E4 protein and was truncated at the C-terminus. The wild-type and mutated SlMSRA2 enzymes had similar activities compared to the E4 protein using DTT as a reductant, but showed extremely low activities in the Trx-dependent reduction system. Our results indicated that E4 and SlMSRA2 proteins might exhibit distinct catalytic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号