首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for analyzing stage-frequency data is proposed which is based on the estimation of rates of transition between one stage and the next highest stage in one unit of time, and a unit time survival rate that is assumed to be constant. Once these estimates are calculated it becomes possible to also estimate the mean durations of stages, stage-specific survival rates, and numbers entering stages. An advantage of the method is that it can be applied with any distribution of entry times to stage 1, and any distribution of numbers in stages when sampling begins. Use of the method is illustrated on data from a copepod population in a Canadian lake.  相似文献   

2.
We present the first comparative study of the stage-specific patterns of mortality of Calanus and Pseudocalanus, two widely distributed genera that are representative of a relatively large-bodied, broadcast spawning calanoid copepod and a relatively small-bodied, egg-brooding calanoid. The study site is Georges Bank, a continental shelf locality in the Northwestern Atlantic with retentive circulation that renders it suitable for studies of population dynamics. Based on extensive mortality estimates from 30 cruises, we find that co-occurring Calanus finmarchicus and Pseudocalanus spp. have markedly different patterns of stage-specific mortality, the former bimodal and the latter relatively uniform with respect to developmental stage. Neither taxon exhibits a monotonic decline in mortality with developmental stage, nor are rates of mortality predictable in a useful manner by copepod body size or by ambient temperature. Young stages of the broadcast-spawning C. finmarchicus show conditional density-dependence of mortality rates, i.e. mortality rates are independent of population density when adult females are low in abundance but positively related to population density at high female abundances. This density-dependence, which is probably attributable to egg cannibalism, introduces a quadratic mortality term into population dynamic models. The egg-brooding Pseudocalanus spp., in contrast, show no evidence of density-dependent mortality. The two taxa illustrate a life history trade-off: the broadcast-spawning Calanus exhibits birth rates that are greatly elevated with respect to those of Pseudocalanus, but there is a compensatory cost in very low survivorship of the freely spawned eggs. Both the high fecundity, high mortality life history of Calanus and the low fecundity, low mortality life history of Pseudocalanus appear to have approximately equal fitness in this study site.  相似文献   

3.
Plough LV  Hedgecock D 《Genetics》2011,189(4):1473-1486
Inbreeding depression and genetic load have been widely observed, but their genetic basis and effects on fitness during the life cycle remain poorly understood, especially for marine animals with high fecundity and high, early mortality (type-III survivorship). A high load of recessive mutations was previously inferred for the Pacific oyster Crassostrea gigas, from massive distortions of zygotic, marker segregation ratios in F(2) families. However, the number, genomic location, and stage-specific onset of mutations affecting viability have not been thoroughly investigated. Here, we again report massive distortions of microsatellite-marker segregation ratios in two F(2) hybrid families, but we now locate the causative deleterious mutations, using a quantitative trait locus (QTL) interval-mapping model, and we characterize their mode of gene action. We find 14-15 viability QTL (vQTL) in the two families. Genotypic frequencies at vQTL generally suggest selection against recessive or partially recessive alleles, supporting the dominance theory of inbreeding depression. No epistasis was detected among vQTL, so unlinked vQTL presumably have independent effects on survival. For the first time, we track segregation ratios of vQTL-linked markers through the life cycle, to determine their stage-specific expression. Almost all vQTL are absent in the earliest life stages examined, confirming zygotic viability selection; vQTL are predominantly expressed before the juvenile stage (90%), mostly at metamorphosis (50%). We estimate that, altogether, selection on vQTL caused 96% mortality in these families, accounting for nearly all of the actual mortality. Thus, genetic load causes substantial mortality in inbred Pacific oysters, particularly during metamorphosis, a critical developmental transition warranting further investigation.  相似文献   

4.
MODELING AGE-SPECIFIC MORTALITY FOR MARINE MAMMAL POPULATIONS   总被引:1,自引:0,他引:1  
A method is presented for estimating age-specific mortality based on minimal information: a model life table and an estimate of longevity. This approach uses expected patterns of mammalian survivorship to define a general model of age-specific mortality rates. One such model life table is based on data for northern fur seals (Callorhinus ursinus) using Siler's (1979) 5-parameter competing risk model. Alternative model life tables are based on historical data for human females and on a published model for Old World monkeys. Survival rates for a marine mammal species are then calculated by scaling these models by the longevity of that species. By using a realistic model (instead of assuming constant mortality), one can see more easily the real biological limits to population growth. The mortality estimation procedure is illustrated with examples of spotted dolphins (Stenella attenuata) and harbor porpoise (Phocoena phocoena).  相似文献   

5.
A model for the analysis of insect stage-frequency data is developed which includes stage-specific variable developmental periods and stage-specific daily survival rates. The model can predict the development of an insect population through its developmental stages and consequently may form the basis for a simulation model of the population.  相似文献   

6.
Studies of development time of marine and freshwater copepods have taken separate tracks. Most studies on marine copepods report development time of each individual development stage, whereas studies on freshwater copepods report only development time, from egg to nauplius and nauplius to adult. This bias allows comparison of total development time but prevents detailed comparisons of patterns in stage-specific developmental schedules. With respect to egg to adult development time, three general relationships are known: developmental rates are dependent upon temperature and food concentration but independent of terminal body size; freshwater calanoids develop significantly slower than marine calanoids; freshwater cyclopoids develop at the same rate as marine calanoids. Two rules describe stage-specific developmental rates: the equiproportional rule and the isochronal rule. The first rule states that the duration of a given life history stage is a constant proportion of the embryonic development time; the second rule states that the time spent in each stage is the same for all stages. This review focuses on the second rule. From the 80+ published studies of copepod stage-specific developmental times, no species follows the isochronal rule strictly: Acartia spp. come closest with isochronal development from third nauplius (N3) to fourth copepodite (C4). The only pattern followed by all species is rapid development of the first and/or second naupliar stages, slow development of the second and/or third nauplius and prolonged development of the final copepodite stage. Once adulthood is reached, males are usually short-lived, but females can live for weeks to months in the laboratory. Adult longevity in the sea is, however, on the order of only a few days. The evolution of developmental patterns is discussed in the context of physiological constraints, along with consideration of possible relationships between stage-specific mortality rates and life history strategies. Physiological constraints may operate at critical bottlenecks in development (e.g. at the first feeding nauplius, N6, and the fifth copepodite stage). High mortality of eggs may explain why broadcast eggs hatch 2–3 times faster than eggs carried by females in a sac; high mortality of adults may explain why adults do not grow rather they maximize their reproductive effort by partitioning all energy for growth into egg production.  相似文献   

7.
A mark-release-recapture experiment to estimate population survivorship and absolute size was performed with wild-caught An. subpictus adults at the village of Khano-Harni, Lahore District, Punjab Province, Pakistan during September 1978, the end of the monsoon rainy season, when temporal population abundance was maximized. Daily survival rate estimated from the recapture sequence of marked adults was low, males=0.192 and females=0.343. Survivorship for females estimated by several vertical age-grading procedures ranged from 0.347 to 0.628. Both stage- and age-specific life tables were calculated from vertical age-grading data determined by the dilatation method. Female and male population size was estimated byBailey 's modification of theLincoln Index and was found to average 4478.4 and 6106.8, respectively. The bionomics, survivorship and population size of An. subpictus in the Lahore are indicated that this species was probably not important in the transmission of human malaria.  相似文献   

8.
An iterative procedure for correcting stage-frequency data is described to allow for situations where the period during which a population is sampled begins after some individuals have entered stage 2 or ends before all individuals are dead. The reason for correcting data in this way is to enableKiritani andNakasuji's method for estimating stage-specific survival rates, with extensions proposed byManly (1976, 1977), to be used to analyse the data. The proposed procedure is illustrated on data obtained by sampling a population of the grasshopper Chorthippus brunneus passing through four instar stages to reach the adult stage.  相似文献   

9.
Survival of pelagic marine larvae is an important determinant of dispersal potential. Despite this, few estimates of larval survival are available. For scleractinian corals, few studies of larval survival are long enough to provide accurate estimates of longevity. Moreover, changes in mortality rates during larval life, expected on theoretical grounds, have implications for the degree of connectivity among reefs and have not been quantified for any coral species. This study quantified the survival of larvae from five broadcast-spawning scleractinian corals (Acropora latistella, Favia pallida, Pectinia paeonia, Goniastrea aspera, and Montastraea magnistellata) to estimate larval longevity, and to test for changes in mortality rates as larvae age. Maximum lifespans ranged from 195 to 244 d. These longevities substantially exceed those documented previously for coral larvae that lack zooxanthellae, and they exceed predictions based on metabolic rates prevailing early in larval life. In addition, larval mortality rates exhibited strong patterns of variation throughout the larval stage. Three periods were identified in four species: high initial rates of mortality; followed by a low, approximately constant rate of mortality; and finally, progressively increasing mortality after approximately 100 d. The lifetimes observed in this study suggest that the potential for long-distance dispersal may be substantially greater than previously thought. Indeed, detection of increasing mortality rates late in life suggests that energy reserves do not reach critically low levels until approximately 100 d after spawning. Conversely, increased mortality rates early in life decrease the likelihood that larvae transported away from their natal reef will survive to reach nearby reefs, and thus decrease connectivity at regional scales. These results show how variation in larval survivorship with age may help to explain the seeming paradox of high genetic structure at metapopulation scales, coupled with the maintenance of extensive geographic ranges observed in many coral species. Communicated by Environment Editor Prof. van Woesik.  相似文献   

10.
Data gathered from 220 stranded bottlenose dolphins ( Tursiops truncatus ) in the Indian River Lagoon system, Florida, were used to derive a life table. Survivorship curves were fit to the data using Siler's competing-risk model and a maximum likelihood approach. Population growth was estimated to be between r = 0.0 and 0.046 based on the observed numbers of stranded dolphins. Variance in survival rates was estimated using an individual-based, age-structured population projection model. We estimate that the overall annual mortality rate for this population was 9.8% per year. Sex-specific differences in survivorship were apparent with females outliving males. The overall mortality curve resembles that of other large mammals, with high calf mortality and an exponentially increasing risk of senescent mortality. The inclusion of live-capture removals of individuals from this population did not significantly affect the estimation of survival parameters for most age classes.  相似文献   

11.
Abstract Mortality is a fundamental demographic rate, the nature of which has profound consequences for both the dynamics of populations and the life-history evolution of species. For example, if per capita mortality rates are age- or stage-specific, life-history traits should evolve in response to age- and stage-specific differences in selection arising from these temporally variable rates. Similarly, variation in the average mortality rate across ages and/or stages can also select for shifts in life history. Mortality rates of recently settled reef fishes can be very high and per capita mortality is commonly assumed to decrease with increasing age. A review of evidence for age-specific per capita mortality rates in reef fishes from early postsettlement up to 13 months postsettlement suggests that during this period these rates are often age invariant. The data on which these interpretations are based, however, are extremely limited both in terms of the proportion of the life cycle over which mortality rates have been sampled and the quality of these data. Nonetheless, these data do suggest that selective pressures associated with patterns of mortality may vary among species of reef fishes and that these species therefore could be more effectively used in the study of life-history evolution. At present, reef fishes are under-represented in the study of life-history evolution compared with other vertebrate taxa.  相似文献   

12.
Summary The population fluctuations and within-generation survival of immatures stages of the diamondback moth,Plutella xylostella on summer cabbages, were examined in unsprayed plots in 1984 and 1985 and in plots sprayed with two formulations ofBacillus thuringiensis in 1985. There was two distincy generations per crop and no noticeable difference in population fluctuations were observed in unsprayed plots between years. There was distinct difference between unsprayed and sprayed plots in 1985, from the larval period onwards. However, the survivorship patterns in all plots in both years were a Type 2 based onDeevey's (1947) classification. Life table studies showed that there was essentially no difference in the mortality agents acting on each of the stages except for numerical differences in the within-generation mortality rates. The major mortality rates during the egg stage were the parasitoid,Trichogramma spp. and unknown factors including rainfall; in the larval 1 stage was unknown mortality; in the larval 2 stage was the parasitoid,Apanteles plutellae and during the pupal stage was unknown mortality and parasitoid,Diadromus subtilicornis. Adult mortality was determined for generation 2. It was relatively higher in the unsprayed plots compared to theB. thuringiensis sprayed plots. The contribution of abiotic factors such as rainfall and temperature, and biotic factors such as parasitoids and predators in determining within-generation population levels and the fluctuation of populations on cabbage were discussed.  相似文献   

13.
An application ofHokyo andKiritani 's method (1967) was attempted to estimate the stage specific survival rates of the population with overlapping stages. This method can be written as follows assuming a constant daily survival rate (K) throughout the life: where, and F refer respectively to the total incidence of ith instar nymphs and that of individuals after ith instar inclusive, and αi refers to the developmental period of ith instar. Application of this model to caged and natural populations of the southern green stink bug, Nezara viridula, was made to test its validity. The estimates of the initial number of successive stages obtained from the present method were compared with those fromRichards andWaloff 's method (1954) for the caged populations of 1st, 2nd and 3rd generations. The superiority of the present method to theRichards andWaloff 's in estimating adult numbers was shown in all the generations examined. When different daily survival rates are involved in the course of population decrease, application of the revised method proposed byHokyo andKiritani (1967), gives much reliable estimate as compared with one before correction. The present method is useful in constructing life table of such species as scale insects which complete their life cycle within a defined space, but their successive stages overlap considerably.  相似文献   

14.
The increasing threat of emerging infectious diseases in both wildlife and humans has spurred interest in the causes of disease emergence, including the role of anthropogenic change. A prior field study of infection patterns in amphibians suggests that echinostome infection may be an emerging disease of green frogs Rana clamitans living in urbanized environments. We examined the impact of echinostome infection on green frog tadpoles at a wide range of developmental stages (Gosner stage 25–39). Echinostome infection was associated with green frog mortality rates of up to 40% in an early developmental stage, and none in later developmental stages. Tadpoles exposed to higher echinostome doses exhibited higher edema rates, a potential sign of compromised renal function. Histopathological analysis further supported the hypothesis that echinostome-induced tadpole mortality resulted from compromised renal function. Given that the timing of highest cercarial shedding can coincide with the most vulnerable stages of green frog tadpole development, echinostomes could significantly impact green frog survival in nature.  相似文献   

15.
The survivorship characteristics of two populations of Aedes caspius (Pallas) (Diptera: Culicidae) were compared in the laboratory. One population was sourced from Mourgues, where larvicides have been used continuously for approximately 40 years, and the other from Pont de Gau, where there has been no consistent mosquito control. The aims of the study were to ascertain the basic life history profiles of adults and to determine whether continuous larviciding affects inherent adult survivorship. Life tables were constructed to calculate the following life expectancy parameters: mean lifetime (tau(ad)); maximum lifetime (tau(max)), and daily survival rate (p(ad)). All three parameters were higher for females than for males (paired t-test, P < or = 0.001); male mean lifetime, maximum lifetime and daily survival rate were 4.95 +/- 0.94 days, 20.50 +/- 6.66 days and 0.79 +/- 0.05, respectively; female values were 14.74 +/- 3.68 days, 49.69 +/- 16.55 days and 0.93 +/- 0.02, respectively. No differences were found between the two populations, and no correlations were found between initial adult densities and their respective survival rates. The survivorship curves for Ae. caspius were type IV for males (mortality rates higher for young adults) and type III for females (mortality rates constant).  相似文献   

16.
Mortality plateaus at advanced ages have been found in many species, but their biological causes remain unclear. Here, we exploit age-from-stage methods for organisms with stage-structured demography to study cohort dynamics, obtaining age patterns of mortality by weighting one-period stage-specific survivals by expected age-specific stage structure. Cohort dynamics behave as a killed Markov process. Using as examples two African grasses, one pine tree, a temperate forest perennial herb, and a subtropical shrub in a hurricane-driven forest, we illustrate diverse patterns that may emerge. Age-specific mortality always reaches a plateau at advanced ages, but the plateau may be reached rapidly or slowly, and the trajectory may follow positive or negative senescence along the way. In variable environments, birth state influences mortality at early but not late ages, although its effect on the level of survivorship persists. A new parameter micro omega summarizes the risk of mortality averaged over the entire lifetime in a variable environment. Recent aging models for humans that employ nonobservable abstract states of "vitality" are also known to produce diverse trajectories and similar asymptotic behavior. We discuss connections, contrasts, and implications of our results to these models for the study of aging.  相似文献   

17.
在室内研究了不同环境变量(如食物、温度、光周期和不同光波长)下银胶菊杂草Parthenium hysterophorus L.的食叶昆虫和生物防治因子银胶菊叶甲Zygogramma bicolorata Pallister 的生命表。不同发育阶段的该种叶甲取食银胶菊不同部位时,取食花的甲虫死亡率指标Kappa值最低,其次是取食叶片和茎;而取食花时甲虫世代存活率最高。温度显著影响主要发育阶段该种叶甲的死亡率和存活率。27℃下饲养的未成熟期甲虫的Kappa值最低,其次是30, 25, 20 和35℃。世代存活和存活率表现相同的趋势。不同光周期显著影响死亡率,在14L∶10D (长日照)下世代存活最好,其次是 12L∶12D (昼夜相等), 10L∶14D (短日照), 24L∶0D (连续光照) 和0L∶24D (连续黑暗)。甲虫对不同波长光的反应上,在白光(广谱)下Kappa值最低,世代存活率最高,其次是黄光(λ≈570 nm)、蓝光 (λ≈475 nm) 和红光(λ≈650 nm)。卵的死亡率最高。不同发育阶段的甲虫在27℃长日照白光下用银胶菊花饲养最佳。死亡率趋势具有严格和显著的阶段特异性,表现出内在的存活效应,与研究的因素无关。  相似文献   

18.
Life history studies have established that trade‐offs between growth and survival are common both within and among species. Identifying the factor(s) that mediate this trade‐off has proven difficult, however, especially at the among‐species level. In this study, we examined a series of potentially interrelated traits in a community of temperate‐zone passerine birds to help understand the putative causes and consequences of variation in early‐life growth among species. First, we examined whether nest predation risk (a proven driver of interspecific variation in growth and development rates) was correlated with species‐level patterns of incubation duration and nestling period length. We then assessed whether proxies for growth rate covaried with mean trait covariance strength (i.e., phenotypic correlations ( rp), which can be a marker of early‐life stress) among body mass, tarsus length, and wing length at fledging. Finally, we examined whether trait covariance strength at fledging was related to postfledging survival. We found that higher nest predation risk was correlated with faster skeletal growth and that our proxies for growth corresponded with increased trait covariance strength ( rp), which subsequently, correlated with higher mortality in the next life stage (postfledging period). These results provide an indication that extrinsic pressures (nest predation) impact rates of growth, and that there are costs of rapid growth across species, expressed as higher mean rp and elevated postfledging mortality. The link between higher levels of trait covariance at fledging and increased mortality is unclear, but increased trait covariance strength may reflect reduced phenotypic flexibility (i.e., phenotypic canalization), which may limit an organism''s capacity for coping with environmental or ecological variability.  相似文献   

19.
The effect of echinostome infections on the survival of Rana pipiens tadpoles was examined in relation to developmental stage of tadpoles. Individual tadpoles of Gosner stages 25, 27, 32-33, and 37-39 were exposed to 1 of 4 levels of cercariae (0, 20, 50, or 100). Only tadpoles at stage 25, the earliest stage infected, died within a 5-day experimental period. This stage-specific mortality rate could be explained, in part, by the stage-specific location of encystment of cercariae, which was documented in a separate experiment. In accordance with kidney development, cercariae predominately encysted in the pronephroi during early stages of tadpole development (stages 25 through 31-32) and only in the mesonephroi and associated ducts at later stages (stages 37 through 46). As the mesonephros develops, renal capacity presumably increases. Thus, tadpoles died only when metacercariae concentrated in the functional portion of the kidney with the most limited renal capacity. As tadpoles aged, they also became less susceptible to infections. On average, 69.5% of cercariae that were exposed to stage 25-26 tadpoles successfully encysted. compared with only 8.4% of cercariae exposed to stage 37-38 tadpoles. Exposures of metamorphic frogs (poststage 46) to cercariae revealed that these individuals can become infected with echinostomes. Collectively, our data highlight the host stage-dependent dynamics of tadpole-echinostome interactions.  相似文献   

20.
Long‐distance migration is a common phenomenon across the animal kingdom but the scale of annual migratory movements has made it difficult for researchers to estimate survival rates during these periods of the annual cycle. Estimating migration survival is particularly challenging for small‐bodied species that cannot carry satellite tags, a group that includes the vast majority of migratory species. When capture–recapture data are available for linked breeding and non‐breeding populations, estimation of overall migration survival is possible but current methods do not allow separate estimation of spring and autumn survival rates. Recent development of a Bayesian integrated survival model has provided a method to separately estimate the latent spring and autumn survival rates using capture–recapture data, though the accuracy and precision of these estimates has not been formally tested. Here, I used simulated data to explore the estimability of migration survival rates using this model. Under a variety of biologically realistic scenarios, I demonstrate that spring and autumn migration survival can be estimated from the integrated survival model, though estimates are biased toward the overall migration survival probability. The direction and magnitude of this bias are influenced by the relative difference in spring and autumn survival rates as well as the degree of annual variation in these rates. The inclusion of covariates can improve the model's performance, especially when annual variation in migration survival rates is low. Migration survival rates can be estimated from relatively short time series (4–5 years), but bias and precision of estimates are improved when longer time series (10–12 years) are available. The ability to estimate seasonal survival rates of small, migratory organisms opens the door to advancing our understanding of the ecology and conservation of these species. Application of this method will enable researchers to better understand when mortality occurs across the annual cycle and how the migratory periods contribute to population dynamics. Integrating summer and winter capture data requires knowledge of the migratory connectivity of sampled populations and therefore efforts to simultaneously collect both survival and tracking data should be a high priority, especially for species of conservation concern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号