首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field populations of blue alfalfa aphid and pea aphid on alfalfa were sampled during 1985 and 1986 to determine the association of co-occurrence, interspecific interactions and comparative temporal variations in the spatial dispersion patterns of these species in Oklahoma. Relative abundance of these species is discussed in the light of above analyses.Cole' s coefficient revealed a high degree of association between these species in terms of their occurrence on the same alfalfa stems in the field. Regression analyses indicated that the species populations tended to increase in concert on the same stems without evidence of competitive displacement. Spatial dispersion patterns of both species were highly aggregated at low population densities early in the season. Over time, both species tended to disperse and became less aggregated as numbers increased. It was concluded that magnitude of interspecific interactions between the blue alfalfa aphid and the pea aphid were not of a nature that they could be termed as competing species. On the contrary, a concept of an “ecospecies” is proposed for practical applications such as sampling plans and economic threshold determinations.  相似文献   

2.
Time-specific life tables were constructed for three pea aphid, Acyrthosiphon pisum (Harris ) (Homoptera: Aphididae), populations using a modification ofHughes' analytical procedure. All populations were studied on second-growth alfalfa (mid-June to mid-July) in south central Wisconsin; data for two populations were collected during 1980, and data for the third population were collected during 1982. The intrinsic rate of increase (rm) estimated on a physiological time (day-degree) scale under field conditions but in the absence of natural enemies, provided a reliable estimate of potential population growth rate and was used in preference toHughes' approach of estimating potential population growth rates directly from stage structure data. Emigration by adult alatae and fungal disease were the major sources of A. pisum mortality in each of the three populations studied. These factors were most important because of their impact on reducing birth rates within the local population. Parasitism was never greater than 9 percent. Mortality attributable to predation ranged from 0.0 to about 30.0%; however, even at the highest predator densities A. pisum populations increased exponentially.  相似文献   

3.
Cold storage of natural enemies usually involves placing insects under constant subambient temperatures. Even at non-freezing temperatures, a reduction in survival is the norm. Using fluctuating thermal regimes (FTR) instead of constant low temperature (CLT) has shown that mortality due to accumulation of chilling injuries was significantly reduced in Aphidius colemani . Whether this phenomenon can be generalised to other parasitoid species is not known. The aim of this study was to analyse interspecific variation in the ability to tolerate cold storage under CLT (continuous 2°C) versus FTR (daily cycle: 2°C for 22 h and 20°C for 2 h) for various durations (0–20 days). Survival, sex ratio and development of five different Aphidiine parasitoids were analysed: A. colemani , Aphidius ervi , Aphidius matricariae , Ephedrus cerasicola and Praon volucre. A marked interspecific variation in the ability to tolerate cold storage was observed: A. matricariae and A. ervi were most chill tolerant, P. volucre and E. cerasicola had an intermediate chill sensitivity and A. colemani was most chill sensitive. In all species tested, FTR significantly reduced cold-induced mortality. This phenomenon was manifested more in chill-sensitive species as they probably accumulate chilling injuries more rapidly. The sex ratio remained unaffected in all the species. Interspecific variation was also observed in developmental responses to cold storage. Under CLT, time to adult emergence of A. matricariae, A. colemani, A. ervi and P. volucre was temporarily stopped and in E. cerasicola it increased. Under FTR, the short daily intervals at 20°C for 2 h allowed parasitoids to continue development in all the species. Interspecific differences are discussed. This study suggests that positive impact of FTR may apply to a wide range of species.  相似文献   

4.
Following the rapid spread of soybean aphid, Aphis glycines in North America in the early 2000’s, biological control was identified as a cost-effective approach for management of this invasive pest. Two parasitoid species, Binodoxys communis and Aphidius colemani, were considered as potential candidates for classical and inundative biological control, respectively. The objectives of the present study were to determine the overwintering capacity of B. communis under climatic conditions prevailing in northeastern North America, and to measure parasitism and dispersal capacity of A. colemani when released in soybean fields. Field and laboratory assessments showed that the Chinese strain of B. communis, Harbin 2002, has a very poor capacity to enter into diapause (<0.8%), and thus to establish in North America. We suggest that this strain has gradually lost its ability to enter diapause during the extended periods of quarantine and laboratory confinement, during which it was continuously exposed to non-diapause rearing conditions. A. colemani did not show strong potential to control A. glycines. Following the release of approximately 8400 females in experimental plots, only 113 mummies were recovered within a radius of 60 m from the release point. Although both parasitoids were promising in controlled environments, the B. communis Harbin 2002 strain and the A. colemani commercial strain did not show strong potential to control A. glycines populations in soybean fields.  相似文献   

5.
Dispersal cages were used to investigate the effects of aphids and treatment with artificial honeydew on the leaving rate of searching females of the parasitoid Aphidius rhopalosiphi from groups of wheat plants. Parasitoids which flew away from groups of plants placed in the centre of a cage were trapped on the sides and roof of the cage and thus were prevented from returning to the plants. The positions of trapped parasitoids suggested their direction of flight when dispersing from the plants. Parasitoids increased their residence times on groups of plants in the presence of aphids and of artificial honeydew, but the rate of parasitism of the host Sitobion avenae was not raised by the presence of artificial honeydew under the experimental conditions used. The direction of flight taken by the majority of parasitoids suggested that they were leaving the plants in order to locate further plants nearby to continue searching rather than to terminate searching and disperse away from the area. The need to consider plant patch size in studies of parasitoid searching behaviour is stressed.  相似文献   

6.
The large pine aphid, Cinara pinea lives exclusively on Pinus species, where it feeds on the foliated shoots of the current and previous year. The paper describes the development of a computer model designed to simulate the aphid's population dynamics on saplings in the controlled environment of the laboratory, i.e. in the absence of natural enemies. The model was able to account for about 80% of the variation in aphid numbers within and between trees over a three month period. Sensitivity analysis revealed that the number of pine aphids is limited primarily by nymphal emigration, the operation of which is sensitive both to density and to plant quality as reflected in aphid growth rates. Of secondary importance are changes in reproduction acting through increased reproductive delay, again a result of altered growth rates and adult size. Development, too, has an important secondary influence. Contrary to expectation and conventional belief, however, alate production proved to be of negligible importance, either in limiting or regulating population numbers. Alatae are produced in too few numbers and for too short a period to significantly alter the pattern of population change.  相似文献   

7.
Summary In 2 years, during the initial invasion of peach leaves by the green peach aphid,Myzus persicae (Sulzer), the number of gynoparae was low, and the distribution on leaves was random. Then as the mean number increased, the distribution became intermediate and could not be distinguished from either a Poisson or a negative binomial. Finally, as the mean continued to increase, the variance increased rapidly, and the population was found to fit a negative binomial distribution. Thus the aggregation response was verified because the dispersion pattern fitted a contagious distribution. A sampling plan was devised by which the dispersion parameterk was used to estimate the density of aphids per leaf based on the percentage of leaves infested. Sampling the third year of the study confirmed the validity of the sampling parameter that had been calculated from data for the 2 previous years.  相似文献   

8.
  1. Aploneura lentisci (Passerini ) (Homoptera, Aphididae) forms kidney-shaped galls on the leaflets of its primary host, Pistacia lentiscus (Anacardiaceae). Observations on its population dynamics and ecology werecarried out in 1980–1985.
  2. The galls are formed annually on newly-growing shoots of the same year. Each gall is founded by a single nymph and contains its parthenogenetic offspring. The infestation period (late March-early April) is short relative to the period of appearance of new shoots. The distribution of galls on the shoots is non-random (“clumped”). Early shoots emerging near pruning cuts, when the rest of the buds are still dormant, are often very heavily infested.
  3. Clone size within galls increases from 1 in April to several hundred in September (at least 2 parthenogenetic generations). Alates of the last generation leave the galls gradually as they form. By the following March, previous-year galls contain no live aphids.
  4. Population density of galls varied greatly among years. Possible causes of this variation are discussed.
  相似文献   

9.
The present paper dealt with the sequential changes of the distribution pattern of apterous females aphid populations, that were artificially settled at the beginning on the experimental barley ‘field'. The aphids were settled at random or even with a fixed denisty per plant. For five or six days after the settling, the number of individuals followed the negative binomial distributions in all cases while the parameters k and p were varying. The estimated values of k were rather small for the first one week after the settling, which may suggest that the number of moving aphids between plants was relatively small and the degree of concentration expressing the intrinsic increase was high. After that, as the number of individuals increased, the number of moving aphids between plants would be considered to be increased. It was found that with the lapse of time the degree of concentration decreased or k became larger. The distribution of aphids per blade in a plant was also described briefly.  相似文献   

10.
Shiyomi (1967a and b) proposed two models which describe the reproduction and the plant-to-plant movement of aphids. For the explanation of the whole process of development of population of aphids, the above two models were incorporated into a new model (called Model C). This model is superior in the following points to the negative binomial model:
  1. Model C has 7 parameters and gives a fuller explanation compared with the negative binomial model which has 2 parameters.
  2. Model C describes the structure of population at any stage of its development, while the negative binomial model describes that of a well developed stage of population.
  相似文献   

11.
Wolbachia are endosymbiotic bacteria that are widely present in nematodes and arthropods and sometimes have a significant impact on the evolution, ecology, and biology of their hosts. The co-occurrence of Wolbachia within both Cynipid gall wasps and their parasitoids has rarely been studied. In this study, we report the occurrence of six species of gall wasps and 10 species of their parasitoids in central China. Wolbachia detection using the wsp gene showed that Wolbachia infected two species of gall wasps as well as their parasitoids, indicating that horizontal transmission of Wolbachia occurs between gall wasps and their parasitoids. Given that parasitoids will kill their hosts, Wolbachia may be horizontally transferred from gall wasps to their parasitoids. Using multilocus sequence typing (MLST) analysis, five new strains of Wolbachia were identified, all of which belonged to supergroup A. The strains of Wolbachia that infected gall wasps were not the same as those that infected their parasitoids. This result indicated that Wolbachia may evolve independently in parasitoids after they have been transferred from the host gall wasps.  相似文献   

12.
There are many well-documented cases in which multiple parasitoids can coexist on a single host species. We examine a theoretical framework to assess whether parasitoid coexistence can be explained through differences in timing of parasitoid oviposition and parasitoid emergence. This study explicitly includes the phenology of host and parasitoid development and explores how this mechanism affects the population dynamics. Coexistence of the host with two parasitoids requires a balance between parasitoid fecundity and survival and occurs most readily if one parasitoid attacks earlier but emerges later than the other parasitoid. The host density can either be decreased or increased when a second coexisting parasitoid is introduced into the system. However, there always exists a single parasitoid type that is most effective at depressing the host density, although this type may not be successful due to parasitoid competition. The coexistence of multiple parasitoids also affects the population dynamics. For instance, population oscillations can be removed by the introduction of a second parasitoid. In general, subtle differences in parasitoid phenology can give rise to different outcomes in a host–multi-parasitoid system, and this may offer some insight into why establishing criteria for the ‘ideal’ biological control agent has been so challenging.  相似文献   

13.
Resistance to endoparasitoids in aphids involves complex interactions between insect and microbial players. It is now generally accepted that the facultative bacterial symbiont Hamiltonella defensa of the pea aphid Acyrthosiphon pisum is implicated in its resistance to the parasitoid Aphidius ervi. It has also been shown that heat negatively affects pea aphid resistance, suggesting the thermosensitivity of its defensive symbiosis. Here we examined the effects of heat and UV-B on the resistance of A. pisum to A. ervi and we relate its stability under heat stress to different facultative bacterial symbionts hosted by the aphid. For six A. pisum clones harboring four different facultative symbiont associations, the impact of heat and UV-B was measured on their ability to resist A. ervi parasitism under controlled conditions. The results revealed that temperature strongly affected resistance, while UV-B did not. As previously shown, highly resistant A. pisum clones singly infected with H. defensa became more susceptible to parasitism after exposure to heat. Interestingly, clones that were superinfected with H. defensa in association with a newly discovered facultative symbiont, referred to as PAXS (pea aphid X-type symbiont), not only remained highly resistant under heat stress, but also expressed previously unknown, very precocious resistance to A. ervi compared to clones with H. defensa alone. The prevalence of dual symbiosis involving PAXS and H. defensa in local aphid populations suggests its importance in protecting aphid immunity to parasitoids under abiotic stress.  相似文献   

14.
The extent of within-patch dispersal by a tephritid fly and its four major parasitoids was examined over three field seasons. Hosts and parasitoids were marked using acrylic paint and observed as they oviposited into the flowerheads of marsh thistle, Cirsium palustre. The average recapture rate pooled across all species was 22%. The four parasitoids showed consistently greater rates of movement than the host in all three years. In nearly all comparisons, male dispersal was less than female dispersal. There was no evidence that parasitoids moved longer distances after visiting low quality rather than high quality patches. In the one season it was studied, no correlations between movement and insect size were observed. The relevance of these observations to host-parasitoid population dynamics is discussed.  相似文献   

15.
Abstract.
  • 1 Females of the aphid hyperparasitoid Dendrocerus carpenteri (Curtis) search successfully for hosts during both day and night. Oviposition numbers per host patch did not differ significantly between day and night.
  • 2 D.carpenteri females also displayed a nocturnal flight activity, showing that they are not only capable of searching on a given host plant but also of dispersing between host plants.
  • 3 Nocturnal oviposition activity was mainly influenced by egg load. Females with a high egg load laid more eggs at night than females with a comparatively low egg load. Thus, D.carpenteri females may use nocturnal foraging to compensate for the lack of oviposition opportunities during day.
  • 4 D.carpenteri females which foraged continuously for hosts both day and night (= for 24 h per day) benefitted from an 1.4-fold increase in lifetime reproductive success when compared to females which foraged only by day (= for 16 h per day).
  • 5 The benefit of night foraging for this species is a significantly increased reproductive success.
  相似文献   

16.
Some ladybeetles are specialist predators of aphids, coccids or other prey, although they often eat a variety of species from their focal prey taxon. In addition, the diet is often supplemented with alternative prey. How larvae of the aphidophagous Coccinella septempunctata L. utilize a non‐aphid alternative prey (fruit‐fly larvae Drosophila melonogaster Meigen) is compared with adequate (i.e. high‐quality) aphid prey provided alone (monotypic diet) or in mixed diets. The alternative prey are presented either nutrient‐enriched (i.e. raised on dog food supplemented medium) or not (raised on pure medium). Ladybird performance (survival, growth and development) is poor on the pure fly larvae diets, and also reduced when given mixed diets compared with the pure aphid diet. Nutrient enrichment of the fly larvae has no positive effects. The physiological background for the differences in food value, as indicated by performance in life‐history parameters, is a strong pre‐ingestive effect (i.e. reduced consumption of fly larvae compared with aphids) and a post‐ingestive effect (i.e. reduced utilization of assimilated larval fly tissue), whereas the assimilation efficiency of the consumed fly larvae is as high as that of aphids. The results show a physiological trade‐off resulting from prey specialization that reduces the possibility of utilizing alternative prey when the availability of aphids is scarce. Connected with this is a high robustness against variation in prey nutrient diversity and composition; the ladybird shows little positive response to dietary mixing (i.e. neither mixing of adequate aphids, nor of aphids and alternative prey) or to nutrient enrichment of prey. This contrasts with the results from generalist predators (spiders), where similar treatments lead to strong effects on life‐history parameters.  相似文献   

17.
  1. a mathematical model is presented which predicts the expected optimal-patch-use strategy for solitary parasitoids with a limited fecundity.
  2. The model predicts that the quality of the patches is determined by the proportion of unparasitized hosts and not by the density of those hosts, and that throughout the searching period the parasitoids should maintain the level of parasitism equal in all the patches irrespective of the host density per patch.
  3. The spatial pattern of parasitism among field patches by a parasitoid with a low fecundity, Praestochrysis shanghaiensis, was in agreement with the prediction of the model, i.e., a similar level of parasitism in different patches was observed when the ratio of female parasitoids to hosts in the whole study area exceeded 0.07. When the ratio was less than 0.05, however, the level of parasitism per patch showed an inverse relation to the host density, and was positively correlated with the female parasitoid-host ratio.
  4. The model assumes that the parasitoids move between patches without cost and have perfect information about patch quality. Consideration of the cost of moving and sampling bridges the gap between the observed and predicted rates of parasitism found when the female parasitoid-host ratio in the whole study area was low
  相似文献   

18.
Species belonging to higher trophic levels are particularly vulnerable to habitat loss and consequential host population declines, but detection of effects depends on observation scale. We investigated the effects of habitat and host availability at multiple scales on parasitoids of early successional saproxylic beetles in middle boreal Sweden, where forestry has led to habitat fragmentation and coarse woody debris (CWD) loss. Parasitoid wasps and beetle hosts were collected from nine locations, each containing three spruce-dominated stand types (clear-cut, mature managed and unmanaged stands), using emergence traps on experimental CWD. We measured local CWD volumes and determined the availability of forests of a suitable age within the landscape. We tested parasitoid responses to stand type, CWD volume, abundance of known and probable hosts and longitude. Additionally, we tested whether parasitoids responded to the area of habitat of a suitable age within radii from 0.2 to 10 km. Stand type appeared in best-fit models for all common species, suggesting that wasps respond strongly to habitat at local scales. Longitude (largely climate) featured commonly, but CWD volume was never significant. Host abundance appeared in best-fit models for three of five common species, proving significant only for Bracon obscurator, the abundance of which correlated with that of Orthotomicus laricis at both trap and site levels. Rhimphoctona spp. also correlated significantly with its known host Tetropium castaneum at the trap level. B. obscurator responded to habitat area at scales of 0.6–1 km and Cosmophorus regius responded at radii greater than 7 km, while the larger species did not respond strongly to habitat area. The role of habitat area at greater scales thus varied greatly amongst species, but our data suggest that dispersal of these common early successional species may not be strongly restricted at the current scale of fragmentation of their boreal habitats.  相似文献   

19.
Intraguild predators and the spatial distribution of a parasitoid   总被引:3,自引:0,他引:3  
An experimental plot of the aphid Aphis fabae on various host plant species was colonized by natural populations of the aphidiine parasitoid Lysiphlebus fabarum and insect predators, especially coccinellids. Parasitism of A. fabae by L. fabarum was significantly depressed on plants bearing coccinellids. The number of parasitized aphids increased with aphid abundance on three plant species (Papaver dubium, Rumex obtusifolius, Vicia faba), but not on the plant species (Chenopodium album) which bore very high numbers of coccinellids. In complementary laboratory experiments, L. fabarum offered a choice between odours of plants infested with A. fabae and/or coccinellids selected the odour fields from coccinellid treatments at significantly lower frequency than the odour fields of other treatments. It is concluded that avoidance of coccinellids by L. fabarum contributes to the negative association between the abundance of coccinellids and parasitoids in the field. Received: 22 March 1999 / Accepted: 22 March 2000  相似文献   

20.
Many aphid species possess wingless (apterous) and winged (alate) stages, both of which can harbor parasitoids at various developmental stages. Alates can either be parasitized directly or can bear parasitoids eggs or larvae resulting from prior parasitism of alatoid nymphs. Winged aphids bearing parasitoid eggs or young larvae eventually still engage in long-distance flights, thereby facilitating parasitoid dispersal. This may have a number of important implications for biological control of aphids by parasitoids. In this study, we determined the effect of parasitism by Aphelinus varipes (Hymenoptera: Aphelinidae) on wing development and flight of the soybean aphid, Aphis glycines (Hemiptera: Aphididae). We also quantified the influence of aphid flight distance on subsequent A. varipes development. Parasitism by A. varipes was allowed at different A. glycines developmental stages (i.e., alatoid 3rd and 4th-instar nymphs, alates) and subsequent aphid flight was measured using a computer-monitored flight mill. Only 35% of aphids parasitized as L3 alatoid nymphs produced normal winged adults compared to 100% of L4 alatoids. Flight performance of aphids parasitized as 4th-instar alatoid nymphs 24 or 48 h prior to testing was similar to that of un-parasitized alates of identical age, but declined sharply for alates that had been parasitized as 4th-instar alatoid nymphs 72 and 96 h prior to testing. Flight performance of aphids parasitized as alate adults for 24 h was not significantly different from un-parasitized alates of comparable ages. Flight distance did not affect parasitoid larval or pupal development times, or the percent mummification of parasitized aphids. Our results have implications for natural biological control of A. glycines in Asia and classical biological control of the soybean aphid in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号