首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tm-2 and Tm-2a are genes conferring resistance to tomato mosaic virus in Lycopersicon esculentum. They are allelic and originated from different lines of L. peruvianum, a wild relative of tomato. In this study, random amplified polymorphic DNA (RAPD) markers linked to these genes were screened in nearly isogenic lines (NILs). To detect RAPDs differentiating NILs, 220 different 10-base oligonucleotide primers were examined by the polymerase chain reaction (PCR), and 43 of them generated 53 consistent polymorphic fragments among the NILs. Out of these 53 fragments, 13 were arbitrarily chosen and examined in respect of whether they were linked to the netted virescent (nv) gene, since nv is tightly linked to the Tm-2 locus and its phenotype is more easily distinguishable. As a result, all 13 markers were shown to be linked to nv, and hence to the Tm-2 locus. Among them, two fragments specific to the NIL carrying Tm-2 three specific to the NIL carrying Tm-2a, and four specific to both of these NILs were closely linked to nv.  相似文献   

2.
Tagging genes for blast resistance in rice via linkage to RFLP markers   总被引:24,自引:0,他引:24  
Summary Both Pi-2(t) and Pi-4(t) genes of rice confer complete resistance to the blast fungal pathogen Pyricularia oryzae Cav. As economically important plant genes, they have been recently characterized phenotypically, yet nothing is known about their classical linkage associations and gene products. We report here the isolation of DNA markers closely linked to these blast resistance genes in rice. The DNA markers were identified by testing 142 mapped rice genomic clones as hybridization probes against Southern blots, consisting of DNA from pairs of nearly isogenic lines (NILs) with or without the target genes. Chromosomal segments introgressed from donor genomes were distinguished by restriction fragment length polymorphisms (RFLPs) between the NILs. Linkage associations of the clones with Pi-2(t) and Pi4(t) were verified using F3 segregating populations of known blast reaction. Cosegregation of the resistant genotype and donor-derived allele indicated the presence of linkage between the DNA marker and a blast resistance gene. RFLP analysis showed that Pi-2(t) is closely linked to a single-copy DNA clone RG64 on chromosome 6, with a distance of 2.8+1.4(SE) cMorgans. Another blast resistance gene, Pi-4(t), is 15.3+4.2(SE) cMorgans away from a DNA clone RG869 on chromosome 12. These chromosomal regions can now be examined with additional markers to define the precise locations of Pi-2(t) and Pi-4(t). Tightly linked DNA markers may facilitate early selection for blast resistance genes in breeding programs. These markers may also be useful to map new genes for resistance to blast isolates. They may ultimately lead to the cloning of those genes via chromosome walking. The gene tagging approach demonstrated in this paper may apply to other genes of interest for both monogenic and polygenic traits.  相似文献   

3.
DNA genetic markers, such as restriction fragment length polymorphisms (RFLPs) and random amplified polymorphic DNA markers (RAPDs), are powerful tools for studying the genetics of plant growth and development. DNA markers are defined sequences of DNA that can be used in traditional linkage mapping. Using DNA marker technology, scientists can uncover relationships between cloned cDNA sequences and classically characterized genes. DNA markers make it possible to dissect the contributions of multiple genetic loci underlying complex developmental processes. Moreover, changes in genome organization that occur during development or in response to environmental signals can be monitored using RFLP technology. In the future, it may be possible to clone any gene based solely on its map position. This will involve the use of tightly linked DNA markers as entry points for chromosome walking, in which a series of overlapping genomic clones reaching from the tightly linked DNA marker to the gene of interest are identified.  相似文献   

4.
RFLP tagging of a gene for aroma in rice   总被引:24,自引:0,他引:24  
Summary We report here the identification of a DNA marker closely linked to a gene for aroma in rice. The DNA marker was identified by testing 126 mapped rice genomic, cDNA, and oat cDNA, clones as hybridization probes against Southern blots, consisting of DNA from a pair of nearly isogenic lines (NILs) with or without the aroma gene. Chromosomal segments introgressed from the donor genome were distinguished by RFLPs between the NILs. Linkage association of the clone with the gene was verified using an F3 segregating for aroma. Cosegregation of the scented phenotype and donor-derived allele indicated the presence of linkage between the DNA marker and the gene. RFLP analysis showed that the gene is linked to a single-copy DNA clone, RG28, on chromosome 8, at a distance of 4.5 cM. The availability of a linked DNA marker may facilitate early selection for the aroma gene in rice breeding programs.  相似文献   

5.
The differential display technique was originally developed for the isolation of differentially expressed genes from eukaryotic tissues. We have adapted this technique for the isolation of cDNA markers from specific regions of the tomato genome. For this purpose, differential display was performed on RNA extracted from leaf tissue of nearly isogenic lines for the Tm-2a gene of tomato. On average, one out of 20 primer combinations resulted in a polymorphism at the cDNA level. When used as hybridization probes, all of these cDNA fragments were single or low copy and all of them were polymorphic on Southern hybridizations using DNA from the isogenic lines. Genetic mapping revealed in each case at least one locus in the introgressed segment on chromosome 9 of tomato. Thus, this technique might provide a way for the direct isolation of transcribed sequences from specific regions of any animal or plant genome for which such lines exist.  相似文献   

6.
We have cloned and sequenced six RAPD fragments tightly linked to the Tm-1 gene which confers tomato mosaic virus (ToMV) resistance in tomato. The terminal ten bases in each of these clones exactly matched the sequence of the primer for amplifying the corresponding RAPD marker, except for one in which the 5-endmost two nucleotides were different from those of the primer. These RAPD clones did not cross-hybridize with each other, suggesting that they were derived from different loci. From Southern-hybridization experiments, five out of the six RAPD clones were estimated to be derived from middle- or high-repetitive sequences, but not from any parts of the ribosomal RNA genes (rDNA), which are known to be tightly linked with the Tm-1 locus. The remaining clone appeared to be derived from a DNA family consisting of a few copies. These six RAPD fragments were converted to sequence characterized amplified region (SCAR) markers, each of which was detectable using a pair of primers having the same sequence as that at either end of the corresponding RAPD clone. All pairs of SCAR primers amplified distinct single bands whose sizes were the same as those of the RAPD clones. In four cases, the SCAR markers were present in the line with Tm-1 but absent in the line without it, as were the corresponding RAPD markers. In the two other cases, the products of the same size were amplified in both lines. When these SCAR products were digested with different restriction endonucleases which recognize 4-bp sequences, however, polymorphisms in fragment length were found between the two lines. These co-dominant markers are useful for differentiating heterozygotes from both types of homozygote.  相似文献   

7.
The search for STS (sequence-tagged site) and RAPD (random amplified polymorphic DNA) markers tightly linked to some genes of homeologous group 5 chromosomes of common wheat Triticum aestivum L., more specifically, awns inhibitor genes (B1), vernalization response gene (Vrn1), and homeologous chromosome pairing gene (Ph1), was conducted. To estimate the linkage of the gene with the marker, wheat lines marked with recessive alleles b1 and vrn1 were used. RELP (restriction fragment length polymorphism) and SSR (simple sequence repeat) analyses of isogenic wheat lines were conducted to characterize the chromosomal region transferred to the isogenic line from the donor parent. In RAPD analysis of isogenic wheat lines marked with recessive alleles b1 and vrn1, 95 arbitrary primers were used. To develop STS markers, analysis of the primary structure of RELP markers Xpsr426 and Xcdo504, tightly linked to the Vrn1 gene, and the Xpsr1201 marker, located at the Ph1 locus, was carried out. Two markers that are tightly linked to the Vrn1 gene (5AL)--RAPD marker Xr405 and STS marker Xsts426--were obtained in this work. In addition, there is every reason to believe that Xsts426 can be used as a PCR marker of genes Vrn2 (5BL) and Vrn3 (5DL), while Xsts1201, of the gene Ph1 (5BL).  相似文献   

8.
The Tm-2 gene and its alleles conferring tomato mosaic virus resistance in tomato originate from Lycopersicon peruvianum, a wild relative of tomato. DNA fragments of several RAPD markers tightly linked with the Tm-2 locus in tomato were successfully cloned and sequenced. Subsequently, the 24-mer oligonucleotide primer pairs of the SCAR markers corresponding to the RAPD markers were designed based on the 5’-endmost sequences. A fragment of the same size as that of a SCAR marker was amplified in the ToMV-susceptible tomato line with no Tm-2, but the digests of the PCR fragments by AccI exhibited polymorphism in fragment length between the two lines. We chose three SCAR markers and three RAPD markers tightly linked with the Tm-2 locus, and examined whether the same-sized fragments corresponding to these markers were also present in three other lines carrying Tm-2a or one of the other Tm-2 alleles. The fragments corresponding to the three SCAR markers were present in all of the three lines, but the other markers (three RAPDs ) were absent in one or two lines, suggesting that the three SCAR markers are closer to Tm-2 than the other markers. Comparison of the nucleotide sequences of these fragments revealed that they are all homologous to the corresponding SCAR markers. Received: 8 November 1999 / Accepted: 15 November 1999  相似文献   

9.
10.
利用多重PCR反应同时筛选番茄Cf-9和Tm-1基因   总被引:3,自引:0,他引:3  
利用同一PCR反应体系,对分别与番茄抗叶霉病的Cf-9基因和抗番茄烟草花叶病毒病的Tm-1基因紧密连锁的PCR标记进行了同时扩增筛选,扩增的特异性片段与单引物扩增片段吻合。其中与Cf-9基因紧密连锁的CAPs标记在抗感试材均可扩增出560bp的特异片段,且都存在TaqⅠ酶切位点,抗病基因型酶切后分别产生了450bp、330bp和290bp的不同特异性片段,而感病基因型试材酶切后产生450bp和290bp的特异性片段;与Tm-1基因紧密连锁的SCAR标记为显性标记,只有抗病试材产生750bp的特异片段,不能被TaqⅠ酶切。经反复验证,结果稳定准确,可用于在同一PCR反应体系中对两个抗病基因进行同时筛选鉴定。该体系的建立不仅省时、省工、节省费用,而且可用于苗期辅助选育,加快番茄抗病育种进程。  相似文献   

11.
We have constructed a long-range contig of cosmid and YAC clones around D10S102, a locus that is tightly linked to the gene responsible for multiple endocrine neoplasia type 2A (MEN2A). With D10S102 as a starting point, a 360-kb cosmid contig was constructed by bidirectional genomic walking, and at least six fragments from these cosmids showed high sequence homology to other species. Five YAC clones were also isolated at the D10S102 locus, and they formed a contig covering 950 kb of genomic DNA. Furthermore, we obtained six RFLP systems from the contig, which will serve as new resources for fine-scale genetic linkage mapping of the MEN2A locus.  相似文献   

12.
Summary A method has been developed which allows the isolation of very high molecular weight DNA (>2 million bp) from leaf protoplasts of tomato (Lycopersicon esculentum). The DNA isolated in this manner was digested in agarose with rare-cutting restriction enzymes and separated by pulsed field gel electrophoresis. The size range of the reslting fragments was determined by hybridization to a number of single copy clones and the suitability of these enzymes for the mapping of large DNA fragments was evaluated. Furthermore, five genetically tightly linked single copy clones have been used to begin the construction of a physical map in a region of the genome containing the Tm-2a gene which confers resistance to tobacco mosaic virus. Two of the five clones were found to be on the same 560 kb SalI fragment and therefore are no further apart than that distance. The remaining three markers are distributed over at least 3 million bp, so that the total minimum physical distance of that cluster is at least 4 million bp. The results are discussed with respect to correlations between recombination frequencies and physical distance as well as physical mapping large regions of a complex plant genome like tomato.  相似文献   

13.
J Li  J Zhao  A B Rose  R Schmidt    R L Last 《The Plant cell》1995,7(4):447-461
Phosphoribosylanthranilate isomerase (PAI) catalyzes the third step of the tryptophan biosynthetic pathway. Arabidopsis PAI cDNAs were cloned from a cDNA expression library by complementation of an Escherichia coli trpC- PAI deficiency mutation. Genomic DNA blot hybridization analysis detected three nonallelic genes encoding PAI in the Arabidopsis genome. DNA sequence analysis of cDNA and genomic clones indicated that the PAI1 and PAI2. All three PAI polypeptides possess an N-terminal putative plastid target sequence, suggesting that these enzymes all function in plastids. The PAI1 gene is flanked by nearly identical direct repeats of approximately 350 nucleotides. Our results indicate that, in contrast to most microorganisms, the Arabidopsis PAI protein is not fused with indole-3-glycerolphosphate synthase, which catalyzes the next step in the pathway. Yeast artificial chromosome hybridization studies indicated that the PAI2 gene is tightly linked to the anthranilate synthase alpha subunit 1 (ASA1) gene on chromosome 5. PAI1 was mapped to the top of chromosome 1 using recombinant inbred lines, and PAI3 is loosely linked to PAI1. cDNA restriction mapping and sequencing and RNA gel blot hybridization analysis indicated that all three genes are transcribed in wild-type plants. The expression of antisense PAI1 RNA significantly reduced the immunologically observable PAI protein and enzyme activity in transgenic plants. The plants expressing antisense RNA also showed two phenotypes consistent with a block early in the pathway: blue fluorescence under UV light and resistance to the anthranilate analog 6-methylanthranilate. The extreme nucleotide conservation between the unlinked PAI1 and PAI2 loci suggests that this gene family is actively evolving.  相似文献   

14.
A preliminary linkage map of the chicken genome.   总被引:17,自引:0,他引:17  
N Bumstead  J Palyga 《Genomics》1992,13(3):690-697
We have used backcross progeny from a cross between two inbred lines of chickens to construct a linkage map of the chicken. The map currently consists of 100 loci, identified using either anonymous cloned fragments of genomic DNA or sequences corresponding to cloned genes. Parent birds were derived from two lines of White Leghorn chickens, which differ in susceptibility to a number of diseases. Restriction fragment length variants were identified by comparison of the DNA of these two parent birds using a panel of seven restriction enzyme digests and the segregation pattern observed in progeny of these two birds. Restriction fragment length variants were detected for approximately 41% of the clones tested, whether these were known genes or random genomic fragments. This high level of variability was also reflected in the presence of variation within the parental lines for some clones. The overall size of the linkage groups and the progressively higher incidence of linkage as further clones were added suggests that the map covers the majority of the genome, although it is unlikely that there are marker loci on all the microchromosomes. The present map will be of use in locating genes affecting disease resistance, but also illustrates the relative ease with which such maps for the chicken can be constructed.  相似文献   

15.
The four small heat shock protein genes of Drosophila are tightly linked at the level of DNA, and are coordinately regulated. In cultured cell lines their expression is induced by high temprature shock and by physiological doses of ecdysterone. In vivo, small heat shock gene expression is developmentally regulated. Using recombinant DNA clones we have characterized and compared small hsp gene induction in response to the two independent stimuli.  相似文献   

16.
17.
Cloning and gene map assignment of the Xiphophorus DNA ligase 1 gene   总被引:1,自引:0,他引:1  
Fishes represent the stem vertebrate condition and have maintained several gene arrangements common to mammalian genomes throughout the 450 Myr of divergence from a common ancestor. One such syntenic arrangement includes the GPI-PEPD enzyme association on Xiphophorus linkage group IV and human chromosome 19. Previously we assigned the Xiphophorus homologue of the human ERCC2 gene to linkage group U5 in tight association with the CKM locus. CKM is also tightly linked to the ERCC2 locus on human chromosome 19, leading to speculation that human chromosome 19 may have arisen by fusion of two ancestral linkage groups which have been maintained in fishes. To investigate this hypothesis further, we isolated and sequenced Xiphophorus fish genomic regions exhibiting considerable sequence similarity to the human DNA ligase 1 amino acid sequence. Comparison of the fish DNA ligase sequence with those of other species suggests several modes of amino acid conservation in this gene. A 2.2-kb restriction fragment containing part of an X. maculatus DNA ligase 1 exon was used in backcross hybrid mapping with 12 enzyme or RFLP loci. Significant linkage was observed between the nucleoside phosphorylase (NP2) and the DNA ligase (LIG1) loci on Xiphophorus linkage group VI. This assignment suggests that the association of four DNA repair-related genes on human chromosome 19 may be the result of chance chromosomal rearrangements.   相似文献   

18.
 Microsatellite and sequence-tagged site (STS) markers tightly linked to the bacterial leaf blight (BLB) resistance gene xa-5 were identified in this study. A survey was conducted to find molecular markers that detected polymorphisms between the resistant (IRBB5) and susceptible (‘IR24’) nearly isogenic lines for xa-5, and between Chinsurah Boro II (CBII), an alternative source of xa-5, and a widely planted variety (‘IR64’) that lacks xa-5. Two F2 populations, from the crosses ‘IR24’×IRBB5 and CBIIבIR64’, were used to estimate linkage based on marker genotype and reaction to disease inoculation with Xanthomonas oryzae pv. oryzae. Two RFLP clones, RZ390 and RG556, were found to co-segregate with xa-5 and were converted into STS markers. A microsatellite marker, RM390, was developed based on a simple sequence repeat in the 5′ untranslated region of the cDNA probe, RZ390, and found to co-segregate with resistance. Two other microsatellites, RM122 and RM13, were located 0.4 cM and 14.1 cM away from xa-5. A germplasm survey of diverse lines containing BLB resistance genes using automated fluorescent detection indicated the range of allelic diversity for each of the microsatellite loci linked to xa-5 and confirmed their usefulness in following genes through the narrow crosses typical of a breeding program. The limited number of alleles observed at the microsatellite loci linked to the resistance gene in 35 xa-5-containing accessions suggested either a single ancestral origin or a few independent origins of the xa-5 gene. PCR-based markers, like the ones developed in this study, are economical and easy to use, and have applicability in efforts to pyramid the recessive xa-5 gene with other BLB resistance genes. Received: 27 September 1996/Accepted: 7 February 1997  相似文献   

19.
Targeted resistance gene mapping in soybean using modified AFLPs   总被引:7,自引:0,他引:7  
The soybean [Glycine max (Merr.) L.] linkage group F contains a vital region of clustered genes for resistance to numerous pathogens including the soybean mosaic virus resistance gene, Rsv1. In order to develop new genetic markers that map to this gene cluster, we employed a targeted approach that utilizes the speed and high-throughput of AFLP, but modified it to incorporate sequence information from the highly conserved nucleotide binding site (NBS) region of cloned disease resistance genes. By using a labeled degenerate primer corresponding to the p-loop portion of the NBS region of resistance genes, such as N, L6, and Rps2, we were able to quickly amplify numerous polymorphic bands between parents of a population segregating for resistance to Rsv1. Of these polymorphic bands, bulk segregant analysis revealed four markers that were closely linked to Rsv1. These markers were cloned and used as probes for RFLP analysis. The four clones mapped to within a 6-cM region surrounding Rsv1, the closest being 0.4 cM away from the gene. Sequence analysis showed that all four clones contain the p-loop sequence corresponding to the degenerate primer and that one of the four clones contains an open reading frame sequence which when translated is related to the NBS region of other cloned disease resistance genes. The rapid identification of four markers closely linked to Rsv1 in soybean demonstrates the utility of this method for generating markers tightly linked to important plant disease resistance genes. Received: 25 September 1999 / Accepted: 3 November 1999  相似文献   

20.
M Turner  Y Mukai  P Leroy  B Charef  R Appels  S Rahman 《Génome》1999,42(6):1242-1250
The grain softness proteins or friabilins are known to be composed of three main components: puroindoline a, puroindoline b, and GSP-1. cDNAs for GSP-1 have previously been mapped to group-5 chromosomes and their location on chromosome 5D is closely linked to the grain hardness (Ha) locus of hexaploid wheat. A genomic DNA clone containing the GSP-1 gene (wGSP1-A1) from hexaploid wheat has been identified by fluorescent in situ hybridization as having originated from the distal end of the short arm of chromosome 5A. A genomic clone containing the gene (wGSP1-D1) was also isolated from Aegilops tauschii, the donor of the D genome to bread wheat. There are no introns in the GSP-1 genes, and there is high sequence identity between wGSP1-A1 and wGSP1-D1 up to 1 kb 5' and 300 bp 3' to wGSP1-D1. However, regions further upstream and downstream of wGSP1-D1 share no significant sequence identity to corresponding sequences in wGSP1-A1. These regions therefore identified potentially valuable sequences for tracing the Ha locus through assaying polymorphic DNA sequences. The sequence from 300 to 500 bp 3' to wGSP1-D1 (wGSP1-D13) was mapped to the Ha locus in a mapping population. wGSP1-D13 was also tightly linked to genes for puroindoline a and puroindoline b which have been previously mapped to be at the Ha locus. In addition wGSP1-D13 was used to detect RFLPs between near isogenic soft and hard Falcon lines and in a random selection of soft and hard wheats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号