首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Five new methods for determining the relations between kinetic data of fermentations are described and applied to an industrial antibotic fermentation process. The input data for these method are the elements of the distance matrix dij, which quantify the sum of the deviation squares between the time dependent kinetics x (t) of the fermentation runs i and j. For each measurable or calculable kinetic state variable, one n x n distance matrix must be calculated where n is the number of fermentation runs. All methods compare these distance matrices by statistical or graph-theoretical approaches. The algorithms obtained are universally applicable if enough kinetic data are available, especially from more than 10 comparable fermentation runs. The algorithms were developed for the use in knowledge acquisition modules of expert systems.  相似文献   

2.
Summary The inhibitory effects of DHA on Gluconobacter oxydons were measured to forrmulate a fermentation model. Growth of Gluconobacter oxydons is inhibited by DHA which can be modelled by a linear Term. The inhibition of product formation by DHA was measured and described by a classical feedback inhibition kinetic. Additionally, an irreversible destruction of Gluconobacter cells by DHA was discovered. This toxic effect of DHA could be modelled by a death rate kinetic and introduction of a damaged cell type. DHA also inhibits the activity of the pentose cycle as can be measured via the CO2 evolution rate.  相似文献   

3.
Salt-tolerant aromatic yeast is an important microorganism arising from the solid state fermentation of soy sauce. The fermentation kinetics of volatile esters by Candida etchellsii was studied in a batch system. The data obtained from the fermentation were used for determining the kinetic parameters of the model. Batch experimental results at four NaCl levels (180, 200, 220, and 240 g/L) were used to formulate the parameter estimation model. The kinetic parameters of the model were optimized by specifically designed Runge-Kutta Genetic Algorithms (GA). The resulting mathematical model for volatile ester production, cell growth and glucose consumption simulates the experimental data well. The resulting new model was capable of explaining the behavior of volatile ester fermentation. The optimized parameters (μo, X max, K i, α, β, Y X/S, m, and Y P/S) were characterized by a correlation of functions assuming salinity dependence. The kinetic models optimized by GA describe the batch fermentation process adequately, as demonstrated by our experimental results.  相似文献   

4.
The kinetic behaviour of Lactococcus lactis subsp. lactis biovar. diacetylactis was studied in batch culture under non-limiting conditions that allow high growth and product formation. A model based on laboratory results is proposed for growth and l-lactate fermentation. It shows the necessity for differentiating biomass into three physiological states, two active, Xg (growth + acidification) and Xng (acidification), and one inactive, Xi. The kinetic theory of the model demonstrates the non-competitive nature of fermentation end-product inhibition on growth and acidification, and describes the passage from one physiological state to another. Satisfying simulations were obtained for batch fermentations, and the use of this type of model for determining and optimizing fermentation parameters is discussed. Correspondence to: C. Diviès  相似文献   

5.
The inhibitory effect of ethanol is studied during alcoholic fermentation in strict anaerobiosis (initial dissolved oxygen stripped by gasing pure nitrogen). It is demonstrated that the ethanol produced during the batch fermentation is more inhibitory than the added ethanol (in the range of 0 to 72.6g/liter). By analogy with noncompetitive enzyme kinetic inhibition, the inhibition constant for added ethanol is 105.2 g/liter and 3.8 g/liter for produced ethanol, which exhibits the same inhibition effects in all experiments where ethanol was added. The measurement of the intracellular alcohol concentration can explain the dual inhibitory effects of ethanol.  相似文献   

6.
A method of protecting immobilized cells against inhibitory substances in the fermentation medium was investigated with the aim of developing a process for fermentation under unsterile conditions. It was found that yeast cells could be protected against the inhibitory effects of p-hydroxybenzoic acid esters by co-immobilizing the cells with vegetable oils. In such a system, the cells grow only in the water phase of the gel beads where most components of the fermentation medium are retained. On the other hand, the p-hydroxybenzoate that diffuses into the gel beads is retained mainly in the oil phase of the beads. Consequently, the p-hydroxybenzoate concentration in the water phase remains too low to inhibit the metabolic activities of the immobilized cells. The effectiveness of a vegetable oil in protecting the immobilized cells against an inhibitory substance depends on the partition coefficient of the substance between the oil and water, the concentration of the oil and the initial cell concentration.  相似文献   

7.
A continuous cascade fermentation process comprising eight tanks in series, employing a protein-phopholipid complex as a protective agent (PA) was performed for ethanol production from glucose. An increase of 58.4% in fermenter productivity was obtained due to the addition of PA. A kinetic model including product and substrate inhibition effects is proposed. Parameters appearing in the kinetic model were estimated by using the method of least squares. It is found that the product inhibition effect dominates over the substrate inhibition effect for the range of concentrations studied in our fermentation system. Upon addition of PA, both inhibitory effects are reduced to as little as about one quarter of that without PA. It was also found that the use of PA primarily protected the cells against ethanol inhibition rather than substrate inhibition. A steady state criterion is also discussed.  相似文献   

8.
9.
The inhibition of substrate and products on the growth of Actinobacillus succinogenes in fermentation using glucose as the major carbon source was studied. A. succinogenes tolerated up to 143 g/L glucose and cell growth was completely inhibited with glucose concentration over 158 g/L. Significant decrease in succinic acid yield and prolonged lag phase were observed with glucose concentration above 100 g/L. Among the end-products investigated, formate was found to have the most inhibitory effect on succinic acid fermentation. The critical concentrations of acetate, ethanol, formate, pyruvate and succinate were 46, 42, 16, 74, 104 g/L, respectively. A growth kinetic model considering both substrate and product inhibition is proposed, which adequately simulates batch fermentation kinetics using both semi-defined and wheat-derived media. The model accurately describes the inhibitory kinetics caused by both externally added chemicals and the same chemicals produced during fermentation. This paper provides key insights into the improvement of succinic acid production and the modelling of inhibition kinetics.  相似文献   

10.
ABSTRACT

In the present paper recent investigations on the applications of supercritical fluid extraction (SCE) from post fermentation biomass or in situ extraction of inhibitory fermentation products as a promising method for increasing the yield of extraction have been reviewed. Although supercritical CO2 (SC-CO2) is unfriendly, or even toxic, for some living cells and precludes direct fermentation in dense CO2, it does not rule out other useful applications for in situ extraction of inhibitory fermentation products and fractional extraction of biomass constituents. This technique is a highly desirable method for fractional extraction of biomass constituents, and intracellular metabolites due to the potential of system modification by physical parameters and addition of co-solvents to selectively extract compounds of different polarity, volatility and hydrophilicity without any contamination.  相似文献   

11.
Summary A new method is presented to calculate the kinetic and yield parameters of a fermentation. This method is based on polynomial fitting of the variations of substrates and biomass concentrations with time and calculation of instantaneous and overall parameters. Application to a mixed substrate and mixed product fermentation by the bacterium Zymomonas mobilis is presented.  相似文献   

12.
Phenolic compounds generated from lignin degradation during the pre-treatment step in the process of producing bioethanol from lignocellulosic biomass are known to be inhibitory to enzymatic hydrolysis and fermentation. The inactivation mechanism of a GH11 endoxylanase (Tx-Xyl) by several phenolic compounds varying in their hydroxyl and methoxyl radical content was investigated. Apparent kinetic inactivation parameters were measured as an approximate index of the inhibitory effects. All the tested aromatic compounds had strong negative impact on enzyme activity and kinetic analysis revealed non competitive multi-site inhibition mechanism. The interactions between Tx-Xyl and the phenolic compounds were further studied by steady-state (tryptophan) fluorescence spectroscopy. Changes in λmax of emission and quenching of fluorescence intensity indicated changes in the microenvironment of tryptophan residues. In agreement with the kinetic parameters, the fluorescence derived binding constants evidenced higher enzyme–phenolics interaction affinity with increasing phenolic hydroxyl radical content, suggesting clear correlations of such radicals with the inhibitory effects. Results indicated that the inhibitory effects of phenolic compounds on Tx-Xyl activity are most likely brought about by conformational alterations of the enzyme protein inducing steric inactivation.  相似文献   

13.
通过DNS法测定羊瘤胃源功能性细菌产生的纤维素酶和淀粉酶的活力,福林酚法测定产生的蛋白酶的活力,检测细菌产生酶的特性。同时检测菌株的发酵液对大肠埃希菌(ATCC25922)、副溶血弧菌(ATCC17802)、藤黄八叠球菌(HY78)和产气杆菌(AS1489)等指示菌的抑制能力,分析它们的抑菌活性。结果表明,羊瘤胃源细菌C13产生的纤维素酶活力最高,产酶量也最高;而细菌C5产淀粉酶活力和蛋白酶活力最高,产生淀粉酶和蛋白酶的能力也最高。抑菌活性检测发现,细菌C9对副溶血弧菌(ATCC17802)有很高的抑制作用,而细菌C12对大肠埃希菌(ATCC25922)的抑制能力最明显。  相似文献   

14.
Interest in production of ligninolytic enzymes has been growing over recent years for their use in various applications such as recalcitrant pollutants bioremediation; specifically, versatile peroxidase (VP) presents a great potential due to its catalytic versatility. The proper selection of the fermentation mode and the culture medium should be an imperative to ensure a successful production by an economic and available medium that favors the process viability. VP was produced by solid-state fermentation (SSF) of Pleurotus eryngii, using the agricultural residue banana peel as growth medium; an enzymatic activity of 10,800 U L?1 (36 U g?1 of substrate) was detected after 18 days, whereas only 1800 U L?1 was reached by conventional submerged fermentation (SF) with glucose-based medium. The kinetic parameters were determined by evaluating the H2O2 and Mn2+ concentration effects on the Mn3+-tartrate complex formation. The results indicated that although the H2O2 inhibitory effect was observed for the enzyme produced by both media, the reaction rates for VP obtained by SSF were less impacted. This outcome suggests the presence of substances released from banana peel during the fermentation, which might exhibit a protective effect resulting in an improved kinetic behavior of the enzyme.  相似文献   

15.
Three extracellular pectinases were produced byAspergillus niger CH4 by submerged and solid-state fermentation, and their physicochemical and kinetic properties were studied. The highest productivities of endo- and exo-pectinase and pectin lyase were obtained with solid-state fermentation. The kinetic and physicochemical properties of these enzymes were influenced by the type of culture method used. All activities were very different in terms of pH and temperature optima, stability at different pH and temperature values and affinity for the substrate (K m values). In solid-state fermentation, all pectinase activities were more stable at extreme pH and temperature values but theK m values of endo-pectinase and pectin lyase were higher with respect to those activities obtained by the submerged-culture technique. The pectin lyase activity obtained by the submerged-culture technique showed substrate inhibition but the enzyme obtained by solid-state fermentation did not. Electrophoresis, using sodium dodecyl sulphate/polyacrylamide gel with enzymatic extracts obtained for both culture methods, showed the same number on protein bands but some differences were found in their electrophoretic position. The results obtained in this work suggest that the culture method (submerged or solid-state) may be responsible for inducing changes in some of the pectinolytic enzymes produced byA. niger.  相似文献   

16.
Ethanolic fermentation of simple sugars is an important step in the production of bioethanol as a renewable fuel. Significant levels of organic acids, which are generally considered inhibitory to microbial metabolism, could be accumulated during ethanolic fermentation, either as a fermentation product or as a by-product generated from pre-treatment steps. To study the impact of elevated concentrations of organic acids on ethanol production, varying levels of exogenous acetate or lactate were added into cultures of Thermoanaerobacter ethanolicus strain 39E with glucose, xylose or cellobiose as the sole fermentation substrate. Our results found that lactate was in general inhibitory to ethanolic fermentation by strain 39E. However, the addition of acetate showed an unexpected stimulatory effect on ethanolic fermentation of sugars by strain 39E, enhancing ethanol production by up to 394%. Similar stimulatory effects of acetate were also evident in two other ethanologens tested, T. ethanolicus X514, and Clostridium thermocellum ATCC 27405, suggesting the potentially broad occurrence of acetate stimulation of ethanolic fermentation. Analysis of fermentation end product profiles further indicated that the uptake of exogenous acetate as a carbon source might contribute to the improved ethanol yield when 0.1% (w/v) yeast extract was added as a nutrient supplement. In contrast, when yeast extract was omitted, increases in sugar utilization appeared to be the likely cause of higher ethanol yields, suggesting that the characteristics of acetate stimulation were growth condition-dependent. Further understanding of the physiological and metabolic basis of the acetate stimulation effect is warranted for its potential application in improving bioethanol fermentation processes.  相似文献   

17.
Summary The kinetics of the utilization of D-xylulose by the yeast Schizosaccharomyces pombe has been examined under anaerobic batch conditions. The inhibitory effect of ethanol on xylulose uptake and ethanol production was studied at pH 6.0 and 30°C. Ethanol had little or no effect on the sugar uptake rate, but end product inhibition was observed on ethanol production. This non-competitive inhibition was linear with respect to ethanol concentration between 0 and 60 g/l. A kinetic model for the alcoholic fermentation of xylulose is presented.  相似文献   

18.
In this study, the effect of glycine betaine as osmoprotectant compound for Gluconacetobacter diazotrophicus PAL5 was evaluated by kinetic growth parameters. Batch fermentation assays were performed employing media supplemented with different sodium chloride concentrations to simulate saline stress conditions. Salt concentrations of 50–300 mM led to decreased cell concentrations, while the maximum specific growth rates and cell productivities were reduced at concentrations above 100-mM NaCl. Salt inhibition was mainly observed in media with 200- and 300-mM NaCl, in which drastic changes in cell morphology were also noted. The addition of glycine betaine to the media showed to be efficient to counteract the salt inhibitory effect by increasing some fermentation parameters. However, the osmoprotectant was not able to revert the polymorphism promoted by higher salt concentrations.  相似文献   

19.
A structured kinetic model for Zymomonas mobilis ATCC10988   总被引:1,自引:0,他引:1  
The inhibitory effects of glucose and ethanol on Zymomonas mobilis ATCC10988 were isolated through kinetic analysis of transient batch fermentation data. Growth of Z. mobilis was inhibited above a glucose concentration of 80 g/L. Growth was mildly inhibited by ethanol to 50 g/L, and severely inhibited above this concentration. Specific rates of ethanol production and glucose uptake were essentially invariant during batch fermentation. A structured kinetic model was developed, by way of augmentation of the Extended Bottleneck model, to quantify the kinetics of the growth and product formation processes. The model successfully describes the transient batch fermentation of Z. mobilis over a wide range of initial glucose concentration in a semidefined medium.  相似文献   

20.
Operating the saccharification and fermentation processes at high‐substrate loadings is a key factor for making ethanol production from lignocellulosic biomass economically viable. However, increasing the substrate loading presents some disadvantages, including a higher concentration of inhibitors (furan derivatives, weak acids, and phenolic compounds) in the media, which negatively affect the fermentation performance. One strategy to eliminate soluble inhibitors is filtering and washing the pretreated material. In this study, it was observed that even if the material was previously washed, inhibitory compounds were released during the enzymatic hydrolysis step. Laccase enzymatic treatment was evaluated as a method to reduce these inhibitory effects. The laccase efficiency was analyzed in a presaccharification and simultaneous saccharification and fermentation process at high‐substrate loadings. Water‐insoluble solids fraction from steam‐exploded wheat straw was used as substrate and Saccharomyces cerevisiae as fermenting microorganism. Laccase supplementation reduced strongly the phenolic content in the media, without affecting weak acids and furan derivatives. This strategy resulted in an improved yeast performance during simultaneous saccharification and fermentation process, increasing significantly ethanol productivity. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号