首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesterol synthesis in actively growing bovine vascular endothelial cells is regulated by low density lipoprotein (LDL) at a step prior to mevalonate formation, in a manner comparable to that found in aortic smooth muscle cells. LDL uptake by these cells is associated with induction of cholesterol esterification, an increase in total cell cholesterol, and an inhibition of endogenous sterol synthesis. In contrast, cholesterol metabolism in confluent contact-inhibited endothelial cultures was not significantly affected by LDL even though the cells bind the lipoprotein at high affinity receptor sites. Lysosomal degradation and subsequent regulatory effects on cellular cholesterol metabolism, however, were observed in contact-inhibited endothelial cells incubated with cationized rather than native LDL. Cationized LDL enter the cells independently of the high affinity sites. Therefore, the primary regulation of cholesterol metabolism in these cells is neither through the appropriate intracellular enzymes nor through the high affinity surface receptors, but via an inhibition of LDL internalization. It is suggested that this inhibition is due to a strict contact-inhibited morphology which enables the endothelium of the larger arteries to function as a selective barrier to the high circulating levels of plasma LDL.  相似文献   

2.
Normal human monocyte-macrophages were cholesterol-loaded, and the rates of uptake and degradation of several lipoproteins were measured and compared to rates in control cells. Receptor activities for 125I-rabbit beta-very low density lipoproteins (beta-VLDL), 125I-human low density lipoprotein, and 125I-human chylomicrons were down-regulated in cholesterol-loaded cells; however, the rate of uptake and degradation of 125I-human chylomicron remnants was unchanged from control cells. Cholesterol-loaded alveolar macrophages from a Watanabe heritable hyperlipidemic rabbit, which lack low density lipoprotein receptors, showed receptor down-regulation for 125I-beta-VLDL but not for 125I-human chylomicron remnants. In addition to chylomicron remnants, apo-E-phospholipid complexes competed for 125I-chylomicron remnant uptake, but apo-A-I-phospholipid complexes did not. Chylomicrons competed for lipoprotein uptake in control cells but were not recognized under conditions of cholesterol loading. Chylomicron remnants and beta-VLDL were equally effective in competing for 125I-beta-VLDL and 125I-chylomicron remnant uptake in cholesterol-loaded macrophages. When normal human monocyte-macrophages were incubated in serum supplemented with chylomicron remnants, the cholesteryl ester content increased 4-fold over cells incubated in serum with low density lipoprotein added. We conclude: 1) specific lipoprotein receptor activity persists in cholesterol-loaded cells; 2) this receptor activity recognizes lipo-proteins (at least in part) by their apo-E content; and 3) cholesteryl ester accumulation can occur in monocyte-macrophages incubated with chylomicron remnants.  相似文献   

3.
In comparison to very low density lipoprotein (VLDL), chylomicrons are cleared quickly from plasma. However, small changes in fasting plasma VLDL concentration substantially delay postprandial chylomicron triglyceride clearance. We hypothesized that differential binding to lipoprotein lipase (LPL), the first step in the lipolytic pathway, might explain these otherwise paradoxical relationships. Competition binding assays of different lipoproteins were performed in a solid phase assay with purified bovine LPL at 4 degrees C. The results showed that chylomicrons, VLDL, and low density lipoprotein (LDL) were able to inhibit specific binding of (125)I-labeled VLDL to the same extent (85.1% +/- 13.1, 100% +/- 6.8, 90.7% +/- 23.2% inhibition, P = NS), but with markedly different efficiencies. The rank order of inhibition (K(i)) was chylomicrons (0.27 +/- 0.02 nm apoB) > VLDL (12.6 +/- 3.11 nm apoB) > LDL (34.8 +/- 11.1 nm apoB). By contrast, neither triglyceride (TG) liposomes, high density lipoprotein (HDL), nor LDL from patients with familial hypercholesterolemia were efficient at displacing the specific binding of (125)I-labeled VLDL to LPL (30%, 39%, and no displacement, respectively). Importantly, smaller hydrolyzed chylomicrons had less affinity than the larger chylomicrons (K(i) = 2.34 +/- 0.85 nm vs. 0.27 +/- 0.02 nm apoB respectively, P < 0.01). This was also true for hydrolyzed VLDL, although to a lesser extent. Chylomicrons from patients with LPL deficiency and VLDL from hypertriglyceridemic subjects were also studied. Taken together, our results indicate an inverse linear relationship between chylomicron size and K(i) whereas none was present for VLDL. We hypothesize that the differences in binding affinity demonstrated in vitro when considered with the differences in particle number observed in vivo may largely explain the paradoxes we set out to study.  相似文献   

4.
LPL mediates the uptake of lipoproteins into different cell types independent of its catalytic activity. The mechanism of this process and its physiological relevance are not clear. Taking into account the importance of the endothelial barrier for lipoprotein uptake, in vitro studies with primary aortic endothelial cells from wild-type and low density lipoprotein receptor (LDLR)-deficient (LDLR(-/-)) mice were performed. Addition of LPL almost doubled the uptake of LDL into wild-type cells. However, there was virtually no LPL-mediated change of LDL uptake into LDLR(-/-) cells. Upregulation of LDLR by lipoprotein-deficient serum/lovastatin in wild-type cells resulted in a 7-fold increase of LPL-mediated LDL uptake. Uptake of chylomicron remnants was not affected by LDLR expression. In proteoglycan-deficient cells, LPL did not increase the uptake of lipoproteins. The physiological relevance of this pathway was studied in mice that were both LDLR(-/-) and transgenic for catalytically inactive LPL in muscle. In the presence of LDLR, inactive LPL reduced LDL cholesterol significantly (13-24%). In the absence of LDLR, LDL cholesterol was not affected by transgenic LPL. Metabolic studies showed that in the presence of LDLR, LPL increased the muscular uptake of LDL by 77%. In the absence of LDLR, transgenic LPL did not augment LDL uptake. Chylomicron uptake was not affected by the LDLR genotype. We conclude that LPL-mediated cellular uptake of LDL, but not of chylomicrons, is dependent on the presence of both LDLR and proteoglycans.  相似文献   

5.
Human chylomicrons were isolated from plasma from a subject with familial hypertriglyceridemia and converted to chylomicron remnants by incubation with postheparin plasma. The interaction of these apolipoprotein E-containing, cholesterol-rich human chylomicron remnants with cultured skin fibroblasts was studied. Chylomicron remnants were internalized by skin fibroblasts as a unit, mainly via the low density lipoprotein (LDL)-receptor pathway, resulting in increased cell cholesterol content. After entering the fibroblast, chylomicron remnants stimulated cholesterol esterification, suppressed 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, and down-regulated LDL receptor activity similar to the action of LDL. As a function of increasing lipolysis, remnant particles were progressively more effectively taken up by skin fibroblasts, despite a decrease in the apolipoprotein E content per lipoprotein particle. Remnant particles produced after hydrolysis of 70 to 80% of chylomicron triglyceride increased cell cholesterol content to an amount nearly identical to that observed with LDL when the two lipoproteins were incubated at an equal cholesterol concentration. However, when incubated on the basis of equal particle number, chylomicron remnants were 2 to 3 times more effective than LDL in delivering cholesterol to the cells. These results suggest that chylomicron remnants play a role in the regulation of postabsorptive cholesterol homeostasis in nonhepatic cells, and possibly in the pathogenesis of atherosclerosis.  相似文献   

6.
Newly absorbed retinol is transported in association with chylomicrons and their remnants. In addition, after intake of high doses of retinol, significant amounts are also found in low-density lipoprotein (LDL). As both chylomicron remnants and LDL may be taken up by cells via the LDL receptor, and retinoids inhibit proliferation of some leukaemic cells, we have studied the uptake of retinol in leukaemic cells via the LDL-receptor pathway. HL-60 cells contain saturable binding sites for LDL. The binding of LDL to its receptor has a dissociation constant of about 3.2 x 10(-9) M, and the number of receptors per cell was calculated to be about 2700. Uptake of 125I-LDL by HL-60 cells was increased 2-fold by preincubating the cells with mevinolin. The presence of specific receptors for LDL on HL-60 cells was further confirmed by the finding that exogenous LDL cholesterol was able to up-regulate the ACAT (acyl-CoA: cholesterol acyltransferase) activity of HL-60 cells. We then tested the uptake of retinyl ester in leukaemic cells via the LDL-receptor pathway. HL-60 cells were incubated with LDL or chylomicron remnants labelled with [3H]retinyl palmitate. Uptake of retinyl ester associated with both LDL and chylomicron remnants was observed. Furthermore, the presence of excess LDL decreased the uptake by 75-100%, supporting the hypothesis that the uptake of retinyl ester occurred via the LDL receptor in HL-60 cells.  相似文献   

7.
A method for the removal of serum chylomicrons before density gradient ultracentrifugation of the other serum lipoproteins using an SW 41 swinging bucket rotor is presented. In a preliminary spin, the chylomicrons with an Sf greater than 400 X 10(-13) s float to the top of the gradient, whereas the other lipoproteins are retained in the infranatant fraction. After removal of the chylomicrons, the other serum lipoproteins are subsequently fractionated by isopycnic density gradient ultracentrifugation. Analysis of the separated lipoprotein fractions suggested that this procedure permits isolation of a chylomicron fraction consisting solely of chylomicrons but that the very low density lipoprotein fraction subsequently isolated also contains chylomicrons or chylomicron remnants with an Sf less than 400 X 10(-13) s, and that there is considerable overlap in flotation rate and particle size of very low density lipoproteins and chylomicrons.  相似文献   

8.
The effects of exogenous apo E-3 and of cholesterol-enriched meals on the binding, cell association and proteolytic degradation of human chylomicrons and their remnants were determined in cultured human skin fibroblasts. Chylomicrons were prepared from plasma of normolipemic humans 4 h after a fat meal with normal or high cholesterol content. Remnants were obtained after incubation of chylomicrons with lipoprotein lipase in vitro. Cellular metabolism of chylomicrons was minimal, less than 10% that of LDL. Exogenous apo E-2 enhanced chylomicron metabolism by 3-4-fold. The cellular metabolism of remnants was 2.5-3.5-fold higher as compared to intact chylomicrons but their response to exogenous apo E-3 was considerably lower. The cellular metabolism of chylomicrons and chylomicron remnants obtained from subjects eating cholesterol-enriched fat meal was the highest either without or with added exogenous apo E-3. Yet, even in the preparation that exhibits the highest metabolic activity (apo E-3 enriched remnants from cholesterol-enriched meals) the absolute proteolytic degradation was about two-thirds that of LDL. We conclude that although LDL-receptors take up and degrade chylomicron remnants, the rate of catabolism of remnants by this route can not explain the rapid and complete remnant removal process as observed in vivo.  相似文献   

9.
The metabolism of [14C]cholesterol- and [3H]retinol-labeled chylomicrons obtained from canine thoracic duct or rabbit mesenteric lymph was investigated in normal fasted rabbits. Typically, 70-80% of the chylomicrons injected into the rabbits were cleared from the plasma in 20 min, and their uptake was accounted for principally by the liver and the bone marrow. Surprisingly, the bone marrow was a major site of uptake; the uptake ranged from about half that of the liver to a nearly equal amount. The importance and specificity of chylomicron-chylomicron remnant uptake by the bone marrow were established by demonstrating that (a) bone marrow throughout the body accumulated these lipoproteins, (b) the level of uptake was consistent regardless of how the values were calculated or how the chylomicrons were prepared, (c) the uptake represented specific binding, and (d) radiolabeled intestinal lipoproteins induced in vivo delivered cholesterol and retinol to the marrow. Electron microscopic examination of the rabbit bone marrow established that perisinusoidal macrophages uniquely accounted for the uptake of the chylomicrons. Whereas liver cleared a variety of both triglyceride-rich lipoproteins (chylomicrons, chylomicron remnants, and very low density lipoproteins) and cholesterol-rich lipoproteins (beta-very low density lipoproteins and high density lipoproteins containing apolipoprotein E), bone marrow uptake appeared to be restricted to the triglyceride-rich lipoproteins. More chylomicron remnants (generated in a hepatectomized rabbit) were cleared by the liver than by the bone marrow, and the addition of excess apolipoprotein E to chylomicrons resulted in their preferential uptake by the liver. The role of chylomicron-chylomicron remnant delivery of lipids or lipid-soluble vitamins to rabbit bone marrow is open to speculation, and whether triglyceride-rich lipoprotein uptake occurs to a significant extent in the bone marrow of humans remains to be determined.  相似文献   

10.
After intravenous injection, emulsions with compositions similar to chylomicrons behaved metabolically as described for chylomicrons, with faster removals of triacylglycerols than cholesteryl esters from the blood after injection into rats, and with greater uptakes of cholesteryl esters than triacylglycerols by the liver. In contrast, emulsions with a high content of free cholesterol showed equal removal rates from the blood of triacylglycerols and cholesteryl esters; and similar uptakes by the liver. This pattern of metabolism was that expected for a chylomicron core remnant particle. Emulsions poor in cholesteryl ester but rich in free cholesterol showed remnant-like behavior, whereas emulsions rich in cholesteryl ester but poor in free cholesterol were metabolized like nascent chylomicron particles. The amount of free cholesterol appeared to regulate metabolism by affecting the binding of apolipoproteins to the particle surface. Emulsions with a high content of free cholesterol bound less A-I, A-IV and C apolipoproteins, and the relative amount of apolipoprotein E was increased. All of these effects are consistent with the metabolic differences between chylomicrons and remnant particles, suggesting that the amount of free cholesterol plays a regulatory role in chylomicron metabolism.  相似文献   

11.
Intestinal cholesterol absorption involves the chylomicron and HDL pathways and is dependent on microsomal triglyceride transfer protein (MTP) and ABCA1, respectively. Chylomicrons transport free and esterified cholesterol, whereas HDLs transport free cholesterol. ACAT2 esterifies cholesterol for secretion with chylomicrons. We hypothesized that free cholesterol accumulated during ACAT2 deficiency may be secreted with HDLs when chylomicron assembly is blocked. To test this, we studied cholesterol absorption in mice deficient in intestinal MTP, global ACAT2, and both intestinal MTP and global ACAT2. Intestinal MTP ablation significantly increased intestinal triglyceride and cholesterol levels and reduced their transport with chylomicrons. In contrast, global ACAT2 deficiency had no effect on triglyceride absorption but significantly reduced cholesterol absorption with chylomicrons and increased cellular free cholesterol. Their combined deficiency reduced cholesterol secretion with both chylomicrons and HDLs. Thus, contrary to our hypothesis, free cholesterol accumulated in the absence of MTP and ACAT2 is unavailable for secretion with HDLs. Global ACAT2 deficiency causes mild hypertriglyceridemia and reduces hepatosteatosis in mice fed high cholesterol diets by increasing hepatic lipoprotein production by unknown mechanisms. We show that this phenotype is preserved in the absence of intestinal MTP in global ACAT2-deficient mice fed a Western diet. Further, we observed increases in hepatic MTP activity in these mice. Thus, ACAT2 deficiency might increase MTP expression to avoid hepatosteatosis in cholesterol-fed animals. Therefore, ACAT2 inhibition might avert hepatosteatosis associated with high cholesterol diets by increasing hepatic MTP expression and lipoprotein production.  相似文献   

12.
Chylomicron apolipoprotein metabolism was studied utilizing chylomicrons isolated from the pleural fluid of a patient with a recurrent chylous pleural effusion. Chylomicrons contained apolipoproteins A-I, A-II, B, C-I, C-II, C-III, D, E, and albumin. Following intravenous injection of [125I] chylomicrons, almost all of the A apolipoprotein radioactivity was recovered in high density lipoproteins, while only a small amount of the B apolipoprotein radioactivity was recovered in low density lipoproteins. These observations indicate that intestinal chylomicron A apolipoproteins serve as precursors for plasma high density lipoprotein A apolipoproteins and only a small fraction of chylomicron apolipoprotein B is metabolized to form low density lipoprotein apolipoprotein B.  相似文献   

13.
The uptake of lipids by rat liver cells   总被引:6,自引:3,他引:3       下载免费PDF全文
1. Unesterified cholesterol, cholesterol esters and triglycerides of chylomicrons were taken up at the same rate by isolated hepatic parenchymal cells. 2. On incubation of hepatic cells, isolated 2min. after the injection of chylomicrons in vivo, the chylomicron triglyceride associated with the cells underwent hydrolysis. 3. In cells isolated 5min. after the injection of chylomicrons, the chylomicron triglyceride bound to the hepatic cells was accessible to added clearing factor lipase. 4. ;Ghost' hepatic cells had the same binding capacity and lipolytic activity per cell as intact cells. 5. Of all subcellular fractions studied, the ;plasma membrane' fraction showed the greatest capacity per unit weight for non-esterified fatty acid and chylomicron triglyceride binding and for triglyceride hydrolysis. 6. Once non-esterified fatty acids entered the hepatic cell, they were apparently metabolized in the same manner, whether taken up from the circulation as such or derived from chylomicron triglyceride.  相似文献   

14.
GPIHBP1, a glycosylphosphatidylinositol-anchored endothelial cell protein of the lymphocyte antigen 6 (Ly6) family, plays a key role in the lipolysis of triglyceride-rich lipoproteins (e.g. chylomicrons). GPIHBP1 is expressed along the luminal surface of endothelial cells of heart, skeletal muscle, and adipose tissue, and GPIHBP1-expressing cells bind lipoprotein lipase (LPL) and chylomicrons avidly. GPIHBP1 contains an amino-terminal acidic domain (amino acids 24-48) that is enriched in aspartate and glutamate residues, and we previously speculated that this domain might be important in binding ligands. To explore the functional importance of the acidic domain, we tested the ability of polyaspartate or polyglutamate peptides to block the binding of ligands to pgsA-745 Chinese hamster ovary cells that overexpress GPIHBP1. Both polyaspartate and polyglutamate blocked LPL and chylomicron binding to GPIHBP1. Also, a rabbit antiserum against the acidic domain of GPIHBP1 blocked LPL and chylomicron binding to GPIHBP1-expressing cells. Replacing the acidic amino acids within GPIHBP1 residues 38-48 with alanine eliminated the ability of GPIHBP1 to bind LPL and chylomicrons. Finally, mutation of the positively charged heparin-binding domains within LPL and apolipoprotein AV abolished the ability of these proteins to bind to GPIHBP1. These studies indicate that the acidic domain of GPIHBP1 is important and that electrostatic interactions play a key role in ligand binding.  相似文献   

15.
1. The hepatic metabolism of chylomicrons and chylomicron remnants was compared after adding approximately equal numbers of each lipoprotein particle to the perfusate of isolated livers. 2. At least 40% of the added remnants were metabolized by the liver compared with less than 3% for chylomicrons. 3. There was significantly more net removal of labelled remnants than of chylomicrons by the liver. 4. A greater proportion of labelled cholesterol than of labelled triacylglycerol fatty acids was transferred to the liver from each lipoprotein. 5. Cholesteryl esters of remnants were hydrolysed to triacylglycerol fatty lipoprotein. 5. Cholesteryl esters of remnants were hydrolysed to triacylglycerol fatty acids of remnants were oxidized to CO2 more extensively than those of chylomicrons. 6. There was greater oxidation of remnant glycerolipic [(1(-14)C]oleate than of glycerolipid [1(-14)C]palmitate. 7. A large fraction of the fatty acids of remnants, but not of chylomicrons, was transferred to phospholipids, which were released by the liver in a lipoprotein of relative density less than 1.006. 8. Label from remnants, but not from chylomicrons, was found in lipoproteins of relative density greater than 1.006, which were not released during perfusion but could be flushed out from the liver at the end of perfusion.  相似文献   

16.
The regulation of lipoprotein secretion in the cell line HepG2 was studied. HepG2 cells were preincubated with chylomicron remnants (triglyceride- and cholesterol-rich) or with beta very low density lipoproteins (beta-VLDL) (cholesterol-rich). The medium was removed and the cells were incubated for and additional 24 hr in a lipoprotein-free medium that contained either [2-3H]glycerol or DL-[2-3H]mevalonate. Cells and media were harvested, and lipoproteins were separated and fractionated. The mass and radioactivity of the lipids in cells and in the lipoproteins were measured. The activities of cellular acyl-CoA:cholesterol acyltransferase (ACAT) and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase were also determined. Preincubation with chylomicron remnants induced an increase in cellular triglyceride and stimulated both HMG-CoA reductase and ACAT. Preincubation with beta-VLDL induced an increase in cellular free and esterified cholesterol, inhibited HMG-CoA reductase and stimulated ACAT. Although the absolute amount of VLDL is small, chylomicron remnants induced large relative increases in the amount of triglyceride and phospholipid secreted in VLDL and decreases in the amount of triglyceride secreted in low density (LDL) and high density (HDL) lipoproteins as well as a decrease in the amount of phospholipid secreted in HDL. In contrast, preincubation with beta-VLDL did not affect triglyceride secretion, but markedly stimulated the amount of phospholipid secreted in HDL. Comparison of the mass of glycerolipid actually secreted with that calculated from the cellular specific activity suggested that glycerolipids are secreted from single, rapidly equilibrating pools. Cholesterol and cholesteryl ester secretion were affected differently. Preincubation with chylomicron remnants increased the amount of free cholesterol secreted in both VLDL and LDL, but did not alter cholesteryl ester secretion. Preincubation with beta-VLDL increased free cholesterol secretion in all lipoprotein fractions and increased cholesteryl ester secretion in VLDL and LDL, but not HDL. Comparison of isotope and mass data suggested that the cholesteryl ester secreted came primarily from a preformed, rather than an newly synthesized, pool. In summary, these data provide insight to the mechanism whereby a liver cell regulates the deposition of exogenous lipid.  相似文献   

17.
This study characterizes the interactions of various rat and human lipoproteins with the lipoprotein cell surface receptors of rat and human cells. Iodinated rat very low density lipoproteins (VLDL), rat chylomicron remnants, rat low density lipoproteins (LDL), and rat high density lipoproteins containing predominantly apoprotein E (HDL1) bound to high affinity cell surface receptors of cultured rat fibroblasts and smooth muscle cells. Rat VLDL and chylomicron remnants were most avidly bound; the B-containing LDL and the E-containing HDL1 displayed lesser but similar binding. Rat HDL (d = 1.125 to 1.21) exhibited weak receptor binding; however, after recentrifugation to remove apoprotein E, they were devoid of binding activity. Competitive binding studies at 4 degrees C confirmed these results for normal lipoproteins and indicated that VLDL (B-VLDL), LDL, and HDLc (cholesterol-rich HDL1) isolated from hypercholesterolemic rats had increased affinity for the rat receptors compared with their normal counterparts, the most pronounced change being in the LDL. The cell surface receptor pathway in rat fibroblasts and smooth muscle cells resembled the system described for human fibroblasts as follows: 1) lipoproteins containing either the B or E apoproteins interacted with the receptors; 2) receptor binding activity was abolished by acetoacetylation or reductive methylation of a limited number of lysine residues of the lipoproteins; 3) receptor binding initiated the process of internalization and degradation of the apo-B- and apo-E-containing lipoproteins; 4) the lipoprotein cholesterol was re-esterified as determined by [14C]oleate incorporation into the cellular cholesteryl esters; and 5) receptor-mediated uptake (receptor number) was lipoprotein cholesterol. An important difference between rat and human fibroblasts was the inability of human LDL to interact with the cell surface receptors of rat fibroblasts. Rat lipoproteins did, however, react with human fibroblasts. Furthermore, the rat VLDL were the most avidly bound of the rat lipoproteins to rat fibroblasts. When the direct binding of 125I-VLDL was subjected to Scatchard analysis, the very high affinity of rat VLDL was apparent (Kd = 1 X 10(-11) M). Moreover, compared with data for rat LDL, the data suggested each VLDL particle bound to four to nine lipoprotein receptors. This multiple receptor binding could explain the enhanced binding affinity of the rat VLDL. The Scatchard plot of rat 125I-VLDL revealed a biphasic binding curve in rat and human fibroblast cells and in rat smooth muscle cells, suggesting two populations of rat VLDL. These results indicate that rat cells have a receptor pathway similar to, but not identical with, the LDL pathway of human cells. Since human LDL bind poorly to rat cell receptors on cultured rat fibroblasts and smooth muscle cells, metabolic studies using human lipoproteins in rats must be interpreted cautiously.  相似文献   

18.
In this study, the distribution of free cholesterol in cholesterol-loaded endothelial cells was examined. For these studies, cell fractionation methods were used to assess marker enzyme activity and cholesterol distribution. Treatment of rabbit aortic endothelial cells for 3 days with 50 micrograms/ml of beta-very low density lipoprotein (beta-VLDL) or malondialdehyde-low density lipoprotein (MDA-LDL) but not LDL caused a 50-100% increase in total cell unesterified cholesterol. The accumulation of free rather than esterified cholesterol in endothelial cells may be due to the ratio of hydrolysis to esterification, which we have shown in this study to be 10-fold higher in endothelial cells than in smooth muscle cells. This free cholesterol is found in the fractions enriched in plasma membrane markers and, to a lesser extent, in the Golgi-enriched fractions. The amount of cholesterol per mg of protein was increased approximately 50% in these fractions from cells treated for 3 days with 50 micrograms/ml of beta-VLDL. These increases in cholesterol content were reversible upon incubation of cells for 3 days in medium containing 15% fetal bovine serum. Alterations in several membrane functions were also observed in cholesterol-loaded cells. The activity of alkaline phosphatase, an enzyme marker for plasma membranes, was decreased by 25% and an alteration in membrane-associated microfilaments was seen with phalloidin staining. This morphological change in microfilaments was reflected in a decrease in filament ends as shown by cytochalasin binding and occurred without a change in total actin or vinculin. These microfilament changes were reversible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Forces involved in chylomicron binding by isolated cells of rat liver   总被引:3,自引:0,他引:3  
The binding of chylomicrons by isolated liver cells has been found to decrease as temperature increases. It is greatest at the isoelectric point of the chylomicrons; although it occurs both above and below this pH, it decreases most rapidly as the pH is increased. Urea, guanidine hydrochloride, dimethylsulfoxide, dioxane, and sodium chloride at concentrations known to disrupt bonding in proteins have no effect on the removal (by centrifugation) of chylomicrons bound to liver cells. The binding is reduced by treatment of chylomicrons with phospholipase D or by addition of chylomicron "membrane" fraction, lecithin micelles, or lecithin-triglyceride-cholesterol micelles. This evidence implicates phospholipids in the binding. Treatment of liver cells with neuraminidase increases binding of chylomicrons but not the extent of lipolysis that accompanies the binding. Removal of divalent cations from the system with EDTA results in a rise both in chylomicron binding and lipolysis. It is suggested that the binding sites are accessible to the lipase that is responsible for hydrolysis.  相似文献   

20.
The redistribution of rat chylomicron retinoids following incubation with fasting- or postheparin human plasma was investigated. With fasting plasma, chylomicron retinol appeared among higher density lipoprotein acceptors and density greater than 1.21 gm/ml plasma proteins; only small amounts of retinyl ester were found therein. With postheparin plasma, retinyl ester-containing chylomicron remnants with densities spanning the low- and high density lipoprotein distributions were generated; appreciable quantities of retinyl esters appeared among rho greater than 1.019 lipoproteins only in the presence of postheparin plasma. These observations are consistent with the conservation of retinyl esters, but not retinol, among chylomicrons and their catabolic products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号