首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Pseudomonas fluorescens F113 produces antifungal metabolites that protect the roots of sugarbeet from the fungus Pythium ultimum . The phytopathogen, in turn, has the ability to downregulate the expression of genes fundamental to the rhizosphere competence of the bacterial strain. This paper describes the characterization of two of these genes, which were isolated by screening a mini-Tn 5  :: lacZ mutant bank for differential expression of β-galactosidase in the presence of P. ultimum . In order to identify the genes affected in reporter mutants SF3 and SF5, the transposons and flanking regions were cloned. Sequence analysis of the regions flanking the transposons in SF3 revealed that mini-Tn 5  :: lacZ had inserted into a tRNAIle gene, which maps within a ribosomal RNA ( rrn ) operon. In SF5, the transposon inserted between the promoter of a second rrn operon and a gene encoding a 16S rRNA. Southern blot analysis demonstrated that there are five rrn operons in P. fluorescens F113 and that the transposons in SF3 and SF5 had inserted into two different operons. Further characterization of these mutants suggests that their reduced rhizosphere competence is not the result of reduced viability in the short term but may be accounted for partly by reduced growth rates under conditions that support rapid growth. Analysis of lacZ expression in the reporter mutants indicate that the marked rrn operons are regulated differently, suggesting different physiological roles.  相似文献   

2.
Tn5 transposon mutagenesis via electroporation of Pseudomonas fluorescens AU63 was used to generate mutants deficient in antifungal activity against the phytopathogenic fungi Pythium ultimum and Thielaviopsis basicola. Mutant C-45 was obtained by an initial screen for the loss of antibacterial activity against Bacillus subtilis and a subsequent screen of mutants obtained for the loss of antifungal activity against pathogenic fungi. A single chromosomal insertion of Tn5 in the chromosome of Ps. fluorescens C-45 was confirmed by Southern blot hybridization. A metabolite responsible for the observed antibacterial and antifungal activities was identified using thin layer chromatography. The antimicrobial activities of the partially purified substance present in the parental strain and missing in the C-45 mutant were not affected by protease, high temperature, acid or alkali treatment. These results provide the basis for a structural analysis of this new antimicrobial substance and the genetic elucidation of its biosynthesis.  相似文献   

3.
Pseudomonas fluorescens DR54 showed antagonistic properties against plant pathogenic Pythium ultimum and Rhizoctonia solani both in vitro and in planta. Antifungal activity was extractable from spent growth media, and fractionation by semi-preparative HPLC resulted in isolation of an active compound, which was identified as a new bacterial cyclic lipodepsipeptide, viscosinamide, using 1D and 2D 1H-, 13C-NMR and mass spectrometry. The new antibiotic has biosurfactant properties but differs from the known biosurfactant, viscosin, by containing glutamine rather than glutamate at the amino acid position 2 (AA2). No viscosin production was observed, however, when Ps. fluorescens DR54 was cultured in media enriched with glutamate. In vitro tests showed that purified viscosinamide also reduced fungal growth and aerial mycelium development of both P. ultimum and R. solani. Viscosinamide production by Ps. fluorescens DR54 was tightly coupled to cell proliferation in the batch cultures, as the viscosinamide produced per cell mass unit approached a constant value. In batch cultures with variable initial C, N or P nutrient levels, there were no indications of elevated viscosinamide production during starvation or maintenance of the cultures in stationary phase. Analysis of cellular fractions and spent growth media showed that a major fraction of the viscosinamide produced remained bound to the cell membrane of Ps. fluorescens DR54. The isolation, determination of structure and production characteristics of the new compound with both biosurfactant and antibiotic properties have promising perspectives for the application of Ps. fluorescens DR54 in biological control.  相似文献   

4.
Pseudomonas fluorescens CHA0 is an effective biocontrol agent of root diseases caused by fungal pathogens. The strain produces the antibiotics 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) that make essential contributions to pathogen suppression. This study focused on the role of the sigma factor RpoN (sigma54) in regulation of antibiotic production and biocontrol activity in P. fluorescens. An rpoN in-frame-deletion mutant of CHAO had a delayed growth, was impaired in the utilization of several carbon and nitrogen sources, and was more sensitive to salt stress. The rpoN mutant was defective for flagella and displayed drastically reduced swimming and swarming motilities. Interestingly, the rpoN mutant showed a severalfold enhanced production of DAPG and expression of the biosynthetic gene phlA compared with the wild type and the mutant complemented with monocopy rpoN+. By contrast, loss of RpoN function resulted in markedly lowered PLT production and plt gene expression, suggesting that RpoN controls the balance of the two antibiotics in strain CHA0. In natural soil microcosms, the rpoN mutant was less effective in protecting cucumber from a root rot caused by Pythium ultimum. Remarkably, the mutant was not significantly impaired in its root colonization capacity, even at early stages of root infection by Pythium spp. Taken together, our results establish RpoN for the first time as a major regulator of biocontrol activity in Pseudomonas fluorescens.  相似文献   

5.
Interactions between plant-associated microorganisms play important roles in suppressing plant diseases and enhancing plant growth and development. While competition between plant-associated bacteria and plant pathogens has long been thought to be an important means of suppressing plant diseases microbiologically, unequivocal evidence supporting such a mechanism has been lacking. We present evidence here that competition for plant-derived unsaturated long-chain fatty acids between the biological control bacterium Enterobacter cloacae and the seed-rotting oomycete, Pythium ultimum, results in disease suppression. Since fatty acids from seeds and roots are required to elicit germination responses of P. ultimum, we generated mutants of E. cloacae to evaluate the role of E. cloacae fatty acid metabolism on the suppression of Pythium sporangium germination and subsequent plant infection. Two mutants of E. cloacae EcCT-501R3, Ec31 (fadB) and EcL1 (fadL), were reduced in beta-oxidation and fatty acid uptake, respectively. Both strains failed to metabolize linoleic acid, to inactivate the germination-stimulating activity of cottonseed exudate and linoleic acid, and to suppress Pythium seed rot in cotton seedling bioassays. Subclones containing fadBA or fadL complemented each of these phenotypes in Ec31 and EcL1, respectively. These data provide strong evidence for a competitive exclusion mechanism for the biological control of P. ultimum-incited seed infections by E. cloacae where E. cloacae prevents the germination of P. ultimum sporangia by the efficient metabolism of fatty acid components of seed exudate and thus prevents seed infections.  相似文献   

6.
Pseudomonas fluorescens HV37a inhibits growth of the fungus Pythium ultimum in vitro. Optimal inhibition is observed on potato dextrose agar, a rich medium. Mutations eliminating fungal inhibition were obtained after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Mutants were classified by cosynthesis and three groups were distinguished, indicating that a minimum of three genes are required for fungal inhibition. Cosmids that contain wild-type alleles of the genes were identified in an HV37a genomic library by complementation of the respective mutants. This analysis indicated that three distinct genomic regions were required for fungal inhibition. The cosmids containing these loci were mapped by transposon insertion mutagenesis. Two of the cosmids were found to contain at least two genes each. Therefore, at least five genes in HV37a function as determinants of fungal inhibition.  相似文献   

7.
Seedling mortality of Alyssum serpyllifolium ssp. lusitanicum and A. murale , both nickel hyperaccumulators, was reduced by increasing concentrations of metal within plant tissues when inoculated with the fungi Pythium mamillatum or P. ultimum , both of which cause damping-off disease of seedlings. Pythium mamillatum , isolated from nickel-rich serpentine soil, was more tolerant of nickel than P. ultimum , isolated from low-metal control soil, and was more pathogenic than P. ultimum towards seedlings containing high concentrations of metal. These results support the hypothesis that metal hyperaccumulation by plants is closely linked to increased protection against disease.  相似文献   

8.
Pseudomonas fluorescens HV37a inhibited growth of the fungus Pythium ultimum on potato dextrose agar (PDA). An antibiotic activity produced under these conditions was fractionated and partially characterized. Extracts prepared from the PDA on which HV37a was grown revealed a single peak of antibiotic activity on thin-layer chromatograms. Similar extracts were prepared from mutants of HV37a. Their analysis indicated that the antibiotic observed in thin-layer chromatograms was responsible for fungal inhibition observed on PDA. The production of the PDA antibiotic required the presence of glucose, whereas two other antibiotic activities were produced only on potato agar without added glucose. Two mutants (denoted AfuIa and AfuIb) previously characterized as deficient in fungal inhibition on PDA showed altered regulation of the production of all three antibiotics in response to glucose. These mutants were also deficient in glucose dehydrogenase. Mutants isolated as deficient in glucose dehydrogenase were also deficient in fungal inhibition and were grouped into two classes on the basis of complementation analysis with an AfuI cosmid. Glucose regulation of antibiotic biosynthesis therefore involves at least two components and requires glucose dehydrogenase.  相似文献   

9.
In the biocontrol strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively controls the synthesis of antifungal secondary metabolites and exoenzymes. In this way, the GacS/GacA two-component system determines the expression of three small regulatory RNAs (RsmX, RsmY, and RsmZ) in a process activated by the strain's own signal molecules, which are not related to N-acyl-homoserine lactones. Transposon Tn5 was used to isolate P. fluorescens CHA0 insertion mutants that expressed an rsmZ-gfp fusion at reduced levels. Five of these mutants were gacS negative, and in them the gacS mutation could be complemented for exoproduct and signal synthesis by the gacS wild-type allele. Furthermore, two thiamine-auxotrophic (thiC) mutants that exhibited decreased signal synthesis in the presence of 5 x 10(-8) M thiamine were found. Under these conditions, a thiC mutant grew normally but showed reduced expression of the three small RNAs, the exoprotease AprA, and the antibiotic 2,4-diacetylphloroglucinol. In a gnotobiotic system, a thiC mutant was impaired for biological control of Pythium ultimum on cress. Addition of excess exogenous thiamine restored all deficiencies of the mutant. Thus, thiamine appears to be an important factor in the expression of biological control by P. fluorescens.  相似文献   

10.
Leaf composts were studied for their suppressive effects on Pythium ultimum sporangium germination, cottonseed colonization, and the severity of Pythium damping-off of cotton. A focus of the work was to assess the role of fatty-acid-metabolizing microbial communities in disease suppression. Suppressiveness was expressed within the first few hours of seed germination as revealed by reduced P. ultimum sporangium germination, reduced seed colonization, and reduced damping-off in transplant experiments. These reductions were not observed when cottonseeds were sown in a conducive leaf compost. Microbial consortia recovered from the surface of cottonseeds during the first few hours of germination in suppressive compost (suppressive consortia) induced significant levels of damping-off suppression, whereas no suppression was induced by microbial consortia recovered from cottonseeds germinated in conducive compost (conducive consortia). Suppressive consortia rapidly metabolized linoleic acid, whereas conducive consortia did not. Furthermore, populations of fatty-acid-metabolizing bacteria and actinobacteria were higher in suppressive consortia than in conducive consortia. Individual bacterial isolates varied in their ability to metabolize linoleic acid and protect seedlings from damping-off. Results indicate that communities of compost-inhabiting microorganisms colonizing cottonseeds within the first few hours after sowing in a Pythium-suppressive compost play a major role in the suppression of P. ultimum sporangium germination, seed colonization, and damping-off. Results further indicate that fatty acid metabolism by these seed-colonizing bacterial consortia can explain the Pythium suppression observed.  相似文献   

11.
A collection of 29 fluorescent pseudomonads, some with known biological control activity against a range of phytopathogenic fungi, were characterized phenotypically and genotypically by comparing carbon source utilization patterns, suppression of Pythium ultimum both in planta and in vitro and the potential to produce known secondary metabolites. Fatty acid profiling and restriction fragment length polymorphism (RFLP) analysis of the ribosomal DNA operon (ribotyping) were used to determine the diversity of isolates. A small group of genetically related Pseudomonas spp. with similar properties was identified; each isolate produced a diffusible bioactive product in vitro and was active against Pythium ultimum in planta . However, other isolates that were able to suppress damping off disease but did not inhibit hyphal extension in vitro clustered outside this group. Phenotypic analyses revealed that the accumulation of C17:0 cyclopropane fatty acid (17CFA) and the production of hydrogen cyanide correlated significantly with biological control activity and with the antagonism of fungal development. The potential of 17CFA as a marker for the selection of fluorescent pseudomonads with biocontrol agent (BCA) potential was demonstrated by the isolation of a novel active strain. This was selected after the screening of 13 clonal groups of fluorescent pseudomonads identified from 500 isolates from the phytosphere of sugar beet. Levels of 17CFA synthesis possibly reflect the efficacy of the rpoS allele in particular strains.  相似文献   

12.
Under conditions of iron limitation Pseudomonas fluorescens ATCC 17400 produces two siderophores, pyoverdine, and a second siderophore quinolobactin, which itself results from the hydrolysis of the unstable molecule 8-hydroxy-4-methoxy-2-quinoline thiocarboxylic acid (thioquinolobactin). Pseudomonas fluorescens ATCC 17400 also displays a strong in vitro antagonism against the Oomycete Pythium, which is repressed by iron, suggesting the involvement of a siderophore(s). While a pyoverdine-negative mutant retains most of its antagonism, a thioquinolobactin-negative mutant only slowed-down Pythium growth, and a double pyoverdine-, thioquinolobactin-negative mutant, which does not produce any siderophore, totally lost its antagonism against Pythium. The siderophore thioquinolobactin could be purified and identified from spent medium and showed anti-Pythium activity, but it was quickly hydrolysed to quinolobactin, which we showed has no antimicrobial activity. Analysis of antagonism-affected transposon mutants revealed that genes involved in haem biosynthesis and sulfur assimilation are important for the production of thioquinolobactin and the expression of antagonism.  相似文献   

13.
The bacterial strain MM-B16, which showed strong antifungal and antioomycete activity against some plant pathogens, was isolated from a mountain forest soil in Korea. Based on the physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bacterial strain MM-B16 was identical to Pseudomonas fluorescens. An antibiotic active against Colletotrichum orbiculare and Phytophthora capsici in vitro and in vivo was isolated from the culture filtrates of P. fluorescens strain MM-B16 using various chromatographic procedures. The molecular formula of the antibiotic was deduced to be C(10)H(11)NO(2)S (M(+), m/z 209.0513) by analysis of electron impact mass spectral data. Based on the nuclear magnetic resonance and infrared spectral data, the antibiotic was confirmed to have the structure of a thiazoline derivative, aerugine [4-hydroxymethyl-2-(2-hydroxyphenyl)-2-thiazoline]. C. orbiculare, P. capsici, and Pythium ultimum were most sensitive to aerugine (MICs for these organisms were approximately 10 micro g ml(-1)). However, no antimicrobial activity was found against yeasts and bacteria even at concentrations of more than 100 micro g ml(-1). Treatment with aerugine exhibited a significantly high protective activity against development of phytophthora disease on pepper and anthracnose on cucumber. However, the control efficacy of aerugine against the diseases was in general somewhat less than that of the commercial fungicides metalaxyl and chlorothalonil. This is the first study to isolate aerugine from P. fluorescens and demonstrate its in vitro and in vivo antifungal and antioomycete activities against C. orbiculare and P. capsici.  相似文献   

14.
15.
Abstract Pseudomonas fluorescens was subjected to insertion mutagenesis studies using the transposon Tn5-GM to generate mutants deficient in antibacterial activity minus mutants. The transposon located on the temperature-sensitive plasmid pCHR84 was conjugally transferred into the non-pathogenic pseudomonad using the triparental mating procedure. Random integration of Tn 5 -GM into the chromosome of P. fluorescens was achieved by heat ttreatment of the transformed cells at 42°C. Approximately 2% of transconjugants revealed an auxotrophic phenotype indicating efficient integration of the employed transposon into the chromosome of P. fluorescens . One transposon insertion mutant was obtained showing an antibacterial activity minus phenotype. This mutant (MM-7) was found to be defective in the production of an unidentified antibacterial compound against B. subtilis . These results introduce Tn 5 transposon mutagenesis as a new useful tool for the molecular analysis of P. fluorescens .  相似文献   

16.
17.
Pseudomonas fluorescens ATCC 17400 shows in vitro activity against Pythium debaryanum under conditions of iron limitation. A lacZ reporter gene introduced by transposon mutagenesis into the P. fluorescens ATCC 17400 trehalase gene (treA) was induced by a factor released by the phytopathogen Pythium debaryanum. The induction of the lacZ gene was lost upon treatment of the Pythium supernatant with commercial trehalase. A trehalose concentration as low as 1 microM could induce the expression of treA. The mutation did not affect the wild-type potential for fungus antagonism but drastically decreased the osmotolerance of the mutant in liquid culture and suppressed the ability of P. fluorescens ATCC 17400 to utilize trehalose as a carbon source. A subsequent transposon insertion in treP, one of the trehalose phosphotransferase genes upstream of treA, silenced the lacZ gene. This double mutant restricted fungal growth only under conditions of high osmolarity, which probably results in internal trehalose accumulation. These data confirm the role of the disaccharide trehalose in osmotolerance, and they indicate its additional role as an initiator of or a signal for fungal antagonism.  相似文献   

18.
Pseudomonas fluorescens CHA0 produces a variety of secondary metabolites, in particular the antibiotics pyoluteorin and 2,4-diacetylphloroglucinol, and protects various plants from diseases caused by soilborne pathogenic fungi. The rpoD gene encoding the housekeeping sigma factor sigma 70 of P. fluorescens was sequenced. The deduced RpoD protein showed 83% identity with RpoD of Pseudomonas aeruginosa and 67% identity with RpoD of Escherichia coli. Attempts to inactivate the single chromosomal rpoD gene of strain CHA0 were unsuccessful, indicating an essential role of this gene. When rpoD was carried by an IncP vector in strain CHA0, the production of both antibiotics was increased severalfold and, in parallel, protection of cucumber against disease caused by Pythium ultimum was improved, in comparison with strain CHA0.  相似文献   

19.
Two isolates of binucleate Rhizoctonia spp., previously selected for efficacy in suppression of Rhizoctonia solani and Pythium spp., as well as plant growth promotion, were incorporated into various solid substrate formulations. These formulated products were assayed at three doses in three glass-house experiments for biocontrol of damping-off diseases in Capsicum annuum. R. solani anastomosis group 4 or Pythium ultimum var. sporangiiferum were incorporated into pasteurized potting medium with each formulated binucleate Rhizoctonia product. All formulations were effective against both pathogens in at least two experiments, but some formulations of one isolate of binucleate Rhizoctonia did not give consistent control of R. solani in one experiment. The most consistent formulation, which provided control of both pathogens at all doses of binucleate Rhizoctonia, was the simple substrate of rice hulls. The implications for commercialization of a biocontrol product are discussed.  相似文献   

20.
This study was initiated to understand whether differential biological control efficacy of Enterobacter cloacae on various plant species is due to differences in the ability of E. cloacae to inactivate the stimulatory activity of seed exudates to Pythium ultimum sporangium germination. In biological control assays, E. cloacae was effective in controlling Pythium damping-off when placed on the seeds of carrot, cotton, cucumber, lettuce, radish, tomato, and wheat but failed to protect corn and pea from damping-off. Seeds from plants such as corn and pea had high rates of exudation, whereas cotton and cucumber seeds had much lower rates of exudation. Patterns of seed exudation and the release of P. ultimum sporangium germination stimulants varied among the plants tested. Seed exudates of plants such as carrot, corn, lettuce, pea, radish, and wheat were generally more stimulatory to P. ultimum than were the exudates of cotton, cucumber, sunflower, and tomato. However, this was not directly related to the ability of E. cloacae to inactivate the stimulatory activity of the exudate and reduce P. ultimum sporangium germination. In the spermosphere, E. cloacae readily reduced the stimulatory activity of seed exudates from all plant species except corn and pea. Our data have shown that the inability of E. cloacae to protect corn and pea seeds from Pythium damping-off is directly related to its ability to inactivate the stimulatory activity of seed exudates. On all other plants tested, E. cloacae was effective in suppressing damping-off and inactivating the stimulatory activity of seed exudates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号