共查询到20条相似文献,搜索用时 15 毫秒
1.
David F. Bruhn Brian Mozeleski Laurie Falkin Michele M. Klingbeil 《Molecular microbiology》2010,75(6):1414-1425
The unique mitochondrial DNA of trypanosomes is a catenated network of minicircles and maxicircles called kinetoplast DNA (kDNA). The network is essential for survival, and requires an elaborate topoisomerase‐mediated release and reattachment mechanism for minicircle theta structure replication. At least seven DNA polymerases (pols) are involved in kDNA transactions, including three essential proteins related to bacterial DNA pol I (POLIB, POLIC and POLID). How Trypanosoma brucei utilizes multiple DNA pols to complete the topologically complex task of kDNA replication is unknown. To fill this gap in knowledge we investigated the cellular role of POLIB using RNA interference (RNAi). POLIB silencing resulted in growth inhibition and progressive loss of kDNA networks. Additionally, unreplicated covalently closed precursors become the most abundant minicircle replication intermediate as minicircle copy number declines. Leading and lagging strand minicircle progeny similarly declined during POLIB silencing, indicating POLIB had no apparent strand preference. Interestingly, POLIB RNAi led to the accumulation of a novel population of free minicircles that is composed mainly of covalently closed minicircle dimers. Based on these data, we propose that POLIB performs an essential role at the core of the minicircle replication machinery. 相似文献
2.
The dicyemid mesozoans are simple multicellular parasites with a long cylindrical axial cell surrounded by a single outer layer of 20 to 30 ciliated peripheral somatic cells. Their larval development proceeds within the axial cell. Here we demonstrate the appearance of extrachromosomal circular DNAs and their fate during early embryogenesis in Dicyema japonicum. These DNAs are highly heterogeneous in sequence, suggesting that they consist of unique--not repetitive--elements. Potential open reading frames were not evident in the elements, so these DNAs are unlikely to have a protein-encoding function. In situ hybridization revealed that the circular DNA elements were restricted to the early embryonic larvae and gradually faded out as larvae approached maturity. Furthermore Southern blot analysis and polymerase chain reaction analysis using a high molecular weight DNA as a template provided evidence that the extrachromosomal DNA circles are originally present in chromosomes. These observations suggest DNA elimination--or selective replication--of the elements from chromosomes during early embryogenesis in dicyemid mesozoans. 相似文献
3.
Y. Takeda S. Hatano N. Sentoku M. Matsuoka 《Molecular genetics and genomics : MGG》1999,262(1):131-138
4.
Mitochondrial topoisomerase II activity is essential for kinetoplast DNA minicircle segregation. 总被引:3,自引:1,他引:2 下载免费PDF全文
T A Shapiro 《Molecular and cellular biology》1994,14(6):3660-3667
Etoposide, a nonintercalating antitumor drug, is a potent inhibitor of topoisomerase II activity. When Trypanosoma equiperdum is treated with etoposide, cleavable complexes are stabilized between topoisomerase II and kinetoplast DNA minicircles, a component of trypanosome mitochondrial DNA (T. A. Shapiro, V. A. Klein, and P. T. Englund, J. Biol. Chem. 264:4173-4178, 1989). Etoposide also promotes the time-dependent accumulation of small minicircle catenanes. These catenanes are radiolabeled in vivo with [3H]thymidine. Dimers are most abundant, but novel structures containing up to five noncovalently closed minicircles are detectable. Analysis by two-dimensional gel electrophoresis and electron microscopy indicates that dimers joined by up to six interlocks are late replication intermediates that accumulate when topoisomerase II activity is blocked. The requirement for topoisomerase II is particularly interesting because minicircles do not share the features postulated to make this enzyme essential in other systems: for minicircles, the replication fork is unidirectional, access to the DNA is not blocked by nucleosomes, and daughter circles are extensively nicked and (or) gapped. 相似文献
5.
K. A. Partti-Pellinen K. Elo † T. K. Palva ‡ P. Tuunainen § M. O. K. Hakumaki 《Journal of fish biology》1991,39(SA):87-92
Mitochondrial DNA (mtDNA) was purified from the Arctic charr, Salvelinus alpinus , the brook charr, Salvelinus fontinalis , and the lake charr, Salvelinus namaycush , and digested with restriction enzymes Ava II, Hinf I, Eco R V, Pst I and Xba I. Two Arctic charr samples were from natural populations and they represented two different morphotypes of Arctic charr. All other studied populations were hatchery maintained. Eight additional restriction enzymes and double digestions were employed to study morphotypes of Arctic charr. We distinguished two morphotypes with restriction enzyme Nci I. Sequence divergence among mtDNA types was 2.9–3.8% between S. alpinus and S. fontinalis , 3.4–4.6% between S. alpinus and S. namaycush , and 4.7–5.3% between S. fontinalis and S. namaycush . lntraspecific variation was lowest in Arctic charr, the average of nucleon diversity for three populations being 0.179, while for brook charr and for lake charr nucleon diversity was 0.334 and 0.550, respectively. According to the number of mtDNA types, it is obvious that introduction to Finland and hatchery propagation have not greatly affected the mtDNA variation of brook charr or lake charr. 相似文献
6.
7.
Why mitochondrial genes are most often found in nuclei 总被引:7,自引:0,他引:7
A very small fraction of the proteins required for the propagation and function of mitochondria are coded by their genomes, while nuclear genes code the vast majority. We studied the migration of genes between the two genomes when transfer mechanisms mediate this exchange. We could calculate the influence of differential mutation rates, as well as that of biased transfer rates, on the partitioning of genes between the two genomes. We observe no significant difference in partitioning for haploid and diploid cell populations, but the effective size of cell populations is important. For infinitely large effective populations, higher mutation rates in mitochondria than in nuclear genomes are required to drive mitochondrial genes to the nuclear genome. In the more realistic case of finite populations, gene transfer favoring the nucleus and/or higher mutation rates in the mitochondrion will drive mitochondrial genes to the nucleus. We summarize experimental data that identify a gene transfer process mediated by vacuoles that favors the accumulation of mitochondrial genes in the nuclei of modern cells. Finally, we compare the behavior of mitochondrial genes for which transfer to the nucleus is neutral or influenced by purifying selection. 相似文献
8.
9.
Damas J Carneiro J Gonçalves J Stewart JB Samuels DC Amorim A Pereira F 《Nucleic acids research》2012,40(16):7606-7621
Mitochondrial DNA (mtDNA) deletions are a primary cause of mitochondrial disease and are believed to contribute to the aging process and to various neurodegenerative diseases. Despite strong observational and experimental evidence, the molecular basis of the deletion process remains obscure. In this study, we test the hypothesis that the primary cause of mtDNA vulnerability to breakage resides in the formation of non-B DNA conformations, namely hairpin, cruciform and cloverleaf-like elements. Using the largest database of human mtDNA deletions built thus far (753 different cases), we show that site-specific breakage hotspots exist in the mtDNA. Furthermore, we discover that the most frequent deletion breakpoints occur within or near predicted structures, a result that is supported by data from transgenic mice with mitochondrial disease. There is also a significant association between the folding energy of an mtDNA region and the number of breakpoints that it harbours. In particular, two clusters of hairpins (near the D-loop 3'-terminus and the L-strand origin of replication) are hotspots for mtDNA breakage. Consistent with our hypothesis, the highest number of 5'- and 3'-breakpoints per base is found in the highly structured tRNA genes. Overall, the data presented in this study suggest that non-B DNA conformations are a key element of the mtDNA deletion process. 相似文献
10.
11.
Rice chloroplast DNA molecules are heterogeneous as revealed by DNA sequences of a cluster of genes. 总被引:7,自引:2,他引:5 下载免费PDF全文
We describe the isolation of two rice chloroplast HindIII fragments (9.5 kb and 5.3 kb) each containing a gene cluster coding for the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL), beta and epsilon subunits of ATPase (atpB and atpE), tRNAmet (trnM) and tRNAval (trnV). All five genes contained in the 9.5 kb fragment are potentially functional, whereas in the 5.3 kb fragment, rbcL is truncated and atpB is frame-shift mutated. The copy number of the 9.5 kb fragment is 10 times that of the 5.3 kb fragment, indicating that the two fragments are probably located on different chloroplast genomes and represent two different (major and minor) genomic populations. Thus, the rice chloroplast genome appears to be heterogeneous, contrary to general belief. We also describe the isolation of a rice mitochondrial HindIII fragment (6.9 kb) which contains an almost complete transferred copy of this chloroplast gene cluster. In this transferred copy, the coding sequences of rbcL, atpE and trnM contain perfectly normal reading frames, whereas atpB has become grossly defective and trnV is truncated. 相似文献
12.
Using a phylogenetic approach, the examination of 33 meiosis/meiosis-related genes in 12 Drosophila species, revealed nine independent gene duplications, involving the genes cav, mre11, meiS332, polo and mtrm. Evidence is provided that at least eight out of the nine gene duplicates are functional. Therefore, the rate at which Drosophila meiosis/meiosis-related genes are duplicated and retained is estimated to be 0.0012 per gene per million years, a value that is similar to the average for all Drosophila genes. It should be noted that by using a phylogenetic approach the confounding effect of concerted evolution, that is known to lead to overestimation of the duplication and retention rate, is avoided. This is an important issue, since even in our moderate size sample, evidence for long-term concerted evolution (lasting for more than 30 million years) was found for the meiS332 gene pair in species of the Drosophila subgenus. Most striking, in contrast to theoretical expectations, is the finding that genes that encode proteins that must follow a close stoichiometric balance, such as polo, mtrm and meiS332 have been found duplicated. The duplicated genes may be examples of gene neofunctionalization. It is speculated that meiosis duration may be a trait that is under selection in Drosophila and that it has different optimal values in different species. 相似文献
13.
We have purified nascent DNA molecules from Escherichia coli pulse-labeled with 5-bromo[6-3H]deoxyuridine by repeated chromatography on nitrocellulose and isopycnic centrifugation in CsCl. The nascent molecules were labeled with 32P either at their 5' ends using polynucleotide kinase or at their 3' ends using terminal transferase. Compared to the non-nascent DNA of normal density, the nascent dense DNA contained a higher proportion of molecules terminated at their 5' ends with ribonucleotides. Exposure of the dense DNA to alkali generated 5' OH termini quantitatively equivalent to the number of molecules bearing 5' ribonucleotides. Experiments designed (1) to detect structures at the 5' ends of phosphatase-treated nascent DNA molecules that caused them to be resistant to hydrolysis by spleen exonuclease or (2) to detect polypeptides that were associated covalently with small DNA molecules and could be iodinated with the Bolton-Hunter reagent did not yield positive results. We conclude that many, if not all, of the intermediates in E. coli DNA replication are initiated with one or more ribonucleotides. The nascent molecules are outnumbered by small non-nascent DNA molecules in the cell, many of which appear to become slightly longer when cells are pulsed with thymidine. Many of the non-nascent DNA molecules behave as if they were self-complementary or crosslinked. 相似文献
14.
15.
Peridinin‐containing dinoflagellates have small circular DNA molecules called minicircle DNAs, each of which encodes one, or occasionally a few, plastid proteins or ribosomal RNA. Dinoflagellate minicircle DNA is composed of two parts: a gene‐coding sequence and a non‐coding sequence that consists of several variable and core regions. The core regions are identical among the minicircle DNAs with different genes within a species or strain. Because such structure is very different from those of well known plastid DNAs, many functional and evolutionary questions have been raised for the minicircle DNAs, and several studies that focus on answering those questions are underway. However, the localization of minicircle DNA is still controversial: several lines of indirect evidence have implied plastid localization, whereas the nuclear localization of minicircle DNA has also been suggested in a species. In order to understand the evolution and function of minicircle DNA, it is important to know its precise localization. In this study, we sequenced two typical minicircle DNAs, one encodes psbA and the other encodes 23S rRNA genes, from an Amphidinium massartii strain (TM16). To determine the subcellular localization of these minicircle DNAs, we performed DNA‐targeted whole cell fluorescence in situ hybridization with A. massartii minicircle DNA‐specific probes and demonstrated that minicircle DNAs were present in plastids. This study provides the first direct evidence for the plastid localization of dinoflagellate minicircle DNAs. 相似文献
16.
Organization of minicircle genes for guide RNAs in Trypanosoma brucei 总被引:23,自引:0,他引:23
17.
tRNA genes are found between 16S and 23S rRNA genes in Bacillus subtilis. 总被引:29,自引:13,他引:29 下载免费PDF全文
There are at least nine, and probably ten, ribosomal RNA gene sets in the genome of Bacillus subtilis. Each gene set contains sequences complementary to 16S, 23S and 5S rRNAs. We have determined the nucleotide sequences of two DNA fragments which each contain 165 base pairs of the 16S rRNA gene, 191 base pairs of the 23S rRNA gene, and the spacer region between them. The smaller space region is 164 base pairs in length and the larger one includes an additional 180 base pairs. The extra nucleotides could be transcribed in tRNAIIe and tRNA Ala sequences. Evidence is also presented for the existence of a second spacer region which also contains tRNAIIe and tRNA Ala sequences. No other tRNAs appear to be encoded in the spacer regions between the 16S and 23S rRNA genes. Whereas the nucleotide sequences corresponding to the 16S rRNA, 23S rRNA and the spacer tRNAs are very similar to those of E. coli, the sequences between these structural genes are very different. 相似文献
18.
To study the genome-wide impact of transposable elements (TEs) on the evolution of protein-coding regions, we examined 13 799 human genes and found 533 (approximately 4%) cases of TEs within protein-coding regions. The majority of these TEs (approximately 89.5%) reside within 'introns' and were recruited into coding regions as novel exons. We found that TE integration often has an effect on gene function. In particular, there were two mouse genes whose coding regions consist largely of TEs, suggesting that TE insertion might create new genes. Thus, there is increasing evidence for an important role of TEs in gene evolution. Because many TEs are taxon-specific, their integration into coding regions could accelerate species divergence. 相似文献
19.
Replication of the kinetoplast DNA minicircle lagging (heavy (H))-strand initiates at, or near, a unique hexameric sequence (5'-ACGCCC-3') that is conserved in the minicircles of trypanosomatid species. A protein from the trypanosomatid Crithidia fasciculata binds specifically a 14-mer sequence, consisting of the complementary strand hexamer and eight flanking nucleotides at the H-strand replication origin. This protein was identified as the previously described universal minicircle sequence (UMS)-binding protein (UMSBP) (Tzfati, Y., Abeliovich, H., Avrahami, D., and Shlomai, J. (1995) J. Biol. Chem. 270, 21339-21345). This CCHC-type zinc finger protein binds the single-stranded form of both the 12-mer (UMS) and 14-mer sequences, at the replication origins of the minicircle L-strand and H-strand, respectively. The attribution of the two different DNA binding activities to the same protein relies on their co-purification from C. fasciculata cell extracts and on the high affinity of recombinant UMSBP to the two origin-associated sequences. Both the conserved H-strand hexamer and its flanking nucleotides at the replication origin are required for binding. Neither the hexameric sequence per se nor this sequence flanked by different sequences could support the generation of specific nucleoprotein complexes. Stoichiometry analysis indicates that each UMSBP molecule binds either of the two origin-associated sequences in the nucleoprotein complex but not both simultaneously. 相似文献
20.
In the past decade, the development of new DNA, RNA, and protein technologies has greatly incremented the knowledge about
the organization and expression of mitochondrial DNA. The complete base sequence of mitochondrial DNA of several animals is
known and many data are rapidly accumulating on the mitochondrial genomes of other systems. Here we discuss the results so
far obtained that disclosed unexpected features of mitochondrial genetics. Furthermore, mitochondrial DNA has become established
as a powerful tool for evolutionary studies in animals. Evidences are preented demonstrating that the evolution of mitochondrial
DNA has proceeded in different ways in the various taxonomic groups. Data on heteroplasmic animals, which demonstrate the
rapid evolution of mitochondrial DNA, are also presented. 相似文献