首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
许多研究表明 ,大气 CO2 浓度 ([CO2 ])的升高会导致植物气孔密度 (Stom atal Density,SD)和气孔指数 (Stom atal Index,SI)降低。这一关系成为推测地质历史时期大气 [CO2 ]变化的重要古生物指标之一。但是 ,[CO2 ]不是唯一影响 SD和 SI的环境因素。研究利用温度梯度和温度 [CO2 ]梯度技术 ,以 7种美国中西部地区弃耕地常见草本植物和 3种美国东部落叶阔叶林优势木本植物为材料 ,其中草本包含豆科、非豆科 C3和 C4 功能型 ,就它们的 SD,SI,表皮细胞密度 (Epidermal Cell Density,ECD)和气孔孔径长度 (Stomatal Aperture L ength,APL)对 [CO2 ]和温度升高的反应进行了研究。结果表明 ,沿 [CO2 ]梯度 ,所研究物种的 SD比 SI反应敏感 ,SD显示出与 [CO2 ]正相关、负相关和无显著相关性 ,SI显示出与 [CO2 ]正相关和无显著相关性 ;沿温度梯度 ,所研究物种的 SI比 SD反应敏感 ,SI显示出与温度正相关、负相关和无显著相关性 ,SD显示出与温度正相关和无显著相关性。 ECD和 APL对 [CO2 ]和温度梯度也有不同的响应。这说明 ,除 [CO2 ]外 ,温度也对 SD,SI,ECD和 APL有显著的影响。所以在用气孔特征重建地质历史时期 [CO2 ]的变化趋势时 ,除准确建立气孔参数与 [CO2 ]关系外 ,还应考虑大气温度对这一关系的影响  相似文献   

2.
Stomatal density (SD) and stomatal conductance ( g s) can be affected by an increase of atmospheric CO2 concentration. This study was conducted on 17 species growing in a naturally enriched CO2 spring and belonging to three plant communities. Stomatal conductance, stomatal density and stomatal index (SI) of plants from the spring, which were assumed to have been exposed for generations to elevated [CO2], and of plants of the same species collected in a nearby control site, were compared. Stomatal conductance was significantly lower in most of the species collected in the CO2 spring and this indicated that CO2 effects on g s are not of a transitory nature but persist in the long term and through plant generations. Such a decrease was, however, not associated with changes in the anatomy of leaves: SD was unaffected in the majority of species (the decrease was only significant in three out of the 17 species examined), and also SI values did not vary between the two sites with the exception of two species that showed increased SI in plants grown in the CO2-enriched area. These results did not support the hypothesis that long-term exposure to elevated [CO2] may cause adaptive modification in stomatal number and in their distribution.  相似文献   

3.
4.
徐燕  杨颖  玄晓丽  王永飞 《广西植物》2011,31(1):124-128
以"油青60天"和"四九-19"2个菜心品种为材料,研究了菜心下胚轴气孔特征、气孔密度和气孔指数在2年内随不同发育时间的变化情况.结果显示:菜心种子萌发后第3天,下胚轴表皮上已有椭圆形或狭长形的气孔分布;菜心下胚轴普通表皮细胞为长条形,排列紧密."油青60天"和"四九-19"下胚轴的平均气孔密度均先下降后上升,分别在第...  相似文献   

5.
鸡蛋花(夹竹桃科)花表皮气孔的初步研究   总被引:2,自引:0,他引:2  
对鸡蛋花花表皮的气孔进行初步研究,结果发现:花冠裂片的上表皮没有气孔的分布;花冠裂片的下表皮则有气孔的分布。当花冠裂片长度1.5cm时,气孔密度最大,且极显著地高于花冠裂片长度为2.0、2.5、3.5cm和4.0cm时的气孔密度。长度为3.0cm的花冠裂片的气孔指数最大,与花冠裂片长度为1.0、2.0、3.5cm和4.0cm时的气孔指数的差异均达极显著水平。在花冠筒长度为0.3cm和0.4cm时,没发现气孔;当花冠筒生长到0.5cm时开始出现气孔。花冠筒长度为0.6cm时,气孔密度最大,且极显著地高于其它长度花冠筒的气孔密度。花冠筒长为0.6、1.1cm和1.3cm时的气孔指数均极显著地大于长度为0.5cm花冠筒的气孔指数。花冠裂片和花冠筒下表皮的普通表皮细胞都呈不规则的多边形,保卫细胞呈半月形。  相似文献   

6.
Variation in stomatal development and physiology of mature leaves from Alnus glutinosa plants grown under reference (current ambient, 360 μmol mol−1 CO2) and double ambient (720 μmol mol−1 CO2) carbon dioxide (CO2) mole fractions is assessed in terms of relative plant growth, stomatal characters (i.e. stomatal index and density) and leaf photosynthetic characters. This is the first study to consider the effects of elevated CO2 concentration on the distribution of stomata and epidermal cells across the whole leaf and to try to ascertain the cause of intraleaf variation. In general, a doubling of the atmospheric CO2 concentration enhanced plant growth and significantly increased stomatal index. However, there was no significant change in relative stomatal density. Under elevated CO2 concentration there was a significant decrease in stomatal conductance and an increase in assimilation rate. However, no significant differences were found for the maximum rate of carboxylation ( V cmax) and the light saturated rate of electron transport ( J max) between the control and elevated CO2 treatment.  相似文献   

7.
The coordination of veins and stomata during leaf acclimation to sun and shade can be facilitated by differential epidermal cell expansion so large leaves with low vein and stomatal densities grow in shade, effectively balancing liquid‐ and vapour‐phase conductances. As the difference in vapour pressure between leaf and atmosphere (VPD) determines transpiration at any given stomatal density, we predict that plants grown under high VPD will modify the balance between veins and stomata to accommodate greater maximum transpiration. Thus, we examined the developmental responses of these traits to contrasting VPD in a woody angiosperm (Toona ciliata M. Roem.) and tested whether the relationship between them was altered. High VPD leaves were one‐third the size of low VPD leaves with only marginally greater vein and stomatal density. Transpirational homeostasis was thus maintained by reducing stomatal conductance. VPD acclimation changed leaf size by modifying cell number. Hence, plasticity in vein and stomatal density appears to be generated by plasticity in cell size rather than cell number. Thus, VPD affects cell number and leaf size without changing the relationship between liquid‐ and vapour‐phase conductances. This results in inefficient acclimation to VPD as stomata remain partially closed under high VPD.  相似文献   

8.
植物叶脉和气孔性状的关系反映了叶片的水力特性, 对认识它们与植物水分利用有关的生理功能间的关系及其调控作用具有重要意义。该文利用GIS (geographic information system)与实验生态学相结合的方法, 采用标准化主轴估计方法, 研究了兰州市北山不同坡向人工林刺槐(Robinia pseudoacacia)叶脉密度与气孔密度、气孔大小的关系。结果表明: 随着坡向由南坡向东坡、西坡和北坡转变, 植被群落的郁闭度、高度和土壤含水量呈逐渐增加的趋势, 刺槐的净光合速率(Pn)、蒸腾速率(Tr)、光合有效辐射(PAR)、叶脉密度和气孔密度呈逐渐减小的趋势, 气孔与叶面积呈逐渐增大的趋势; 各个坡向的刺槐叶脉密度与气孔密度呈显著正相关关系, 与气孔大小呈显著负相关关系, 且在南坡达到极显著相关关系。生长在南坡的刺槐具有高的叶脉密度和密而小的气孔, 生长在北坡的刺槐具有低的叶脉密度和疏而大的气孔。不同坡向刺槐叶脉密度与气孔特征间的资源分配模式, 反映了植物在异质性生境中根据其功能需求在自身性状之间进行投资权衡机制的优化。  相似文献   

9.
《植物生态学报》2014,38(8):868
气孔是植物与大气环境进行气体交换的重要通道, 在调控植物碳水平衡方面发挥着重要作用。为探讨生境和植物类型对气孔形态特征的影响以及气孔对光强变化的响应格局在不同植物间和不同生境条件下的变异, 选取开阔生境和林下生境的5种蕨类植物和4种被子植物, 测定了它们的气孔形态特征和气孔导度对光强变化的响应。此外, 还收集了8篇文献中开阔和林下生境的45种蕨类植物和70种被子植物的气孔密度和气孔长度数据, 以增大样本量从而更好地探讨不同生境条件下蕨类和被子植物气孔密度及长度的变异格局, 并通过分析生境和植物类型对气孔形态特征的影响来推测生境和植物类型对气孔响应行为的可能影响。实验结果表明, 与林下植物相比, 开阔环境下的植物气孔密度更大, 气孔长度更小, 气孔对光强降低的响应更敏感; 但植物类型对气孔形态特征的影响以及对气孔响应光强的敏感程度的影响均不显著。对文献数据的分析表明, 生境和植物类型对气孔形态特征均有显著影响。考虑到气孔响应快慢与气孔形态特征密切相关, 与蕨类植物相比, 被子植物小而密的气孔可能为其更快地响应环境变化提供了基础。研究表明生境和植物类型对气孔响应行为均有显著影响。  相似文献   

10.
气孔参数与大气CO2浓度的相关性及其影响因素   总被引:5,自引:0,他引:5  
通常认为气孔参数(气孔密度和气孔指数)和大气CO2浓度有负相关关系,但不是每种植物的气孔参数都与CO2浓度的变化有负相关关系,气孔参数对大气CO2浓度的显著反应也只在一定的CO2浓度范围内发生。大气CO2浓度是影响气孔参数变化的主要因素,同时温度、水分的供应和光照条件等其它环境因素也影响气孔参数。CO2浓度和光照条件主要影响气孔发生,而其它环境因素主要影响叶片表皮细胞的大小。气孔指数部分消除了表皮细胞大小带来的影响,用气孔指数指示大气CO2浓度比用气孔密度指示更为可靠。  相似文献   

11.
气孔是植物与大气环境进行气体交换的重要通道, 在调控植物碳水平衡方面发挥着重要作用。为探讨生境和植物类型对气孔形态特征的影响以及气孔对光强变化的响应格局在不同植物间和不同生境条件下的变异, 选取开阔生境和林下生境的5种蕨类植物和4种被子植物, 测定了它们的气孔形态特征和气孔导度对光强变化的响应。此外, 还收集了8篇文献中开阔和林下生境的45种蕨类植物和70种被子植物的气孔密度和气孔长度数据, 以增大样本量从而更好地探讨不同生境条件下蕨类和被子植物气孔密度及长度的变异格局, 并通过分析生境和植物类型对气孔形态特征的影响来推测生境和植物类型对气孔响应行为的可能影响。实验结果表明, 与林下植物相比, 开阔环境下的植物气孔密度更大, 气孔长度更小, 气孔对光强降低的响应更敏感; 但植物类型对气孔形态特征的影响以及对气孔响应光强的敏感程度的影响均不显著。对文献数据的分析表明, 生境和植物类型对气孔形态特征均有显著影响。考虑到气孔响应快慢与气孔形态特征密切相关, 与蕨类植物相比, 被子植物小而密的气孔可能为其更快地响应环境变化提供了基础。研究表明生境和植物类型对气孔响应行为均有显著影响。  相似文献   

12.
Biochemical changes in vivo and pathway interactions were investigated using integrated physiological and metabolic responses of Arabidopsis thaliana L. to ultraviolet (UV) radiation (280–400 nm) at 9.96 kJ m−2 d−1 over the entire life cycle from seed to seed (8 weeks). Columbia-0 (Col-0) and a UV-B sensitive accession ( fah-1 ) showed significant ( P  < 0.001) reductions in leaf growth after 6 weeks. Col-0 recovered growth after 8 weeks, with recovery corresponding to a switch from production of phenylpropanoids to flavonoids. fah-1 failed to recover, indicating that sinapate production is an essential component of recovery. Epidermal features show that UV radiation caused significant ( P  < 0.001) increases in trichome density, which may act as a structural defence response. Stomatal indices showed a significant ( P  < 0.0001) reduction in Col-0 and a significant ( P  < 0.001) increase in fah-1 . Epidermal cell density was significantly increased under UV radiation on the abaxial leaf surface, suggesting that that a fully functioning phenylpropanoid pathway is a requirement for cell expansion and leaf development. Despite wild-type acclimation, the costs of adaptation lead to reduced plant fitness by decreasing flower numbers and total seed biomass. A multi-phasic acclimation to UV radiation and the induction of specific metabolites link stress-induced biochemical responses to enhanced acclimation.  相似文献   

13.
Stomatal density, anatomy and nutrient concentrations of Scots pine (Pinus sylvestris L.) needles were studied during 3 years of growth at elevated CO2 (693 ± 30 µmol mol−1), at elevated temperature (ambient +2·8–6·2 °C depending on the time of the year) and in a combination of elevated CO2 and temperature in closed-top chambers. The treatments were started in August 1996. At elevated temperature, the needles that were grown in the first year (i.e. the 1997 cohort) were thinner, had thinner mesophyll in the abaxial side, thinner vascular cylinder and lower stomatal density than those grown at ambient temperature. The proportion of mesophyll area occupied by vascular cylinder or intercellular spaces were not changed. Lower stomatal density apparently did not lead to decreased use of water, as these needles had higher concentrations of less mobile nutrients (Ca, Mg, B, Zn and Mn), which could indicate increased total transpiration. In the 1997 and 1998 cohorts, elevation of temperature decreased concentrations of N, P, K, S and Cu. In the 1999 cohort, contradictory, higher concentrations of N and S at elevated temperature may be related to increased nutrient mineralization in the soil. Elevation of CO2 did not affect stomatal density, needle thickness, thickness of epidermis or hypodermis, vascular cylinder or intercellular spaces. Concentrations of N, P, S and Cu decreased at elevated CO2. Reductions were transient and most distinct in the 1997 cohort. The effects of CO2 and temperature were in some cases interactive, which meant that in the combined treatment stomatal density decreased less than at elevated temperature, and concentrations of nutrients decreased less than expected on the basis of separate treatments, whereas the thickness of the epidermis and hypodermis decreased more than in the separate treatments. In conclusion, alterations in the anatomy and stomatal density of Scots pine needles were more distinct at elevated temperature than at elevated CO2. Both elevated CO2 and temperature-induced changes in nutrient concentrations that partly corresponded to the biochemical and photosynthetic alterations in the same cohorts ( Luomala et al. Plant, Cell and Environment 26, 645–660, 2003 ) Reductions in nutrient concentrations and alterations in the anatomy were transient and more evident in the needle cohort that was grown in the first treatment year.  相似文献   

14.
何汐然  丁晓雪  许毓哲  李君 《生态学报》2022,42(15):6150-6159
气孔调节是植物适应水分条件变化的关键途径,研究多变生境中植物气孔行为对认识植物的适应具有重要意义。洪水漫溢新形成的河漫滩是胡杨更新的自然生境,其土壤质地和地下水埋深具高度时空异质性。已有研究主要集中于胡杨对地下水埋深变化的生理生态响应,而对土壤质地与地下水变化交互作用影响植物水分关系的认识不足。通过设置土壤质地(砂土(S1)、砂壤土(S2)、黏壤土(S3)与地下水埋深(W1(30 cm)、W2(60 cm)、W3(90 cm))交互试验模拟幼龄胡杨自然生境,观测分析了不同条件下胡杨气孔导度(Gs)、气孔导度斜率(g1)、光合的气孔限制(Ls)的变化。研究结果表明:(1)胡杨气孔行为对地下水变化的响应受土壤质地影响;(2)相同地下水埋深时不同土质间Gs具显著差异,W1时S2与S3的Gs...  相似文献   

15.
16.
The variation in stomatal characters in leaves from one Alnus glutinosa (L.) Gaertn. tree is analysed. Measurements were taken from over 70 sites on the abaxial surfaces of representative ‘sun’ and ‘shade’ leaves having the same insertion point. The mean values of stomatal density and index in the shade leaf were significantly lower (71 and 93%, respectively) than those for the sun leaf. Within leaves, up to 2.5-fold differences in stomatal density values were observed. Contour maps derived from the data reveal non-random trends over the leaf surface. Correlations between stomatal density, epidermal cell density and stomatal index indicate that the variation in stomatal density within leaves arose primarily from local differences in stomatal differentiation, rather than from local differences in leaf expansion. This research demonstrates that a high level of variation in stomatal characters occurs both within and between leaves. We conclude that a well-defined sampling strategy should be used when estimating stomatal characters for (tree) leaves. Furthermore, the leaf's insertion point and situation within the tree crown should be taken into account. We discuss the implications of these findings for palaeoclimatic interpretations and emphasize the need for great caution when drawing conclusions based solely on stomatal characters.  相似文献   

17.
Although leaf size is one of the most responsive plant traits to environmental change, the functional benefits of large versus small leaves remain unclear. We hypothesized that modification of leaf size within species resulting from differences in irradiance can allow leaves to acclimate to different photosynthetic or evaporative conditions while maintaining an efficient balance between hydraulic supply (vein density) and evaporative demand. To test this, we compared the function and anatomy of leaf hydraulic systems in the leaves of a woody angiosperm (Toona ciliata M. Roem.) grown under high and low irradiance in controlled conditions. Our results confirm that in this species, differential leaf expansion regulates the density of veins and stomata such that leaf hydraulic conductance and stomatal conductance remain proportional. A broader sample of field-grown tree species suggested that differences in leaf venation and stomatal traits induced by sun and shade were not regulated by leaf size in all cases. Our results, however, suggest that leaf size plasticity can provide an efficient way for plants to acclimate hydraulic and stomatal conductances to the contrasting evaporative conditions of sun and shade.  相似文献   

18.
Application of different concentrations of cadmium [5, 10, 15, 25 and 50 g(CdCl2) g–1(soil d.m.)] markedly affected leaves of Cajanus cajan (Linn.) Huth. Due to increased Cd content in leaves, stomatal density and size on abaxial epidermis, and the size of stomatal aperture and length and density of trichomes on both leaf epidermes decreased significantly in the treated plants. Net photosynthetic rate and stomatal conductance were reduced significantly at each concentration of cadmium, whereas reduction in intercellular carbon dioxide concentration was significant at 10 g Cd onwards. The contents of chlorophyll a, chlorophyll b and carotenoids were relatively low during early stages of plant development under the effect of Cd. Nitrate content, nitrate reductase activity and protein content were also lower in treated plants, compared with control.  相似文献   

19.
To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata , which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in p CO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low p CO2. Stomata did not respond to a decreased p CO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal p CO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to p CO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low p CO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species.  相似文献   

20.
Stomata have a fundamental role in controlling plant photosynthesis and transpiration, but very little is known about factors controlling stomatal differentiation and development. Lines of soybean that contain a specific flavonol glycoside, kaempferol‐3‐O‐2‐glycosyl‐gentiobioside (K9), as well as greatly reduced stomatal density, especially on the adaxial epidermis, have been identified. The specific effects of blue light photoreceptors on stomatal development in K9 lines and their isoline pairs containing no K9 were studied. Low irradiances of blue light (7% of total photosynthetically active radiation) added to high irradiances from low‐pressure sodium lamps strongly inhibited stomatal development on the adaxial epidermis of K9 lines, but not in isoline pairs differing putatively in only one gene and lacking K9. Overall, blue light slightly increased stomatal density on the abaxial epidermis in all isolines, demonstrating differential regulation of stomatal development in the upper and lower epidermis. Blue light also caused an increase in leaf area in all isolines, indicating that changes in stomatal density were not the non‐specific result of alterations in leaf area. Morphological studies revealed that the blue light‐induced reduction in stomatal density in K9 lines was due to reduced stomatal initiation as well as aborted or abnormal stomatal development. As the phytochrome photostationary state was kept constant, the results indicate that one or more blue light receptors are involved in the control of stomatal development. This system should be useful for the study of mechanisms controlling stomatal development, even if the photo‐inhibitory response is unique to K9 lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号