首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Heparin, a highly sulfated glycosaminoglycan, is known to be obligatory for long-term endothelial cell cultures; it potentiates the mitogenic activities of endothelial cell growth factors and prolongs the replicative life span of the cells. Here we have shown that besides its growth factor-supportive role, heparin exerts a specific action on cerebral capillary endothelial cells (cECs), unrelated to serum or growth factors, by increasing activity of ornithine decarboxylase (ODC; EC 4.1.1.17) in these cells. For our experiments we have used two different types of cloned cECs: type I cECs, grown in the presence of endothelial cell growth factor and heparin, and type II cECs, usually cultivated without growth factors. Heparin action on ODC activity was shown to be dose dependent within the range of 1–100 μg/ml. Increasing concentrations of or depletion of endothelial cell growth factor from type I cultures had no effect on ODC activity. The increase in enzyme activity was highest after 30 min to 1 h of heparin treatment. As evidenced by northern analysis, the heparin-mediated enhancement of ODC activity was not accompanied by changes of ODC mRNA levels. Studies of DNA replication revealed that in the absence of heparin-binding growth factors, heparin did not affect the proliferative activity of cloned cECs.  相似文献   

2.
A 17,500-dalton protein which stimulates plasminogen activator production in cultured bovine capillary endothelial cells has been purified from a SK-Hep-1 human hepatoma cell lysate by using heparin affinity chromatography and fast protein-liquid ion exchange chromatography. The purified molecule stimulated plasminogen activator production in a dose-dependent manner between 0.01 and 1 ng/ml. It also stimulated collagenase synthesis, DNA synthesis, and motility in capillary endothelial cells in the same concentration range. This molecule was identified as a basic fibroblast growth factor-like molecule on the basis of its biological activity, its affinity for heparin-Sepharose, and its cross-reactivity with a polyclonal antibody raised against the human placental basic fibroblast growth factor.  相似文献   

3.
Vascular endothelial growth factor (VEGF) induces the proliferation of endothelial cells and is a potent angiogenic factor that binds to heparin. We have therefore studied the effect of heparin upon the interaction of VEGF with its receptors. Heparin, at concentrations ranging from 0.1 to 10 micrograms/ml, strongly potentiated the binding of 125I-VEGF to its receptors on endothelial cells. Scatchard analysis of 125I-VEGF binding indicates that 1 microgram/ml heparin induces an 8-fold increase in the apparent density of high affinity binding sites for VEGF, but does not significantly affect the dissociation constant of VEGF. Cross-linking experiments showed that heparin strongly potentiates the formation of the 170-, 195- and 225-kDa 125I-VEGF-receptor complexes on endothelial cells. At high 125I-VEGF concentrations (4 ng/ml), heparin preferentially enhanced the formation of the 170- and 195-kDa complexes. Preincubation of the cells with heparin, followed by extensive washes, produced a similar enhancement of subsequent 125I-VEGF binding. The binding of 125I-VEGF was completely inhibited following digestion of endothelial cells with heparinase and could be restored by the addition of exogenous heparin to the digested cells. The enhancing effect of heparin facilitated the detection of VEGF receptors on cell types that were not known previously to express such receptors. Our results suggest that cell surface-associated heparin-like molecules are required for the interaction of VEGF with its cell surface receptors.  相似文献   

4.
The kinetics of inhibition of the esterase and lipase activities of bovine milk lipoprotein lipase (LPL) were compared. The esterase LPL activity against emulsified tributyrylglycerol was not affected by the enzyme activator apolipoprotein C-II (C-II) and amounted to about 15% of the "plus activator" lipase enzyme activity. Heparin at concentrations of 20 micrograms/ml inhibited 25% of the esterase activity. The reaction followed Henri-Michaelis-Menten kinetics and the inhibition by heparin followed a linear, intersecting, noncompetitive kinetic model. On the other hand, the basal lipase activity of LPL against emulsified trioleoylglycerol (TG) was very sensitive to inhibition by heparin: 1 microgram/ml inhibited about 80% of the reaction and 3 micrograms/ml drove the reaction to zero. The velocity curve for the uninhibited basal LPL activity was sigmoidal with an apparent nH(TG) of 2.94. Heparin inhibited the lipase activity competitively: heparin decreased nH(TG) and increased[TG]0.5 6.4-fold, while TG decreased the nH(Heparin) from 2.14 to 0.95 and caused a 3-fold increase in [Heparin]0.5. C-II, at concentrations lower than 2.5 X 10(-8) M (i.e., lower than KA), countered the inhibitory effects of heparin: at constant inhibitor concentrations, C-II increased nH(TG) from 1.78 to 2.52 and decreased [TG]0.5 about 10-fold; it also increased the apparent Vmax. At the lower C-II concentrations, nH(C-II) was approximately equal to 1.0 and increasing the TG concentrations decreased [C-II]0.5 from 3.8 X 10(-8) to 8.5 X 10(-9) M, with no effect on the nH(C-II). At the higher C-II concentrations, nH(C-II) was 2.5 and TG decreased [C-II]0.5 about 2-fold with no effect on the nH(C-II). In the absence of heparin, C-II had no effect on nH(TG) nor on [TG]0.5, but it increased the apparent Vmax. On the other hand, TG had no effect on nH(C-II) nor on [C-II]0.5, but at any given C-II concentration, the reaction velocity increased with increasing TG concentrations. It is concluded that TG and heparin as well as C-II and heparin are mutually exclusive and that lipoprotein lipase is a multisite enzyme, possibly a tetramer, with three high-affinity catalytic sites, and an equal number of sites for C-II and heparin per oligomer. However, LPL differs from classical allosteric enzymes in that its activator has no effect on substrate cooperativity nor on [S]0.5; its only effect is to increase Vmax by increasing the catalytic rate constant kp by inducing conformational changes in the enzyme.  相似文献   

5.
The role of endogenous heparin and tissue-type plasminogen activator in the middle-period (25 days) adaptation of haemostasis to high altitude (altitude 3200 m) and formation or "high-altitude hypocoagulation" was studied in the experiments on white rats. It was observed that the formation of "high-altitude hypocoagulation" is connected with an increase of heparin and tissue-type plasminogen activator level due to its release from must and endothelial cells to the bloodstream. Histochemical analysis showed that at the course of adaptation to high altitude the increase in blood heparin level was caused by the stimulation of must cells secretory activity. The endothelium of lung vessels is the main source of tissue-type plasminogen activator release into the blood. The existence of interconnection between the changes in haemostasis and stimulation of angiogenesis at high altitude is proposed.  相似文献   

6.
The amidolytic plasmin activity of a mixture of tissue plasminogen activator (tPA) and plasminogen is enhanced by heparin at therapeutic concentrations. Heparin also increases the activity in mixtures of urokinase-type plasminogen activator (uPA) and plasminogen but has no effect on streptokinase or plasmin. Direct analyses of plasminogen activation by polyacrylamide gel electrophoresis demonstrate that heparin increases the activation of plasminogen by both tPA and uPA. Binding studies show that heparin binds to various components of the fibrinolytic system, with tight binding demonstrable with tPA, uPA, and Lys-plasminogen. The stimulation of tPA activity by fibrin, however, is diminished by heparin. The ability of heparin to promote plasmin generation is destroyed by incubation of the heparin with heparinase, whereas incubation with chondroitinase ABC or AC has no effect. Also, stimulation of plasmin formation is not observed with dextran sulfate or chondroitin sulfate A, B, or C. Analyses of heparin fractions after separation on columns of antithrombin III-Sepharose suggest that both the high-affinity and the low-affinity fractions, which have dramatically different anticoagulant activity, have similar activity toward the fibrinolytic components.  相似文献   

7.
The activity of tissue plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) is stimulated by heparin. Heparin binds tightly to t-PA, u-PA, and plasminogen and decreases the usual stimulatory effect of fibrin on t-PA activity. In the present study we have found that low molecular weight heparin (LMW-heparin) preparations obtained by nitrous acid depolymerization or heparinase treatment of standard heparin have different properties with respect to their interaction with the fibrinolytic system. LMW-heparin prepared by either method does not stimulate plasmin formation by t-PA. However, these preparations of heparin still efficiently accelerate the inhibition of thrombin by antithrombin III. Binding data show that LMW-heparin does not bind t-PA and Glu-plasminogen and only binds very weakly to Lys-plasminogen. These results illustrate that it is possible to selectively destroy the fibrinolytic stimulating properties of heparin while leaving the classical anticoagulant characteristics intact.  相似文献   

8.
9.
The control of smooth muscle cell (SMC) proliferation is determined by the combined actions of mitogens, such as platelet-derived growth factor, and the opposing action of growth inhibitory agents, such as heparin and transforming growth factor-beta (TGF-beta). The present studies identify an interaction between heparin and TGF-beta in which heparin potentiates the biological action of TGF-beta. Using a neutralizing antibody to TGF-beta, we observed that the short term antiproliferative effect of heparin depended upon the presence of biologically active TGF-beta. This effect was observed in rat and bovine aortic SMC and in CCL64 cells, but not in human saphenous vein SMC. Binding studies demonstrated that the addition of heparin (100 micrograms/ml) to medium containing 10% plasma-derived serum resulted in a 45% increase in the specific binding of 125I-TGF-beta to cells. Likewise, heparin induced a twofold increase in the growth inhibitory action of TGF-beta at concentrations of TGF-beta near its apparent dissociation constant. Using 125I-labeled TGF-beta, we demonstrated that TGF-beta complexes with the plasma component alpha 2-macroglobulin, but not with fibronectin. Heparin increases the electrophoretic mobility of TGF-beta apparently by freeing TGF-beta from its complex with alpha 2-macroglobulin. Dextran sulfate, another highly charged antiproliferative molecule, but not chondroitin sulfate or dermatan sulfate, similarly modified TGF-beta's mobility. Relatively high, antiproliferative concentrations of heparin (1-100 micrograms/ml) were required to dissociate the TGF-beta/alpha 2-macroglobulin complex. Thus, it appears that the antiproliferative effect of heparin may be partially attributed to its ability to potentiate the biological activity of TGF-beta by dissociating it from alpha 2-macroglobulin, which normally renders it inactive. We suggest that heparin-like agents may be important regulators of TGF-beta's biological activity.  相似文献   

10.
The effect of the heparinoid, pentosan polysulphate (PP) on the proliferative behaviour of cultured bovine endothelial cells (EC) was examined. In addition, the toxicity of the drug towards EC, its influence on prostacyclin production and release, and on cell-associated plasminogen activator activity was determined. At a concentration of 10 micrograms/ml in the culture medium, PP exerted a growth promoting effect on EC. Increased cell numbers were accompanied by increased 3H-thymidine incorporation into cellular DNA compared with controls, however, final density of the cells was not affected. In contrast, at doses of 1 mg/ml the growth of EC was substantially slowed down. This finding did not reflect cell injury as shown by an unaltered release of 51Cr from the cells. Incubation of PP with EC had no influence on the prostacyclin release from the cells neither on the accumulation of the metabolite in the culture fluid over 24 hours nor on the releasing capacity upon stimulation with arachidonic acid. PP increased the cell-associated plasminogen activator activity in growing cells and counteracted in cultures at final density the inhibitory effect of serum on the intracellular plasminogen-activator activity. Our results suggest that stimulation of the fibrinolytic activity of the endothelium and a growth promoting effect for endothelial cells that may lead to faster coverage of small lesions could contribute to the antithrombotic potency of pentosan polysulphate in vivo.  相似文献   

11.
Prostaglandin production by cultured human endothelial cells varies with growth conditions. We observed a marked diminution in both spontaneous and inducible production of prostacyclin (PGI2) by human umbilical vein and saphenous vein endothelial cells when they were cultured in the presence of the heparin-binding growth factor, acidic fibroblast growth factor (aFGF) and heparin, compared with PGI2 production during culture in medium lacking these factors. Decreased PGI2 production was related to duration of exposure of the cells to aFGF and heparin and depended on the concentration of both substances. Heparin (1-100 micrograms/ml) strongly potentiated the effects of aFGF but had a limited and variable effect alone. The decrease in PGI2 production correlated with a reduction in the cellular content of immunoreactive prostaglandin H synthase and prostacyclin synthase. Arachidonate deacylation was not decreased. In addition, the eicosanoid profile of endothelial cells was changed by exposure to aFGF and heparin. These studies indicate that heparin acts as a modulator of prostaglandin synthesis in endothelial cells through its interaction with aFGF, mediated by alterations in two key enzymes in the arachidonate metabolic pathway.  相似文献   

12.
We have examined the effects of bacterial lipopolysaccharide (endotoxin) on the fibrinolytic activity of bovine pulmonary artery endothelial cells. Endotoxin suppressed the net fibrinolytic activity of cell extracts and conditioned media in a dose-dependent manner (threshold dose, 0.1 ng/ml; maximal dose, 10-100 ng/ml). The effects of endotoxin required at least 6 h for expression. Cell extracts and conditioned media contained a 44-kDa urokinase-like plasminogen activator. Media also contained multiple plasminogen activators with molecular masses of 65-75 and 80-100 kDa. Plasminogen activators in extracts and media were unchanged by treatment of cells with endotoxin. Diisopropyl fluorophosphate (DFP) abolished fibrinolytic activity of extracts and conditioned media. DFP-treated samples from endotoxin-treated but not untreated cells inhibited urokinase and tissue plasminogen activator, but not plasmin. Inhibitory activity was lost by incubation at pH 3 or heating to 56 degrees C for 10 min. These treatments did not affect inhibitory activity of fetal bovine serum. Incubation of 125I-urokinase with DFP-treated medium from endotoxin-treated cells produced an inactive complex with an apparent molecular mass of 80-85 kDa. The complex could be detected by chromatography on Sephadex G-100, but not by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These findings suggest that low doses of endotoxin suppress fibrinolytic activity in endothelial cells by stimulating the production or expression of a fast-acting, relatively labile inhibitor of plasminogen activator.  相似文献   

13.
Several angiogenic preparations that have been shown to stimulate plasminogen activator (PA) and collagenase production by cultured bovine capillary endothelial (BCE) cells were tested for their ability to stimulate BCE cell motility in the phagokinetic track assay. Bovine retinal extract, medium conditioned by 3T3-F442A differentiated mouse adipocytes, SK HEP-1 human hepatoma cell lysate, mouse sarcoma 180 cell lysate, and medium conditioned by mouse sarcoma 180 cells stimulated motility 68.7%, 48.5%, 140.9%, 56.5%, and 102.1%, respectively, relative to untreated cells. The motility-stimulating activity of these preparations was dose dependent and linear over the 16-h assay period. Several hormones and growth factors were tested for BCE cell motility-stimulating activity, including insulin, vasopressin, fibroblast growth factor, and a partially purified preparation of sarcoma growth factor, and were found to be ineffective. 12-0-tetradecanoyl-phorbol-acetate (TPA), a potent stimulator of both PA and collagenase activities in BCE cells, also did not stimulate motility, indicating that protease production is not sufficient to stimulate BCE cell motility in this assay. Neither SK HEP-1 hepatoma cell lysate nor TPA was effective in stimulating motility in bovine aortic endothelial (BAE) cells. The inability of SK HEP-1 hepatoma cell lysate to stimulate movement in BAE cells is consistent with the observation that angiogenesis occurs by sprouting of capillaries, not large vessels.  相似文献   

14.
The fibrinogenolytic activity of purified tryptase from human lung mast cells   总被引:13,自引:0,他引:13  
The capacity of purified tryptase from human lung mast cells to metabolize human fibrinogen, fibrin, and plasminogen was evaluated. Tryptase (5 micrograms/ml) inactivated the thrombin-induced clotting activity of fibrinogen (100 micrograms/ml) with essentially similar t 1/2 values of 4.6 min in the absence of heparin and 5.8 min in the presence of heparin (20 micrograms/ml) that were not appreciably different than with lysine-Sepharose-purified plasmin (5 micrograms/ml). Fibrinogen treated with tryptase together with heparin lost all detectable clotting activity by 4 hr at 37 degrees C, whereas fibrinogen treated with tryptase alone resulted in destruction of only 80% of fibrinogen clotting equivalents after 16 hr. Tryptase alone was observed to cleave only the alpha-chains of fibrinogen by electrophoresis of tryptase-treated, denatured, and reduced fibrinogen in polyacrylamide gradient gels. Tryptase together with heparin cleaved first the alpha-chain and then the beta-chain, the latter cleavage corresponding to complete loss of fibrinogen clotting activity by 4 hr. No fibrinogen fragments with anticoagulant activity were generated by tryptase. In contrast, plasmin left no residual clotting activity after 4 hr of incubation and generated fibrinogen fragments with anticoagulant activity. Plasmin sequentially cleaved the alpha, beta, and gamma subunits of fibrinogen. Tryptase alone (6 micrograms/ml) or together with heparin (20 micrograms/ml) failed to activate plasminogen (0.6 mg/ml) after a 60-min incubation at 37 degrees C. Addition of urokinase to tryptase-treated or untreated plasminogen resulted in essentially identical plasmin activities (0.32 and 0.34 U/ml, respectively), indicating that tryptase neither activates nor destroys plasminogen. Tryptase (700 ng) also failed to substantially solubilize cross-linked fibrin (2.6 micrograms) or the corresponding amount of fibrinogen bound to plastic microtiter plates with or without heparin. The failure to solubilize fibrinogen and, possibly, fibrin is consistent with the observation that the apparent m.w. by SDS polyacrylamide gel electrophoresis of unreduced fibrinogen is not appreciably altered by prior treatment with tryptase, even though cleavage of alpha-and beta-chains is revealed after reduction. Fibrinogenolysis by tryptase complements other mast cell mediators with anticoagulant properties such as heparin and suggests a significant prevention of coagulation by activated mast cells.  相似文献   

15.
Heparin causes increased synthesis of fibronectin and thrombospondin by human vascular smooth muscle cells as assessed by immunoprecipitation and ELISA techniques. More fibronectin and thrombospondin were immunoprecipitated from the medium of cells treated with 180 micrograms/ml heparin than from that of control cells. Heparin did not effect levels of fibronectin and thrombospondin immunoprecipitated from the cell-matrix fractions. By ELISA, heparin was found to cause a 1.7 fold increase in medium fibronectin levels/cell and a 10 fold increase in medium thrombospondin levels/cell. Concomitantly, smooth muscle cells treated with 180 g/ml heparin for 48 h exhibited 55% decrease in proliferation relative to controls.  相似文献   

16.
The effect of heparin on the proteolytic and fibrinolytic activities of plasmin and plasminogen was studied. Heparin at a concentration of 6.3.10(-6) M did not change the caseinolytic activity of plasmin and plasminogen stimulated by streptokinase but suppressed their fibrinolytic activity. At concentrations from 2.10(-8) to 0.5.10(-6) M heparin increased, whereas at 1.10(-6)-4.10(-6) M reduced the time of desAAfibrin clot half-lysis by plasmin. Within the concentration range of 2.10(-8) to 4.10(-6) M heparin did not change the time of the clot half-lysis by glu-plasminogen and slightly decreased the time of fibrin clot half-lysis by lys-plasminogen in the presence of the tissue activator. It was supposed that heparin inhibits the fibrinolytic effect of plasmin by way of formation of complexes with plasmin and reduction of plasmin specificity to the solid phase substrate, i. e., polymeric fibrin.  相似文献   

17.
Fibronectin is a dimeric glycoprotein (Mr 440,000) involved in many adhesive processes. During blood coagulation it is bound and cross-linked to fibrin. Fibrin binding is achieved by structures (type I repeats) which are homologous to the "finger" domain of tissue plasminogen activator. Tissue plasminogen activator also binds to fibrin via the finger domain and additionally via the "kringle 2" domain. Fibrin binding of tissue plasminogen activator results in stimulation of its activity and plays a crucial role in fibrinolysis. Since fibronectin might interfere with this binding, we studied the effect of fibronectin on plasmin formation by tissue plasminogen activator. In the absence of fibrin, fibronectin had no effect on plasminogen activation. In the presence of stimulating fibrinogen fragment FCB-2, fibronectin increased the duration of the initial lag phase (= time period until maximally stimulated plasmin formation occurs) and decreased the rate of maximal plasmin formation which occurs after that lag phase mainly by increasing the Michaelis constant (Km). These effects of fibronectin were dose-dependent and were similar with single- and two-chain tissue plasminogen activator. They were also observed with plasmin-pretreated FCB-2. An apparent Ki of 43 micrograms/ml was calculated for the inhibitory effect of fibronectin when plasminogen activation by recombinant single-chain tissue plasminogen activator was studied in the presence of 91 micrograms/ml FCB-2. When a recombinant tissue plasminogen activator mutant lacking the finger domain was used in a system containing FCB-2, no effect of fibronectin was seen, indicating that the inhibitory effect of fibronectin might in fact be due to competition of fibronectin and tissue plasminogen activator for binding to fibrin(ogen) via the finger domain.  相似文献   

18.
Heparin has been shown recently to stimulate the activity of human tissue-type plasminogen activator (t-PA). To investigate this effect further, mutant proteins lacking various domains of t-PA were screened for the ability to be stimulated by heparin. Those mutants harboring either the finger domain or the 2nd kringle were found to have enhanced enzymatic activity in the presence of heparin. Only mutants containing these structures would bind to heparin-agarose beads; monoclonal antibodies directed against these domains blocked binding. The stimulatory effect of heparin was more pronounced in finger-containing mutants than kringle-2 proteins. Earlier results had localized the fibrin-binding domains to the same two structures. Unlike heparin, the 2nd kringle was shown to be more important than the finger for fibrin stimulation. Our results have implications for producing recombinant t-PA variants for use in thrombolytic therapy.  相似文献   

19.
Plasminogen activator production by ovine embryos and the effects of plasminogen on ovine embryo development and zona pellucida integrity were evaluated. Eight-cell to sixteen-cell embryos were cultured in Whitten's medium containing 0, 60, or 120 micrograms/ml plasminogen. Plasmin and plasminogen activator concentrations in the medium were determined by a caseinolytic assay. More blastocysts hatched in medium containing 60 and 120 micrograms/ml plasminogen (33 and 21%, respectively) than 0 microgram/ml plasminogen (0%; p less than 0.05). Zona pellucida dissolution time in acidified phosphate-buffered saline was less after incubation in medium with 60 and 120 micrograms/ml plasminogen (7.2 and 5.9 min, respectively) than 0 microgram/ml plasminogen (9.4 min; p less than 0.05). Plasminogen activator production was low until the morula stage, increased during morula-blastocyst transition, and remained elevated through blastocoelic expansion and hatching. Zona pellucida solubility, plasminogen activator production, and plasminogen conversion to plasmin increased as embryonic stage advanced; however, plasminogen activator production and plasmin conversion to plasmin were poorly correlated with zona pellucida solubility. The results indicate that ovine embryos produce plasminogen activator, and plasmin can increase zona pellucida solubility; however, other factors may also be involved in altering zona pellucida integrity prior to hatching.  相似文献   

20.
Infusion of 0,4 micrograms DDAVP/kg for 30 min increased the plasminogen activator activity in blood of experimental animals (dog, rat, rabbit). The plasminogen activator releasing effect was also demonstrated in isolated perfused vascular preparations (pig ear, rat lung) at low doses (10(-9) - 10(6) mol/l). According to these results DDAVP is believed to attack directly the endothelial cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号