首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is the first study investigating spermatogenesis and spermatozoan ultrastructure in the polyclad flatworm Prosthiostomum siphunculus. The testes are numerous and scattered as follicles ventrally between the digestive ramifications. Each follicle contains the different stages of sperm differentiation. Spermatocytes and spermatids derive from a spermatogonium and the spermatids remain connected by intercellular bridges. Chromatoid bodies are present in the cytoplasm of spermatogonia up to spermatids. During early spermiogenesis, a differentiation zone appears in the distal part of spermatids. A ring of microtubules extends along the entire sperm shaft just beneath the cell membrane. An intercentriolar body is present and gives rise to two axonemes, each with a 9 + “1” micro‐tubular pattern. Development of the spermatid leads to cell elongation and formation of a filiform, mature spermatozoon with two free flagella and with cortical microtubules along the sperm shaft. The flagella exit the sperm shaft at different levels, a finding common for acotyleans, but so far unique for cotylean polyclads. The Golgi complex produces numerous electron‐dense bodies of two types and of different sizes. These bodies are located around a perinuclear row of mitochondria. The elongated nucleus extends almost along the entire sperm body. The nucleus is wide in the proximal part and becomes narrow going towards the distal end. Thread‐like chromatin mixed with electron‐dense intranuclear spindle‐shaped bodies are present throughout nucleus. The general sperm ultrastructure, the presence of intranuclear bodies and a second type of cytoplasmic electron‐dense bodies may provide characters useful for phylogenetic analysis.  相似文献   

2.
The morphology of Mastigamoeba aspera, a typical species of the genus Mastigamoeba Schulze, 1875, was studied at the optical and electron microscopy level. During movement, M. aspera has an oval or pyriformic shape, with the motile flagella being located at the anterior end of mononuclear forms. In the process of movement, the mastigamoeba surface forms numerous conical or finger-shaped hyaline pseudopodia, whereas thel caudal cell end is usually transformed into a bulboid uroid. In M. aspera micropopulations, there are noted both mononuclear cells with flagella and multinuclear flagella-free individuals. The M. aspera plasma membrane has at its outer surface a hypertrophied glycocalix layer inhabited by numerous rod-shaped bacteria-ectobionts. The M. aspera nucleus is of vesicular type, with a large central spherical nucleolus. The flagellar apparatus is closely connected morphologically with the M. aspera nucleus. The basal flagella part is represented by a single kinetosome, from which radial microtubules and a lateral rootlet pass out into the cytoplasm. At the base of the kinetosome, there is located a compact center of organization of microtubules (COMT), in which there are immersed bases of the nuclear cone microtubules participating in formation of karyomastigont. The structure of the flagella axoneme corresponds to the formula 9(2)+2. The main volume of the M. aspera cytoplasm is occupied with digestive vacuoles. In addition, the cells contain numerous light-reflecting granules, as well as glycogen granules. Mitochondria, dictyosomes of the Golgi apparatus, and microbodies in the M. aspera cell cytoplasm are not revealed.  相似文献   

3.
SYNOPSIS. During gametogenesis mother individuals of Hastigerina pelagica (d'Orbigny) undergo significant morphological changes. Thirty h before gamete release, the cytoplasm changes from pale orange to bright red, possibly due to transport of stored lipids from the inner region to more peripheral parts of the cytoplasm. During the next 10 to 15 h the bubble capsule which surounds the calcareous shell is discarded. After all bubbles have disappeared, the individual sheds its spines by resorbing the spine bases close to the shell surface. A single mother nucleus divides into some hundreds of thousands of gamete nuclei within a span of ~ 20 h. A bulge of cytoplasm is extruded from the aperture and increases in size during the next 5 to 10 h. This bulge consists of cytoplasmic strands in which gametes and spherical bodies are embedded. The gametes and spherical bodies mature and are released during the afternoon and early evening. The gametes have 2 unequal acronematic flagella. A previously undescribed structure in foraminiferal reproduction is the spherical body which consists of a large vacuole surrounded by a thin cytoplasmic layer in which several nuclei, various typical cell organelles and multiple flagella are present. The spherical bodies are believed to play a role as receptacles of waste material, possibly including residual digestive enzymes, thereby protecting the gametes from lysis during the reproductive process. Fusion of gametes and further development into the next generation have not been observed.  相似文献   

4.
The structure of a new pelomyxa species was investigated on the level fo light and electron microscopy. The length of locomotive forms of Pelomyxa stagnalis reaches 800 μm. The thin layer of amorphous glycocalyx is located on the cell surface. Numerous nonfunctioning flagellae are revealed predominantly in the uroidal zone. The axoneme has a nonstable set of microtubules. No additional structures are present in the transition zone. The length of P. stagnalis flagella kinetosomes does not exceed 150 nm. Fifteen to twenty microtubules extend from the side surface of each kinetosome at a small angle to the cell surface. One of main components of the P. stagnalis cytoplasm are structural vacuoles. Glycogen bodies in cells are surrounded by flattened ER cisterns, which are often filled with electron-dense material. Cells of P. stagnalis were found to contain two species of prokaryote endobionts that differ in the peculiarities of their fine structure. The number of nuclei in cells of the P. stagnalis adult individuals can reach 50 or more. The nuclei are surrounded by a bilayer envelope formed by the multilaminar layer and by the outer layer composed of vesicles often filled with an electron-dense material. The nucleolus is usually single and is located in the center of the nucleus. In nuclei, predominantly in connection with nucleoli, bodies are formed that are formed by interlacing electron-dense strands.  相似文献   

5.
Mature sperm has two axonemes of the 9 + '1' pattern incorporated in the sperm body, a row of peripheral microtubules interrupted along part of the sperm by the axonemes, some microtubules in the interior of the sperm and a long lateral extension (lobe) of the sperm body, an elongate nucleus and mitochondrion, and many dense rod-like structures. A supporting rod extends underneath a specialized region consisting of alternating thin and thick transverse rows of irregular dense patches, and with surface ridges around (all or) most of the surface of the sperm. Primary spermatocytes in the prophase of the first meiotic division have synaptonemal complex(es), and are rich in mitochondria. In early spermiogenesis, mitochondria are arranged around the surface of the nucleus, a dense layer appears at one pole of the nucleus, close to an apposed dense layer at the cell membrane in which a row of microtubules develops. The intercentriolar (= central) body develops close to the nucleus. The fully developed intercentriolar body has a regular striation and is located perpendicular and close to the surface of the nucleus. Two flagella extend into the space surrounding the outgoing median process, their basal bodies are located perpendicular to the intercentriolar body and their cross-striated rootlets extend along the surface of the rounded nucleus. At a later stage, rootlets and flagella become more parallel with the intercentriolar body, the nucleus and the fused mitochondria migrate into the median process, and the flagella become incorporated into the median process (= sperm body). The outgrowing spermatozoa are connected to the cytoplasm of the cytophore by dense arching membranes. Finally, rootlets of flagella are resorbed and the spermatozoa are pinched off close to the basal bodies. Two species (Lobatostoma and Multicotyle) of the same family differ strongly in the type of spermiogenesis, although their mature sperm is of the same basic type, i.e. spermiogenesis is not necessarily more useful for phylogenetic considerations than sperm structure.  相似文献   

6.
ABSTRACT. A diplomonad flagellate, Spironucleus torosa n. sp. is described from Atlantic Cod Gadus morhua and haddock Melanogrammus aeglefinus . This is believed to be the 1st confirmed report of Spironucleus from a marine fish. Organisms swimming in the rectal lumen were broadly pyriform to elongate, and measured 10.5–18.6 μm long and 3.2–13.3 μm wide; other elongate organisms were attached to the rectal epithelium, via apical extensions appearing continuous with the microvilli. The posterior end of the body was extended into a caudal projection, on either side of which was a posteriolateral ring-shaped protrusion or torus, with a recurrent flagellum emerging from its centre. A symmetrical system of microtubules and lamellae, forming a "V" in protargol impregnated specimens, supported the flanges of the body surrounding the tori, the tori themselves and the caudal projection. Supranuclear microtubules were an inverted V to U shape in transverse section, and an electron dense band accompanied the cytostomes. Lightly staining homogenous cytoplasm was usually present in the anterior part of the body, the remainder being highly vacuolated with numerous dark granules. In swimming organisms, rough endoplasmic reticulum (RER) was present around the nuclei and cytostomes, and bacteria were occasionally seen in the cytoplasm. In "attached" organisms, RER was reduced, and bacteria were absent. Hexamita salmonis Moore from Salvelinus fontinalis was studied by light and scanning electron microscopy for comparison; its cytoplasm was not highly vacuolated. The two recurrent flagella emerged close together from the blunt posterior end of the body.  相似文献   

7.
A diplomonad flagellate, Spironucleus torosa n. sp. is described from Atlantic Cod Gadus morhua and haddock Melanogrammus aeglefinus. This is believed to be the 1st confirmed report of Spironucleus from a marine fish. Organisms swimming in the rectal lumen were broadly pyriform to elongate, and measured 10.5-18.6 microns long and 3.2-13.3 microns wide; other elongate organisms were attached to the rectal epithelium, via apical extensions appearing continuous with the microvilli. The posterior end of the body was extended into a caudal projection, on either side of which was a posteriolateral ring-shaped protrusion or torus, with a recurrent flagellum emerging from its centre. A symmetrical system of microtubules and lamellae, forming a "V" in protargol impregnated specimens, supported the flanges of the body surrounding the tori, the tori themselves and the caudal projection. Supranuclear microtubules were an inverted V to U shape in transverse section, and an electron dense band accompanied the cytostomes. Lightly staining homogenous cytoplasm was usually present in the anterior part of the body, the remainder being highly vacuolated with numerous dark granules. In swimming organisms, rough endoplasmic reticulum (RER) was present around the nuclei and cytostomes, and bacteria were occasionally seen in the cytoplasm. In "attached" organisms, RER was reduced, and bacteria were absent. Hexamita salmonis Moore from Salvelinus fontinalis was studied by light and scanning electron microscopy for comparison; its cytoplasm was not highly vacuolated. The two recurrent flagella emerged close together from the blunt posterior end of the body.  相似文献   

8.
THE FINE STRUCTURE OF GIARDIA MURIS   总被引:10,自引:1,他引:9       下载免费PDF全文
Giardia is a noninvasive intestinal zooflagellate. This electron microscope study demonstrates the fine structure of the trophozoite of Giardia muris in the lumen of the duodenum of the mouse as it appears after combined glutaraldehyde and acrolein fixation and osmium tetroxide postfixation. Giardia muris is of teardrop shape, rounded anteriorly, with a convex dorsal surface and a concave ventral one. The anterior two-thirds of the ventral surface is modified to form an adhesive disc. The adhesive disc is divided into 2 lobes whose medial surfaces form the median groove. The marginal grooves are the spaces between the lateral crests of the adhesive disc and a protruding portion of the peripheral cytoplasm. The organism has 2 nuclei, 1 dorsal to each lobe of the adhesive disc. Between the anterior poles of the nuclei, basal bodies give rise to 8 paired flagella. The median body, unique to Giardia, is situated between the posterior poles of the nuclei. The cytoplasm contains 300-A granules that resemble particulate glycogen, 150- to 200-A granules that resemble ribosomes, and fusiform clefts. The dorsal portion of the cell periphery is occupied by a linear array of flattened vacuoles, some of which contain clusters of dense particles. The ventrolateral cytoplasm is composed of regularly packed coarse and fine filaments which extend as a striated flange around the adhesive disc. The adhesive disc is composed of a layer of microtubules which are joined to the cytoplasm by regularly spaced fibrous ribbons. The plasma membrane covers the ventral and lateral surfaces of the disc. The median body consists of an oval aggregate of curved microtubules. Microtubules extend ventrally from the median body to lie alongside the caudal flagella. The intracytoplasmic portions of the caudal, lateral, and anterior flagella course considerable distances, accompanied by hollow filaments adjacent to their outer doublets. The intracytoplasmic portions of the anterior flagella are accompanied also by finely granular rodlike bodies. No structures identifiable as mitochondria, smooth endoplasmic reticulum, the Golgi complex, lysosomes, or axostyles are recognized.  相似文献   

9.
Ultrastructure of the motile zoospore has been investigated in Oedocladium catolinianum & Hoffman. An unwalled zoospore is usually produced from the contents of a terminal vegetative cell and consists of two principal regions: a small anterior dome and a larger body region; a ring of flagella marks the juncture of these two areas. Chloroplast inclusions consist of thylakoids, mature and incipient pyrenoids, starch and striated microtubules; no eyespot has been observed. Zoospores appear to possess permanent contractile vacuoles with numerous accessory vacuoles, coated vesicles and occasionally coated tubules. The cytoplasm of the dome contains numerous mitochondria ER and golgi bodies, as well as two distinct types of vesicles. The first contains an electron-dense; granular core and is surrounded by a loose, sinuate membrane. The second vesicle is electron-opaque and is found at the apex of the dome: it contains mucopolysaccharides employed during zoospore adhesion. A complex flagellar apparatus encircles the lower region of the dome. It consists of ca. 30–65 flagella, a ring-shaped fibrous band, flagella roots and additional supporting material. The flagella and roots alternate with one another beneath the fibrous band. The compound flagellar roots consist of two superimposed components: an outer ribbon-like unit composed of three microtubular elements and a single striated inner component. A band of support material lies beneath the proximal end of the basal bodies. It is a continuous fibrous band, although it often appears as three distinct, repetitive units.  相似文献   

10.
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm.The mature spermatozoon presents two axonemes of the 9 + ‘1’ trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.  相似文献   

11.
The ultrastructure of the vas deferens, testes, spermatogenesis and spermatozoa of Gyrocotyle urna and G. parvispinosa is described. The vas deferens is ciliated and syncytial. Within the testes primary spermatocytes arise from the primary spermatogonia by incomplete mitotic divisions; the primary spermatocytes undergo two meiotic divisions leading to spermatids. In early spermatids microtubules are formed at the cell periphery. Later the spermatozoal cytoplasm (the ‘middle-piece’) grows out and the two spermatozoal flagella with their typical 9 + ‘1’ axonemes are formed. During ciliogenesis the flagella are at an angle of about 60° to the axis of the middle-piece. The flagella are inserted into basal bodies terminating in striated rootlets. Subsequently, the nucleus and isolated mitochondria migrate into the central axis. The angle between the flagella and the axis decreases; the flagella are incorporated to form the spermatozoon. In mature spermatozoa no basal body or rootlet elements were found. The phylogeny of parasitic Platyhelminthes is discussed with respect to the evolution of spermatozoa. The reduction of the acrosinoid granules which are found in spermatozoa of free-living Platyhelminthes and the incorporation of the spermatozoal flagella into the sperm body constitute autapomorphies of the Neodermata (the parasitic Platyhelminthes). Included in the Cestoda because of several common derived characters, Amphilinidea and Gyrocotylidea are the only cestodes with spermatozoa containing mitochondria. Their absence in Cestoidea—all taxa with a six-hooked larva and other characteristics—is an autapomorphy of this group.  相似文献   

12.
The morphology of Mastigamoeba aspera, a type species of the genus Mastigamoeba Schulze, 1875, has been investigated at the light- and electron-microscopical level. Motile individuals are oval or peach-shaped. Motile flagella is situated at the anterior end of uninucleate cells. During locomotion, the surface of mastigamoebes forms many conical or finger-shaped hyaline pseudopodia, wereas bulbous uroid is often formed at the posterior end of the cell. Micropopulations of M. aspera consist of uninucleate flagellate forms as well as multinucleate aflagellate ones. There is a thick layer ofglycocalix on the cell surface where many rod-shaped bacterial ectobionts live. The nucleus is vesicular with spherical central nucleolus. The flagellar apparatus of M. aspera is connected with nucleus to form so called kariomastigont. A single kinetosome is associated with many radial microtubules and a lateral root. A distinct microtubule organization centre (MTOC) is situated at the basal part of the kinetosome. Microtubules of the nuclear cone are connected with the MTOC. This microtubules take part in the formation of kariomastigont. The axoneme has a standart set of microtubules 9(2)+2. Digestive vacuoles are the main component of the cytoplasm of M. aspera. Beside, many light-difracted granules and glycogen bodies were found in the cells. Mitochondria, dictyosomes of the Golgi apparatus and microbodies were not revealed in the cytoplasm of M. aspera.  相似文献   

13.
R. A. Andersen 《Protoplasma》1985,128(2-3):94-106
Summary Flagellated vegetative cells of the colonial golden algaSynura uvella Ehr, were examined using serial sections. The two flagella are nearly parallel as they emerge from a flagellar pit near the apex of the cell. The photoreceptor is restricted to swellings on the flagella in the region where they pass through the apical pore in the scale case and the swellings are not associated with the cell membrane or an eyespot. A unique ring-like structure surrounds the axonemes of both flagella at a level just above the transitional helix. The basal bodies are interconnected by three striated, fibrous bands. Four short (<100 nm) microtubules lie between the basal bodies at their proximal ends. Two rhizoplasts extend down from the basal bodies and separate into numerous fine striated bands which lie over the nucleus. Three- and four-membered microtubular roots arise from the rhizoplasts and extend apically together. As the roots reach the cell anterior, the three-membered root bends and curves clockwise to form a large loop around the flagella; the four-membered root bends anticlockwise and terminates under the distal end of the three-membered root as it completes the loop. There are four absolute orientations, termed Types 1–4, in which the flagellar apparatus can occur. With each orientation type the positions of the Golgi body, nucleus, rhizoplasts, chloroplasts and microtubular roots change with respect to the flagella, basal bodies and photoreceptor. Two new basal bodies appear in pre-division cells, and three short microtubules appear in a dense substance adjacent to each new basal body. Based upon the positions of new pre-division basal bodies, a hypothesis is proposed to explain why there are four orientations and how they are maintained through successive cell divisions.  相似文献   

14.
Telotrophic ovarioles of scale insects are subdivided into tropharia (=trophic chambers) and vitellaria that contain single developing oocytes. Tropharium encloses trophocytes (=nurse cells) and arrested oocytes. The central area of the tropharium, termed the trophic core, is devoid of cells. Both trophocytes and oocytes are connected to the trophic core: trophocytes by cytoplasmic processes, oocytes by means of nutritive cords. The trophic core, processes and nutritive cords are filled with bundles of microtubules. The trophocytes contain large lobated nuclei with giant nucleoli. Fluorescent labelling with DAPI has shown that trophocyte nuclei are characterized by high contents of DNA. In the cortical cytoplasm of trophocytes, numerous microfilaments are present. The developing oocyte is surrounded by a simple follicular epithelium. The cortical cytoplasm of follicular cells contains numerous microtubules and microfilaments.  相似文献   

15.
Summary The larval stage of Polypodium hydriforme is planuliform and parasitic inside the growing oocytes of acipenserid fishes. The larva has inverted germ layers and a special envelope, the trophamnion, surrounding it within the host oocyte. The trophamnion is a giant unicellular provisory structure derived from the second polar body and performing both protective and digestive functions, clearly a result of adaptation to parasitism. The trophamnion displays microvilli on its inner surface, and irregular protrusions anchoring it to the yolk on its outer surface. Its cytoplasm contains long nuclear fragments, ribosomes, mitochondria, microtubules, microfilaments, prominent Golgi bodies, primary lysosomes, and secondary lysosomes with partially digested inclusions.The cells of the larva proper are poorly differentiated. No muscular, glandular, neural, interstitial, or nematocyst-forming cells have been found. The entodermal (outer layer) cells bear flagella and contain rough endoplasmic reticulum; the ectodermal (inner layer) cells lack cilia and contain an apical layer of acid mucopolysaccharid granules. The cells of both layers contain mitochondria, microtubules, and Golgi bodies; their nuclei display large nucleoli with nucleolonema-like structure, decondensed chromatin, and some perichromatin granules. At their apical rims, the ectodermal cells form septate junctions; laterally, the cells of both layers form simple contacts and occasional interdigitations. The lateral surfaces of entodermal cells are strengthened by microtubules.  相似文献   

16.
The fine structure of zoosporogenesis, zoospore germination, and early gametophyte development in Cladophora surera Parodi et Cáceres were studied. Zoosporogenesis started with simultaneous meiosis in all nuclei of apical initial cells. The resulting haploid nuclei duplicated in turn by successive centric, closed mitoses. Then, each initial cell divided into two short zoosporangia. Numerous vacuoles appeared around each sporic nucleus. The delimitation of uninucleate zoosporocytes occurred by cytokinetic furrows produced by the coalescence of tiny, clear vesicles, without microtubules. Final shape of the zoospore resulted from gradual expulsion of vacuoles from the cell body. Mature biflagellate zoospores exhibited a conspicuous apical papilla containing fine granular globules, the basal apparatus, and a microtubular "umbrella" formed by numerous cortical microtubules that ran backward the length of the cell body. The chloroplast showed a conspicuous eyespot. The zoosporangial wall disorganized at the pore through which the zoospores were liberated. Zoospores settled on a substrate by their anterior papilla secreting an adhesive. Germination involved retraction of the apical papilla, loss of the "umbrella" microtubules and eyespot, and the lateral absorption of the entire flagellar apparatus, i.e. basal apparatus plus axoneme, into the cytoplasm. Early gametophyte development involved the synthesis of a thin, young cell wall, the development of outer peripheral vacuoles, the appearance of the marginal reticulate chloroplast, and the formation of the first central vacuoles derived from abundant endoplasmic reticulum. Close to the plasmalemma ran longitudinally oriented cortical microtubules. Eventually, the germling developed an achlorophylic, elongated rhizoidal portion.  相似文献   

17.
Cytokinesis in the coenocytic green alga Protosiphon botryoides (Kütz.) Klebs was studied with transmission electron microscopy. In vegetative cells, nuclei with associated basal bodies and dictyosomes are scattered throughout the cytoplasm. Mature cells may develop either multinucleate resting spores (coenocysts) or uninucleate zoospores. Cytokinesis may be preceded by contraction of the protoplast due to the disintegration of vacuoles that are present in larger, siphonous cells. The formation of coenocysts in ageing, siphonous cells, is signalled by cleavage of the chloroplast and the development of arrays of phycoplast microtubules in one or more transversely oriented planes through the cell. Nuclei with associated basal apparatuses stay dispersed throughout the cytoplasm; the basal bodies apparently are not involved in organization of the phycoplast. The plasma membrane invaginates, resulting in a centripetal cleavage of the protoplast into two or more multinucleate daughter protoplasts. Simultaneously, wall material is deposited along the outside of the daughter protoplasts by dictyosome-derived vesicles, and finally two or more thick-walled coenocysts are formed. The formation of zoospores, on the other hand, is signalled by clustering of the nuclei in one or more groups depending on the shape of the mother cell. The nuclei become arranged with the associated basal apparatuses facing toward the center of the cluster. Bundles of phycoplast microtubules develop between the nuclei, radiating from the center of a cluster toward the plasma membrane; basal apparatuses or associated structures apparently are involved in organization of the phycoplast. Cleavage furrows grow out centrifugally along these bundles of micro-tubules, fed by dictyosome-derived vesicles. No wall material is deposited. An additional mitotic division occurs during cleavage, and finally numerous uninucleate, wall-less, biflagellate zoospores are formed. The ultrastructural features of the two different types of cytoplasmic cleavage associated with two different types of daughter cells have not previously been reported for chlorophycean algae.  相似文献   

18.
ABSTRACT. Mitosis and cytokinesis in Katablepharis ovalis , a colorless flagellate, was investigated. Two new flagella are produced prior to prophase, resulting in a motile quadriflagellate cell during mitosis. the inner array of microtubules of the feeding apparatus disappears before prophase begins. the nuclear envelope disperses during prophase, apparently being converted into rough endoplasmic reticulum. the chromatin condenses and the nucleolus disperses with spindle microtubules appearing oriented perpendicular to the longitudinal axis of the cell. At metaphase, the chromatin is condensed as a single disc-shaped mass and rough endoplasmic reticulum flanks the chromatin mass on each side. Groups of spindle microtubules pass through tunnels in the rough endoplasmic reticulum and through electron-translucent areas of the chromatin. the spindle microtubules end at a number of minipoles in the cytoplasm. Vesicles, ribosomes, mitochondria and endoplasmic reticulum migrate among the spindle microtubules. There is no polar body or any electrondense area associated with the spindle poles. the basal bodies of the flagella remain attached to the axonemes and do not participate in mitosis. In anaphase, the chromatin separates and migrates to the poles. During telophase, the nuclear envelope reforms from the rough endoplasmic reticulum and the nucleoli reappear. the spindle microtubules are persistent during telophase. Cytokinesis occurs by longitudinal fission, starting at the anterior end and progressing posteriorly. Cytokinesis may be driven by elongation of the spindle microtubules since there is no visible structure associated with the furrowing.  相似文献   

19.
Spermiogenesis in Diplodiscus subclavatus begins with the formation of the zone of differentiation presenting two centrioles associated with striated roots and an intercentriolar body. The latter presents seven electron-dense layers with a fine central plate and three plates on both sides. The external pair of these electron-dense layers is formed by a granular row. Each centriole develops into a free flagellum, both of them growing orthogonally in relation to the median cytoplasmic process. After the flagellar rotation and before the proximodistal fusion of both flagella with the median cytoplasmic process four attachment zones were already observed in several cross-sections indicating the area of fusion. Spinelike bodies are also observed in the differentiation zone before the fusion of flagella. Finally, the constriction of the ring of arched membranes gives rise to the young spermatozoon that detaches from the residual cytoplasm. The mature spermatozoon of D. subclavatus shows all the classical characters observed in Digenea spermatozoa such as two axonemes of different length of the 9+"1" trepaxonematan pattern, nucleus, mitochondrion, two bundles of parallel cortical microtubules and granules of glycogen. However, some peculiarities such as a well-developed lateral expansion associated with external ornamentation of the plasma membrane and spinelike bodies combined with their area of appearance distinguish the ultrastructural organization of the sperm cells of D. subclavatus from those of other digeneans.  相似文献   

20.
The flagellar apparatus of Pyrobotrys has a number of features that are typical of the Chlorophyceae, but others that are unusual for this class. The two flagella are inserted at the apex, but they extend to the side of the cell toward the outside of the colony, here designated as the ventral side. Four basal bodies are present, two of which extend into flagella. Four microtubular rootlets alternate between the functional and accessory basal bodies. In each cell, the two ventral rootlets are nearly parallel, but the dorsal rootlets are more widely divergent. The rootlets alternate between two and four microtubules each. A striated distal fiber connects the two functional basal bodies in the plane of the flagella. Two additional, apparently nonstriated, fibers connect the basal bodies proximal to the distal fiber. Another striated fiber is associated with each four-membered rootlet near its insertion into the flagellar apparatus. A fine periodic component is associated with each two-membered rootlet. A rhizoplast-like structure extends into the cell from each of the functional basal bodies. The arrangement of these components does not reflect the 180° rotational symmetry that is usually present in the Chlorophyceae, but appears to be derived from a more symmetrical ancestor. It is suggested that the form of the flagellar apparatus is associated with the unusual colony structure of Pyrobotrys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号