首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
The yeasts Candida utilis and Hansenula polymorpha were able to grow in media containing choline or ethanolamine as the sole nitrogen source. During growth in the presence of these substrates, large peroxisomes developed in the cells, and extracts of choline-grown C. utilis cells contained increased levels of amine oxidase and catalase. Incubation of whole cells with choline in the presence of the amine oxidase inhibitor aminoacetonitrile led to excretion of dimethylamine and methylamine. Cytochemical experiments in which spheroplasts prepared from choline-grown cells were incubated with CeCl3 and choline, trimethylamine, dimethylamine or methylamine revealed positively stained peroxisomes, whereas in the presence of 1 mM aminoacetonitrile staining was not observed. This indicated that choline was degraded via methylated amines and that peroxisomes played a role in its metabolism. A similar involvement of peroxisomes in choline degradation was observed in H. polymorpha. Cell-free extracts of ethanolamine-grown C. utilis and H. polymorpha also contained increased levels of amine oxidase and catalase. Ethanolamine was oxidized by cell-free extracts of both organisms after growth in the presence of ethanolamine or choline. Incubation of spheroplasts of ethanolamine-or choline-grown C. utilis with CeCl3 and ethanolamine resulted in positively stained peroxisomes. In this organism peroxisomes were therefore also involved in ethanolamine degradation.K. B. Zwart was supported by the Foundation for Fundamental Biological Research (BION) which is subsidized by the Netherlands Organization for the Advancement of Pure Research (ZWO).  相似文献   

2.
The preparation and chemical poperties of the cell walls of Leptospira biflexa Urawa and Treponema pallidum Reiter are described. Both cell walls are composed mainly of polysaccharides and peptidoglycans. The data of chemical analysis indicate that the cell wall of L. biflexa Urawa contains rhamnose, arabinose, xylose, mannose, galactose, glucose and unidentified sugars as neutral sugars, and alanine, glutamic acid, α,ε-diaminopimelic acid, glucosamine and muramic acid as major amino acids and amino sugars. As major chemical constituents of the cell wall of T. pallidum Reiter, rhamnose, arabinose, xylose, mannose, galactose, glucose, alanine, glutamic acid, ornithine, glycine, glucosamine and muramic acid have been detected. The chemical properties of protein and polysaccharide fractions prepared from the cells of T. pallidum Reiter were also partially examined.  相似文献   

3.
We examined the change of the composition of the cell wall polysaccharides prepared from cells of the salt-tolerant yeast Zygosaccharomyces rouxii grown in two media containing 20% NaCl and 0% NaCl. Comparative analysis of their walls showed that the wall obtained from salt-free medium had greater quantities of alkali-insoluble fraction and smaller quantities of mannan than the walls obtained from 20% NaCl medium. The alkali-insoluble fractions from the cell walls obtained from salt-free medium contained a large amount of glucosamine and a smaller amount of linear β-1,3-glucosidic linkage than the fractions from the cell walls obtained from 20% NaCl medium. Structural analyses showed that the mannans from each cell wall contained an α-1,6-mannbsidic linked backbone to which single mannose and mannobiose units were connected as side chains by α-1,2-mannosidic linkages. However, when cells were grown in the presence of 20% NaCl, the side chains of the mannans consisting of a mannobiose unit were largely reduced.

These results indicated that the structure of alkali-insoluble glucan and mannan were greatly affected by the presence of NaCl in the final medium.  相似文献   

4.
The metabolism of Cephalosporium acremonium grown in a complex medium supplemented with DL-methionine or inorganic sulfate was studied. More growth occurred in a sulfate medium than in a methionine medium. Methionine-grown cells had an increased rate of respiration, a higher rate of catabolism with acetate and glucose as substrate, and higher specific activities of certain respiratory enzymes than sulfate-grown cells. Labeled acetate and glucose were assimilated at a faster rate by methionine-grown cells than sulfate-grown cells. Taurine, cystathionine, and small quantities of four acidic compounds were present in the amino acid pool of methionine-grown cells, but they were not detected in the pool of sulfate-grown cells. The differences in metabolic activity of sulfate and methionine-grown cells are discussed in regard to cephalosporin C synthesis.  相似文献   

5.
The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b 554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b 556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth. Received: 21 August 1996 / Accepted: 24 October 1996  相似文献   

6.
Chemically defined minimal media for the cultivation of high temperature tolerant and pathogenic Naegleria spp. have been developed. A defined minimal medium, identical for N. fowleri and N. lovaniensis, consists of eleven amino acids (arginine, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, threonine, tryptophan, and valine), six vitamins (biotin, folic acid, hemin, pyridoxal, riboflavin, and thiamine), guanosine, glucose, salts, and metals. Three of the four strains of Naegleria fowleri tested (ATCCr?30100, ATCCr?30863, and ATCCr?30896) and two strains of N. lovaniensis (ATCCr?30467 and ATCCr?30569) could be cultured beyond ten subcultures on this medium. For N. fowleri ATCCr?30894 diaminopimelic acid, or lysine, or glutamic acid was also required. Mean generation time was reduced and population density increased for all strains with the introduction of glutamic acid. Glucose could be eliminated from the minimal medium only if glutamic acid was present. Without glucose, mean generation time increased and population density decreased. Diaminopimelic acid could substitute for lysine for ATCCr?30894, indicating that Naegleria species may synthesize their lysine via the DAP pathway. Naegleria fowleri ATCCr?30100 could be adapted to grow without serine or glycine in the minimal medium with glutamic acid added, but with mean generation time increased and population density decreased. The strain could be grown in the minimal medium in the absence of metals. For growth of N. australiensis ATCCr?30958, modification of the medium by increasing metals ten-fold, substituting guanine for guanosine and adding lysine, glutamic acid, and six vitamins (p-aminobenzoic acid, choline chloride, inositol, vitamin B12, nicotinamide, and Ca pantothenate) was required.  相似文献   

7.
Choline-containing teichoic acid seems to be essential for the adsorption of bacteriophage Dp-1 to pneumococci. This conclusion is based on the following observations: In contrast to pneumococci grown in choline-containing medium, cells grown in medium containing ethanolamine or other submethylated aminoalcohols instead of choline were found to be resistant to infection by Dp-1. Live choline-grown bacteria and heat- or UV-inactivated cells and purified cell walls prepared from these cells were capable of adsorbing phage Dp-1; ethanolamine-grown pneumococci or cell wall preparations were unable to do so. Adsorption of Dp-1 to choline-containing cell walls was competitively inhibited by phosphorylcholine and by several choline-containing soluble cell surface components, such as the Forssman antigen and the teichoic acid-glycan complexes formed by autolytic cell wall degradation. Cell walls prepared from pneumococci grown in ethanolamine or phosphorylethanolamine were inactive. Electron microscopic studies with pneumococci that had segments of choline-containing cell wall material amid ethanolamine-containing regions indicated that the Dp-1 phage particles adsorbed exclusively to the choline-containing surface areas. We suggest that the choline residues of the pneumococcal teichoic acid are essential components of the Dp-1 phage receptors in this bacterium.  相似文献   

8.
Microsomal fractions prepared from mouse lymphoma L5178Y grown in culture incorporated choline into cellular phospholipids when either choline or CDP-choline was used as the labeled precursor. Incorporation of label from CDP-choline was stimulated by Mg2+ and inhibited by Ca2+. In contrast, incorporation of label from choline required Ca2+ and was inhibited by EGTA. The characteristics of incorporation indicated that L5178Y cells have the capacity to utilize choline for phospholipid synthesis through both the Kennedy pathway and Ca2+-stimulated choline exchange.  相似文献   

9.
Six calcareous and alluvial soil profiles differing in their texture, CaCO3 and salinity were chosen from west and middle Nile Delta for the present study. The 1st and 2nd profiles from Borg El-Arab area were sandy loam in texture and > 30% CaCO3, while the 3rd and 4th profiles (from Nubaria area) were sandy clay loam and < 30% CaCO3. The 2nd and 4th profiles were taken from cultivated area with maize. The 5th profile from Epshan area was non-saline clay alluvial soil and the 6th from El-Khamsen was saline clay alluvial soil. The relation between soil moisture content (W%) and water vapour pressure (P/P o) was established for the mentioned soils. Data showed that the specific surface area (S) values were 34–53 and 44–60 m2/g for calcareous soils of Borg El-Arab and Nubaria areas, 206–219 and 206–249 m2/g for non-saline and saline clay alluvial soils of Epshan and El-Khamsen areas, respectively. The corresponding values of the external specific surface area (S e) were 16–21, 14–22, 72–86 and 92–112 m2/g. Submitting W m+W me as an adsorption boundary of moisture films (W c) (where W m is mono-adsorbed layer of water vapour on soil particles and W me is the external mono-adsorbed layer), the maximum water adsorption capacity (W a) was found to be W c + W me or W m + 2W me. It was ranged from 1.88 to 2.70%, 1.97 to 2.95%, 9.70–10.70% and 10.80 to 13.12% while the maximum hygroscopic water (M H) values were 2.43–3.78%, 2.91–4.65%, 16–17% and 18.30–21.9% for the studied soil profiles respectively. The residual moisture content (θ r) at pF 7 and P/P o = 0 was ranged from 0.0005–0.0010%, 0.0007–0.0019% and 0.0043–0.0048% in Borg El-Arab, Nubaria and Epshan soil profiles, respectively. The inter-relations between the surface area and the hygroscopic moisture parameters of the soils under investigation were as follows Calcareous soils; W m = 0.40 M H, W c = 0.55 M H, W a = 0.70 M H, S = 14 M H Non-saline soil; W m = 0.35 M H, W c = 0.49 M H, W a = 0.63 M H, S = 13 M H Saline soil; W m = 031 M H, W c = 0.45 M H, W a = 0.59 M H, S = 12 M H These relations give possibility to deduce the soil moisture adsorption capacities and specific surface area via maximum hygroscopic water, which can be obtained through the experimental determination of water vapor adsorption isotherms.  相似文献   

10.
SYNOPSIS. Five- to 6-day-old resting cells of Ochromonas malhamensis were incubated at pH 6.5 with glucose and appropriate C14 precursors of the methyl groups of phospholipid-choline. Under the experimental conditions L-methionine-C14H3 was the most efficient source of choline-methyl groups, followed by formate-C14, formaldehyde-C14 and DL-serine-3-C14, respectively. Glycine-2-C14 was not incorporated into choline. Both L-methionine-C14H3 and formate-C14 served as precursors for the methyl groups of monomethylethanolamine, dimethylethanolamine and choline. Addition of non-radio-active L-methionine depressed the incorporation of formate-C14 into choline-methyl groups by 50%. The results support the hypothesis that methionine can be the source of all 3 methyl groups of choline, and that formate is probably converted to the methyl group of methionine before transmethylation to choline. However, an alternate pathway from single-carbon sources cannot be excluded.  相似文献   

11.
Abstract— The de novo synthesis of phosphatidylcholine and phosphatidylethanolamine in isolated neuronal and glial cells from adult rabbit brain cortex was investigated in vitro, using labelled phosphorylcholine (phosphorylethanolamine) or cytidine-5′-phosphate choline (cytidine-5′-phosphate ethanolamine), as lipid precursors. Synthesis of phospholipid from phosphorylcholine and phosphorylethanolamine in both fractions was extremely low when compared to that derived from the corresponding cytidine nucleotides. The neuronal cell-enriched fraction was found to possess a much higher rate of synthesis of both lipids from all precursors. Neuronal/glial ratios of about 5–9 were found for the synthesis of phosphatidylcholine and phosphatidylethanolamine from cytidine-5′-phosphate choline and cytidine-5′-phosphate ethanolamine, respectively. Several kinetic properties of the choline-phosphotransferase (EC 2.7.8.2) and ethanolaminephosphotransferase (EC 2.7.8.1) were found to be similar both in neurons and in glia (e.g. Km of cytidine-5′-phosphate ethanolamine, Km of diacyl glycerol, pH optimum, need for divalent cations), but the Km value for cytidine-5′-phosphate choline in glial cells was much lower (2.3 × 10?4m ) than in neurons (1 × 10?3m ). The Kmfor cytidine-5′-phosphate ethanolamine in both cells was much lower than in whole brain microsomes. It is concluded that the cytidine-dependent enzymic system for phosphatidylcholine and phosphatidylethanolamine synthesis is concentrated mostly in the neuronal cells, as compared to glia.  相似文献   

12.
Two strains of Rhizobia isolated from nodules of Vicia faba var. major and one strain isolated from nodules of Cicer arietinum L. were characterized for salt resistance. The presence of 1 mM glycine betaine or choline in a minimal medium with added NaCl had a beneficial role on the growth of the three strains. Both molecules were found to be taken up by cells obtained at low osmolarity, and whereas glycine betaine uptake activity was stimulated significantly in cells grown in the presence of 0.15 M NaCl, choline uptake activity was strongly inhibited by salt in all tested strains. However, in cells grown with exogenous choline, the uptake inhibition exerted by salt was relieved, mainly in the strain isolated from nodules of C. arietinum L. On the basis of kinetics determinations, in control cells as well as in salt-stressed cells, only high-affinity activities were observed for glycine betaine and choline (apparent K m s between 3 and 18 μM). Periplasmic proteins that bound glycine betaine or choline were identified. In nondenaturing conditions, these proteins extracted from the various strains showed different electrophoretic mobility with always a less negative entire charge than the analogous proteins from Rhizobium meliloti. Received: 29 July 1996 / Accepted: 10 September 1996  相似文献   

13.
Cell walls of alkalophilic Bacillus No. C-125 and No. A-59 which grew in different pH conditions were prepared and analyzed. In the walls from cells grown at pH 10.3 (pH 10.3-cell wall) and the walls from cells grown at pH 7.5 (pH 7.5-cell wall) of the alkalophilic bacilli, the contents of neutral sugar and phosphorus were low as compared with those of Bacillus subtilis 6160, while uronic acid and amino acids were abundant. The uronic acid content of the pH 10.3-cell walls was higher than that of the pH 7.5-cell walls in both strains. The insoluble fraction (peptidoglycan) of cell walls of Bacillus No. C-125 consisted of muramic acid, glutamic acid, alanine, diaminopimelic acid and glucosamine as in neutrophilic bacilli. In the TCA soluble fraction of pH 10.3-cell walls of Bacillus No. C-125, uronic acid was a polymer of glucuronic acid containing a small amount of hexosamine, and 2/3 of the ninhydrin positive material was glutamic acid which was derived mainly from poly γ-L-glutamic acid.  相似文献   

14.
The uptake of 3H-labeled choline by a suspension of isolated type II epithelial cells from rat lung has been studied in a Ringer medium. Uptake was linear for 4 min at both 0.1 μm and 5.0 μm medium choline; at 5 μm, only 10% of the label was recovered in a lipid fraction. Further experiments were conducted at the low concentration (0.1 μm), permitting characterization of the properties of high-affinity systems. Three fractions of choline uptake were detected: (i) a sodium-dependent system that was totally inhibited by hemicholinium-3 (HC-3); (ii) a sodium-independent uptake, when Na+ was replaced by Li+, K+ or Mg2+, inhibited by HC-3; (iii) a residual portion persisting in the absence of Na+ and unaffected by HC-3. Choline uptake was sigmoidally related to the medium Na+ concentration. Kinetic properties of the uptake of 0.1 μm 3H-choline in the presence and absence of medium Na+ were examined in two ways. (a) Inhibition by increasing concentrations of unlabeled choline (0.5–100 μm) was consistent with the presence of two Michaelis-Menten-type systems in the presence of Na+; a Na+-dependent portion (a mean of 0.52 of the total) had a K m for choline of 1.5 μm while K m in the absence of Na+ (Li+ substituting) was 18.6 μm. (b) Inhibition by HC-3 (0.3–300 μm) gave Ki values of 1.7 μm and 5.0 μm HC-3 for the Na+-dependent and -independent fractions. The apparent K m of the Na+-dependent uptake is lower than that reported previously for lung-derived cells and is in the range of the K m values reported for high-affinity, Na+-dependent choline uptake by neuronal cells. Received: 18 February 1997/Revised: 7 December 1997  相似文献   

15.
Evidence is presented about the dual location of NADPH-cytochrome c reductase in mitochondrial outer membranes as well as in microsomes, from pig heart.A high specific activity, was found in both fractions, even after their purification by washing, digitonin treatments, or passages on sucrose gradients. A large fraction of the total activity was associated with both mitochondria and microsomes.Mitochondrial outer membrane differs from microsomes by a low choline phosphotransferase activity and the absence of cytochrome P-450.The properties of mitochondrial and microsomal rotenone-insensitive NADH- and NADPH-cytochrome c reductases were studied. In microsomes, both activities have the same optimum pH (8.5) ; in contrast, in mitochondria they have a different one. The Km-NADPH were always much higher than those for NADH. In mitochondria the Km for NAD(P)H were dependent on cytochrome c concentration.The results show that the rotenone-insensitive NADH- and NADPH-cytochrome c reductases of mitochondria and microsomes have quite different behavior and do not appear to be supported by the same enzyme.  相似文献   

16.
Kestutis J. Tautvydas 《Planta》1978,140(3):213-220
Mucilage and colony walls of E. californica were separated from the cells by homogenization, filtration, and differential centrifugation. The chief components of the mucilage were a high-molecular-weight (MW) hydroxyproline-rich glycoprotein and a very high-MW polysaccharide in the proportions 47% and 34%, respectively. The glycoprotein consisted of galactose, arabinose, xylose and an unidentified neutral sugar; and the amino acids cysteine, aspartic acid, glutamic acid, arginine, lysine, glycine, serine, methionine, histidine, alanine, proline, hydroxyproline, tyrosine, threonine, valine, phenylalanine, isoleucine and leucine. The principal sugar of the polysaccharide was mannose. The chemical composition of the colony walls was essentially the same as that of the glycoprotein in the mucilage except that there was almost twice as much hydroxyproline. Also the protein content of the colony walls was 34% while that of the glycoprotein in the mucilage was 22%. No glucose, sugar acids or nucleic acids were found in the extracellular matrix.  相似文献   

17.
Slices were prepared from rat forebrains and the incorporation of [3H]mannose and [35S]methionine into proteins and glycoproteins determined. The incorporation of methionine continued to increase for up to 8 hours whereas mannose incorporation was maximal between 2 and 4 hours and declined thereafter. Glycopeptides prepared by pronase digestion of [3H]mannose-labeled glycoproteins were digested with endoglucosaminidase H (endo H) and analysed by gel filtration. The major endo H-sensitive oligosaccharide eluted in a position similar to standard Man8GlcNAc. In the presence of castanospermine, which inhibits glucosidase I, the first enzymatic step in the processing of N-linked oligosaccharides, a new endo H-sensitive glycan similar in size to standard Glc3Man9GlcNAc2 accumulated. Synaptic membranes (SMs) were isolated from slices which had been incubated with either [3H]mannose or [35S]methionine in the presence and absence of castanospermine. In the presence of inhibitor the relative incorporation of [3H]mannose into high-mannose glycans of synaptic glycoproteins was increased. The incorporation of newly synthesized, [35S] methioninelabeled, Con A-binding glycoproteins into SMs was not affected by the addition of inhibitor. Many of the glycoproteins synthesized in the presence of castanospermine exhibited a decreased electrophoretic mobility indicative of the presence of altered oligosaccharide chains. The results indicate that changes in oligosaccharide composition produced by castanospermine had little effect on the subsequent transport and incorporation of glycoproteins into synaptic membranes.To whom to address reprint requests.  相似文献   

18.
Incubation of a rat liver total homogenate with radioactive choline and subsequent isolation of subcellular fractions, at different times, showed similar patterns of labeling. Incubation of microsomes, mitochondria and purified nuclei isolated from rat liver, showed that all fractions were able to incorporate the precursor into phosphatidyl choline. The specific activity was higher in mitochondria and increased in all cases with added supernatant. The addition of microsomes to mitochondria diminished the incorporation of label. Contamination of mitochondria by microsomes, was negligible as shown by undetectable amounts of cytochrome P450, while NADPH2 cytochrome c reductase showed a 10% contamination. A certain amount of radioactivity was incorporated in the absence of ATP and oxidizable substrates due to the presence of substrates and cofactors in the fraction and/or the supernatant. Labeled fractions reincubated with unlabeled choline, showed no loss of radioactivity, proving that incorporation was not due to simple exchange processes. It is concluded that although rat liver mitochondria can acquire part of their own provision of phosphatidyl choline by transference from microsomes, all organelles and specially mitochondria, can independently synthesize this phospholipid.  相似文献   

19.
Summary Swiss mouse 3T3 cells grown on microcarrier beads were superfused with electrolyte solution during continuous NMR analysis. Conventional31P and19F probes of intracellular pH (pH c ) were found to be impracticable. Cells were therefore superfused with 1 to 4mm 2-deoxyglucose, producing a large intracellular, pH-sensitive signal of 2-deoxyglucose phosphate (2DGP). The intracellular incorporation of 2DGP inhibited the Embden-Meyerhof pathway. However, intracellular ATP was at least in part retained and the cellular responsivity to changes in extracellular ionic composition and to the application of growth factors proved intact. Transient replacement of external Na+ with choline or K+ reversibly acidified the intracellular fluids. Quiescent cells and mitogenically stimulated cells displayed the same dependence of shifts in pH c on external Na+ concentration (c Na o ). pH c also depended on intracellular Na+ concentration (c Na o ). Increasingc Na c by withdrawing external K+ (thereby inhibiting the Na,K-pump) caused reversible intracellular acidification; subsequently reducingc Na o produced a larger acid shift in pH c than with external K+ present. Comparison of separate preparations indicated that pH c was higher in stimulated than in quiescent cells. Transient administration of mitogens also reversibly alkalinized quiescent cells studied continuously. This study documents the feasibility of monitoring pH c of Swiss mouse 3T3 cells using31P NMR analysis of 2DGP. The results support the concept of a Na/H antiport operative in these cells, both in quiescence and after mitogenic stimulation. The data document by an independent technique that cytoplasmic alkalinization is an early event in mitogenesis, and that full activity of the Embden-Meyerhof pathway is not required for the expression of this event.  相似文献   

20.
Summary A choline-requiring strain of Torulopsis pintolopesii when growing on choline-methyl-14C or choline-methyl-3H excretes the radioactivity incorporated in the first 24–48 h of incubation up to ca. 85–95% of the radioactivity added at the beginning of the incubation. The addition of non-radioactive methionine did not interfere with the uptake and excretion of radioactivity from choline-Me-14C. Radioactive methyl group of methionine previously incorporated by growing cells of T. pintolopesii on varying concentrations of choline was not excreted in appreciable amounts. No evidence was obtained for the oxidation of choline to betaine, degradation to trimethylamine, or net incorporation of labelled choline into lecithin. The occurrence of a new pathway for the utilization of choline in yeasts is suggested. The requirement of choline by T. pintolopesii is explained tentatively by the formation and excretion of a compound containing the carbon and hydrogen atoms from the methyl groups of choline and whose chemical structure still under study, may comprise a heteroside containing mannitol as the polyhydroxylated moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号