首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three repetitive sequence families from the sea urchin genome were studied, each defined by homology with a specific cloned probe one to a few hundred nucleotides long. Recombinant λ-sea urchin DNA libraries were screened with these probes, and individual recombinants were selected that include genomic members of these families. Restriction mapping, gel blot, and kinetic analyses were carried out to determine the organization of each repeat family. Sequence elements belonging to the first of the three repeat families were found to be embedded in longer repeat sequences. These repeat sequences frequently occur in small clusters. Members of the second repeat family are also found in a long repetitive sequence environment, but these repeats usually occur singly in any given region of the DNA. The sequences of the third repeat are only 200 to 300 nucleotides long, and are generally terminated by single copy DNA, though a few examples were found associated with other repeats. These three repeat sequence families constitute sets of homologous sequence elements that relate distant regions of the DNA.  相似文献   

2.
The nucleotide sequence of members of an alpha-repeat subfamily shared by human chromosomes 14 and 22 is presented. This subfamily is organized into a higher-order repeat unit composed of a tandem repetition of an ordered array of four related but distinct 340-bp repeat dimers. An analogous situation has been described for a related but distinct subfamily shared by chromosomes 13 and 21. These two subfamilies were further shown not to be present on the homologous chimpanzee chromosomes and therefore must have arisen by rearrangement of the human genome after separation of the two species. The sequence homology between the 13/21 and the 14/22 subfamilies is about 85%. The 14/22 subfamily represents the only major alphoid DNA species on these two chromosomes and is not present elsewhere in the human genome. Fluorescent in situ hybridizations show that sequences from the 13/21 and 14/22 subfamilies can be used as specific markers for their respective chromosomes.  相似文献   

3.
We molecularly cloned new families of site-specific repetitive DNA sequences from BglII- and EcoRI-digested genomic DNA of the Syrian hamster (Mesocricetus auratus, Cricetrinae, Rodentia) and characterized them by chromosome in situ hybridization and filter hybridization. They were classified into six different types of repetitive DNA sequence families according to chromosomal distribution and genome organization. The hybridization patterns of the sequences were consistent with the distribution of C-positive bands and/or Hoechst-stained heterochromatin. The centromeric major satellite DNA and sex chromosome-specific and telomeric region-specific repetitive sequences were conserved in the same genus (Mesocricetus) but divergent in different genera. The chromosome-2-specific sequence was conserved in two genera, Mesocricetus and Cricetulus, and a low copy number of repetitive sequences on the heterochromatic chromosome arms were conserved in the subfamily Cricetinae but not in the subfamily Calomyscinae. By contrast, the other type of repetitive sequences on the heterochromatic chromosome arms, which had sequence similarities to a LINE sequence of rodents, was conserved through the three subfamilies, Cricetinae, Calomyscinae and Murinae. The nucleotide divergence of the repetitive sequences of heterochromatin was well correlated with the phylogenetic relationships of the Cricetinae species, and each sequence has been independently amplified and diverged in the same genome.  相似文献   

4.
Cleavage of Vicia faba nuclear DNA with the restriction endonuclease BamHI yielded discrete size classes of 250, 850, 900, 990, 1 150, 1 500 and 1 750 bp of highly repetitive DNA. Each of these sequence families comprised about 3% of the total genomic DNA. Some sequence members from each sequence family were cloned in pBR322 and their primary structures determined. Computer analyses of nucleotide sequences suggested the existence of about 60 bp sequence periodicity within the repeating unit of the 990 bp sequence family, though the extent of homology among the surmised shorter subrepeat units was very low. With other BamHI sequence families, however, the data did not show any clear internal sequence periodicity. The repeat units of the 850 bp and 1 750 bp sequence families contained nucleotide sequences homologous to the 250 bp family sequence. No sequence relationship between or among other sequence families was observed. There was 13–25% sequence variation among 6 cloned members of the 250 bp family and probably also among those of other BamHI repeat families. DNA sequences homologous to these V. faba BamHI repeat families were detected in Pisum sativum DNA by Southern blot hybridization. Furthermore, very weak cross-hybridization was observed with plant DNAs from Phaseolus vulgaris, Triticum aestivum, Cucumis sativus and Trillium kamtschaticum.  相似文献   

5.
C A Fields  D L Grady  R K Moyzis 《Genomics》1992,13(2):431-436
Fifteen examples of the transposon-like human element (THE) LTR and thirteen examples of the MstII interspersed repeat are aligned to generate new consensus sequences for these human repetitive elements. The consensus sequences of these elements are very similar, indicating that they compose subfamilies of a single human interspersed repetitive sequence family. Members of this highly polymorphic repeat family have been mapped to at least 11 chromosomes. Seven examples of the THE internal sequence are also aligned to generate a new consensus sequence for this element. Estimates of the abundance of this repetitive sequence family, derived from both hybridization analysis and frequency of occurrence in GenBank, indicate that THE-LTR/MstII sequences are present every 100-3000 kb in human DNA. The widespread occurrence of members of this family makes them useful landmarks, like Alu, L1, and (GT)n repeats, for physical and genetic mapping of human DNA.  相似文献   

6.
WW Zhu  C Wang  J Jipp  L Ferguson  SN Lucas  MA Hicks  ME Glasner 《Biochemistry》2012,51(31):6171-6181
Understanding how enzyme specificity evolves will provide guiding principles for protein engineering and function prediction. The o-succinylbenzoate synthase (OSBS) family is an excellent model system for elucidating these principles because it has many highly divergent amino acid sequences that are <20% identical, and some members have evolved a second function. The OSBS family belongs to the enolase superfamily, members of which use a set of conserved residues to catalyze a wide variety of reactions. These residues are the only conserved residues in the OSBS family, so they are not sufficient to determine reaction specificity. Some enzymes in the OSBS family catalyze another reaction, N-succinylamino acid racemization (NSAR). NSARs cannot be segregated into a separate family because their sequences are highly similar to those of known OSBSs, and many of them have both OSBS and NSAR activities. To determine how such divergent enzymes can catalyze the same reaction and how NSAR activity evolved, we divided the OSBS family into subfamilies and compared the divergence of their active site residues. Correlating sequence conservation with the effects of mutations in Escherichia coli OSBS identified two nonconserved residues (R159 and G288) at which mutations decrease efficiency ≥200-fold. These residues are not conserved in the subfamily that includes NSAR enzymes. The OSBS/NSAR subfamily binds the substrate in a different orientation, eliminating selective pressure to retain arginine and glycine at these positions. This supports the hypothesis that specificity-determining residues have diverged in the OSBS family and provides insight into the sequence changes required for the evolution of NSAR activity.  相似文献   

7.
8.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   

9.
The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages.  相似文献   

10.
Chromosome-specific subfamilies within human alphoid repetitive DNA   总被引:21,自引:0,他引:21  
Nucleotide sequence data of about 20 X 10(3) base-pairs of the human tandemly repeated alphoid DNA are presented. The DNA sequences were determined from 45 clones containing EcoRI fragments of alphoid DNA isolated from total genomic DNA. Thirty of the clones contained a complete 340 base-pair dimer unit of the repeat. The remaining clones contained alphoid DNA with fragment lengths of 311, 296, 232, 170 and 108 base-pairs. The sequences obtained were compared with an average alphoid DNA sequence determined by Wu & Manuelidis (1980). The divergences ranged from 0.6 to 24.6% nucleotide changes for the first monomer and from 0 to 17.8% for the second monomer of the repeat. On the basis of identical nucleotide changes at corresponding positions, the individual repeat units could be shown to belong to one of several distinct subfamilies. The number of nucleotide changes defining a subfamily generally constitutes the majority of nucleotide changes found in a member of that subfamily. From an evaluation of the proportion of the total amount of alphoid DNA, which is represented by the clones studied, it is estimated that the number of subfamilies of this repeat may be equal to or exceed the number of chromosomes. The expected presence of only one or a few distinct subfamilies on individual chromosomes is supported by the study, also presented, of the nucleotide sequence of 17 cloned fragments of alphoid repetitive DNA from chromosome 7. These chromosome-specific repeats all contain the characteristic pattern of 36 common nucleotide changes that defines one of the subfamilies described. A unique restriction endonuclease (NlaIII) cleavage site present in this subfamily may be useful as a genetic marker of this chromosome. A family member of the interspersed Alu repetitive DNA was also isolated and sequenced. This Alu repeat has been inserted into the human alphoid repetitive DNA, in the same way as the insertion of an Alu repeat into the African green monkey alphoid DNA.  相似文献   

11.
12.
Phylogenetic hypotheses among Gadiformes fishes at the suborder, family, and subfamily levels are controversial. To address this problem, we analyze nuclear and mitochondrial DNA (mtDNA) sequences for the most extensive taxonomic sampling compiled to date, representing all of the recognized families and subfamilies in the order (except the monotypic family Lyconidae). Our study sampled 117 species from 46 genera, comprising around 20% of the species described for the order (more than 60% of all genera in the order) and produced 2740 bp of DNA sequence data for each species. Our analysis was successful in confirming the monophyly of Gadiformes and most of the proposed families for the order, but alternative hypotheses of sister-group relationships among families were poorly resolved. Our results are consistent with dividing Gadiformes into 12 families in three suborders, Muraenolepidoidei, Macrouroidei, and Gadoidei. Muraenolepidoidei contains the single family Muraenolepididae. The suborder Macrouroidei includes at least three families: Macrouridae, Macruronidae and Steindachneriidae. Macrouridae is deeply divided into two well-supported subfamilies: Macrourinae and Bathygadinae, suggesting that Bathygadinae may be ranked at the family level. The suborder Gadoidei includes the families: Merlucciidae, Melanonidae, Euclichthyidae, Gadidae, Ranicipitidae, and Bregmacerotidae. Additionally, Trachyrincinae could be ranked at family level including two subfamilies: Trachyrincinae and Macrouroidinae within Gadoidei. Further taxonomic sampling and sequencing efforts are needed in order to corroborate these relationships.  相似文献   

13.
We have identified and sequenced two members of a chicken middle repetitive DNA sequence family. By reassociation kinetics, members of this family (termed CRl) are estimated to be present in 1500-7000 copies per chicken haploid genome. The first family member sequenced (CRlUla) is located approximately 2 kb upstream from the previously cloned chicken Ul RNA gene. The second CRl sequence (CRl)Va) is located approximately 12 kb downstream from the 3' end of the chicken ovalbumin gene. The region of homology between these two sequences extends over a region of approximately 160 base pairs. In each case, the 160 base pair region is flanked by imperfect, but homologous, short direct repeats 10-15 base pairs in length. When the CRl sequences are compared with mammalian ubiquitous interspersed repetitive DNA sequences (human Alu and Mouse Bl families), several regions of extensive homology are evident. In addition, the short nucleotide sequence CAGCCTGG which is completely conserved in ubiquitous repetitive sequence families from several mammalian species is also conserved at a homologous position in the chicken sequences. These data imply that at least certain aspects of the sequence and structure of these interspersed repeats must predate the avian-mammalian divergence. It seems that the CRl family may possibly represent an avian counterpart of the mammalian ubiquitous repeats.  相似文献   

14.
The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolution. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome. However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.  相似文献   

15.
A comprehensive, structural and functional, in silico analysis of the medium-chain dehydrogenase/reductase (MDR) superfamily, including 583 proteins, was carried out by use of extensive database mining and the blastp program in an iterative manner to identify all known members of the superfamily. Based on phylogenetic, sequence, and functional similarities, the protein members of the MDR superfamily were classified into three different taxonomic categories: (a) subfamilies, consisting of a closed group containing a set of ideally orthologous proteins that perform the same function; (b) families, each comprising a cluster of monophyletic subfamilies that possess significant sequence identity among them and might share or not common substrates or mechanisms of reaction; and (c) macrofamilies, each comprising a cluster of monophyletic protein families with protein members from the three domains of life, which includes at least one subfamily member that displays activity related to a very ancient metabolic pathway. In this context, a superfamily is a group of homologous protein families (and/or macrofamilies) with monophyletic origin that shares at least a barely detectable sequence similarity, but showing the same 3D fold. The MDR superfamily encloses three macrofamilies, with eight families and 49 subfamilies. These subfamilies exhibit great functional diversity including noncatalytic members with different subcellular, phylogenetic, and species distributions. This results from constant enzymogenesis and proteinogenesis within each kingdom, and highlights the huge plasticity that MDR superfamily members possess. Thus, through evolution a great number of taxa-specific new functions were acquired by MDRs. The generation of new functions fulfilled by proteins, can be considered as the essence of protein evolution. The mechanisms of protein evolution inside MDR are not constrained to conserve substrate specificity and/or chemistry of catalysis. In consequence, MDR functional diversity is more complex than sequence diversity. MDR is a very ancient protein superfamily that existed in the last universal common ancestor. It had at least two (and probably three) different ancestral activities related to formaldehyde metabolism and alcoholic fermentation. Eukaryotic members of this superfamily are more related to bacterial than to archaeal members; horizontal gene transfer among the domains of life appears to be a rare event in modern organisms.  相似文献   

16.
We describe a simple polymerase chain reaction (PGR)-based method for isolating short stretches of nontelomeric DNA adjacent to arrays of telomere repeat units, in principle applicable to any species for which the telomere repeat sequence is known. Application of this approach to human DNA resulted in the isolation of many candidate telomere junction clones, at least some of which were shown to be derived from telomere-adjacent regions. Most of the isolated clones detect multiple sequences in the human genome which represent one or a few sequence families present at the ends of most or all autosomes and variably truncated before the start of the telomere repeat array. Substantial sequence divergence between different members of these sequence families suggests a low rate of sequence homogenization by telomere exchange processes. The pseudoautosomal telomere junction has also been isolated and contains a shortened version of a recently described family of short interspersed repetitive elements (SINEs), only 14 base pairs (b.p.) from the start of the telomere.  相似文献   

17.
Patel RY  Balaji PV 《Glycobiology》2006,16(2):108-116
Eukaryotic sialyltransferases (SiaTs) comprise a superfamily of enzymes catalyzing the transfer of sialic acid (Sia) from a common donor substrate to various acceptor substrates in different linkages. These enzymes have been classified as ST3Gal, ST6Gal, ST6GalNAc, and ST8Sia families based on linkage- and acceptor monosaccharide-specificities and sequence similarities. It was recognized early on that SiaTs contain certain well-conserved motifs, and these were denoted as L (large)-, S (small)-, and VS (very small)-motifs; recently, a fourth motif, denoted as motif III, was identified. These four motifs are common to all the SiaTs, irrespective of the linkage- and acceptor saccharide-specificities. In this study, the sequences of the various families have been analyzed, and sequence motifs that are unique to the various families have been identified. These unique motifs are expected to contribute to the characteristic linkage- and acceptor saccharide-specificities of the family members. One of the linkage specific motifs is contiguous to L-motif. Members of ST3Gal and ST8Sia families share significant sequence similarities; in contrast, the ST6Gal family is distinct from the ST6GalNAc family. The latter consists of two subfamilies, one comprising ST6GalNAc I and ST6GalNAc II, and the other comprising ST6GalNAc III, ST6GalNAc IV, ST6GalNAc V, and ST6GalNAc VI. Each of these subfamilies has characteristic sequence motifs not present in the other subfamily.  相似文献   

18.
Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to provide their own subfamily definitions can do so. Source code is available on the Web page. The Berkeley Phylogenomics Group PhyloFacts resource contains pre-calculated subfamily predictions and subfamily HMMs for more than 40,000 protein families and domains at http://phylogenomics.berkeley.edu/phylofacts/.  相似文献   

19.
20.
《FEBS letters》1986,201(1):74-80
Nucleotide sequence analysis of cDNA clones coding for field bean legumin precursor polypeptides revealed two different types, called A and B. Although homologous, both types differ in several sequence characteristics. Comparison with similar data from soybean and recent findings from pea leads to the following conclusions: (i) the two types of legumin genes described represent two subfamilies, A and B, which are probably of widespread occurrence; (ii) legumin genes or subunits can best be placed in either subfamily A or B by sequence homology, in addition B-type subunits contain generally fewer (or none at all in V. faba) Met residues as compared to A-type subunits; (iii) members of one subfamily from different species are more homologous than members of either subfamily within a species, therefore the two subfamilies must have arisen long before speciation of the genera Glycine, Pisum and Vicia; (iv) during speciation members of the B-subfamily diverged significantly more than members of the A-subfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号