首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid components of sialosylgalactosylceramide of human brain   总被引:2,自引:0,他引:2  
A ganglioside, previously designated HG-B in our laboratory, was isolated from mixed human brain ganglioside preparations and shown to contain equimolar quantities of sialic acid, galactose, and sphingosine. Treatment of this material with neuraminidase yielded a galactosylceramide. The ganglioside, now referred to as sialosylgalactosylceramide, thus appears to be identical with G(gal) reported by Kuhn and Wiegandt. The fatty acids and long-chain bases of this material were analyzed by gas-liquid chromatography. Approximately equal amounts of normal and hydroxy acids were found. Oleic, palmitic, and stearic acids were the only normal fatty acids present. In the hydroxy series, the C(24) and C(23) saturated acids were the major components. The ratio of C(20) to C(18) long-chain base was approximately 5:3. These data suggest that sialosylgalactosylceramide has no direct metabolic relationship with either the major brain gangliosides or adult brain cerebroside.  相似文献   

2.
M Masserini  P Palestini  E Freire 《Biochemistry》1989,28(12):5029-5034
The thermotropic behavior of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides has been studied by high-sensitivity heating and cooling differential scanning calorimetry. These studies have been directed to identify and evaluate the influence of both the ganglioside lipidic portion and oligosaccharide moiety on the physical properties of phospholipid bilayers containing gangliosides. The influence of the ganglioside lipidic portion has been evaluated by studying the behavior of vesicles containing different GD1a molecular species carrying homogeneous lipid moieties (C20 or C18 sphingosine or sphinganine and stearic acid). The influence of the ganglioside saccharide portion was evaluated by investigating the thermotropic behavior of vesicles containing different gangliosides (GM1, Fuc-GM1, GD1a, GT1b) carrying the same homogeneous long-chain base moiety (C20 sphingosine and stearic acid). These studies, in conjunction with previous studies using homogeneous lipidic portion ganglioside GM1 and phosphatidylcholines of various chain lengths [Masserini, M., & Freire, E. (1986) Biochemistry 25, 1043-1049], indicate that, for a given oligosaccharide composition, gangliosides exhibit lateral phase separation in an extent dependent upon the length and unsaturation difference between the ganglioside long-chain base and phosphatidylcholine acyl chains. For a given ganglioside lipidic composition the extent of phase separation is dependent upon the number of sugar units present in the glycolipid. The addition of Ca2+ induces or enhances phase separation in a manner dependent on the long-chain base and oligosaccharide composition. Cooling differential scanning calorimetry experiments showed that the ganglioside property to form aggregates within the membrane is independent of the initial physical state of the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of cold stress on the ganglioside fatty acid composition and sialic acid content of brain subcellular fractions and homogenate of rats was studied, the animals were kept in a cold room with 12h light-dark cycles at 3 and 10 degrees C for 2 weeks. (1) The rat brain homogenate, synaptosomes and myelin of rats exposed to 3 degrees C contained significantly higher amounts of ganglioside-bound sialic acid per mg of protein than these fractions of control rats kept at 23 degrees C; the differences were less pronounced in rats exposed to 10 degrees C. (2) A small, but significant, diminution of relative palmitic acid content and an increase of stearic acid content was found to take place in gangliosides from rat brain synaptosomes, synaptosomal plasma membranes and homogenate as a result of the exposure of animals to 3 degrees C and to a lesser extent to 10 degrees C. (3) The content of unsaturated fatty acids in gangliosides from brain subcellular fractions was approximately the same in cold exposed and control rats.  相似文献   

4.
Systematic position of fish species and ganglioside composition and content   总被引:1,自引:0,他引:1  
The ganglioside content in brain of cartilaginous and bony fishes studied varies from 110 to 581 and from 104 to 595 micrograms sialic acid per g of wet weight respectively. A high degree of alkali lability and the predominance of C18-sphingosine and N-acetylneuraminic acid are typical of fish brain gangliosides. A high content of oligosialogangliosides with four and more residues of sialic acid and the predominance of gangliosides with gangliotetraosyl carbohydrate chain are characteristic for teleost brain. No pronounced difference was revealed in ganglioside composition and content of clupeomorphs and percomorphs. Gangliosides with short (lactosyl and gangliotriaosyl) carbohydrate chain predominate in brain of all cartilaginous fishes studied. A statistically significant difference was found in ganglioside content, relative oligosialoganglioside content and ganglioside fatty acid composition of squalomorphs and rajiformes, on one hand, and dasyatiformes and galeomorphs, on the other hand.  相似文献   

5.
Abstract: We have shown that ganglioside internal esters, reduced with sodium borohydride and hydrolyzed with mild acid, form nonulosamine and glycosan, whereas ester-free gangliosides yield only sialic acid when similarly treated. In an effort to demonstrate the occurrence of ganglioside internal esters in brain tissue, brain homogenates and brain ganglioside fractions were treated with NaB3H4. The gangliosides were then hydrolyzed with mild acid and unlabeled carrier nonulosamine and its glycosan were added. The nonulosamine was purified to constant specific radioactivity. Homogenates and ganglioside fractions, initially treated with alkali and then similarly reduced and analyzed, provided control values. Ganglioside fractions directly reduced consistently gave nonulosamine with higher specific radioactivities than controls. A larger quantity of tissue was processed to allow the isolation of chemically measurable amounts of nonulosamine. The amount of nonulosamine formed by reduction of the crude ganglioside fraction was estimated by isotope dilution analysis. The quantity of nonulosamine formed from reduced untreated ganglioside fractions was about sevenfold that formed from alkali-treated fractions. These data provide evidence for the existence in brain tissue of ganglioside sialic acid residues in which the carboxyl group is bound in a structure that is alkali-labile and reducible with sodium borohydride.  相似文献   

6.
Brains of two patients with GM1 gangliosidosis type 1 and type 2, together with the age-matched control brains, were analyzed for glycosphingolipids. Six species of neutral glycolipids, eight species of gangliosides, and sulfatide were isolated from the diseased brains and identified. In addition to GM1 ganglioside and its asialo derivative, the diseased brains accumulated considerable amounts of gangliotriaosylceramide and glycolipids belonging to the globo series, the accumulation of which cannot be explained by deficient beta-galactosidase activity in this disease. GM4 ganglioside was detected in the type 2 brain, but not in type 1. As to fatty acid composition of monohexosylceramides and sulfatide in the two diseased brains, stearic acid was more predominant in the type 1 brain than in the type 2 brain. In light of our previous observations on a Tay-Sachs brain and present results, it appears that metabolism of the globo series glycolipids, which is active in normal brain at early infancy but inactive thereafter, remains in brains with GM1 gangliosidosis (types 1 and 2) and Tay-Sachs disease, reflecting a disturbance in development of the brain.  相似文献   

7.
A simple and convenient technique has been developed for the isolation of gangliosides from small amounts of tissues or cells. A ganglioside fraction obtained by chromatography of the total lipid extract of DEAE-Sephadex was subjected to alkaline hydrolysis and salts and other non-lipid contaminants were removed by reversed-phase chromatography on a C18 Sep-Pak cartridge. The purified gangliosides were then obtained by chromatography on a small Iatrobeads or Unisil column. This procedure yields a quantitative recovery of gangliosides that are free of contaminants which interfere with thin-layer chromatographic analysis. The procedure was used for the quantitative isolation of gangliosides from human brain white matter and human erythrocytes.  相似文献   

8.
BIOSYNTHESIS AND BIODEGRADATION OF RAT BRAIN GANGLIOSIDES STUDIED IN VIVO   总被引:9,自引:5,他引:4  
Abstract— Metabolic relationships between the four major brain gangliosides, GM1, GD1a, GDlb and GT1 were studied in vivo . Labelled acetate and glucosamine were injected intracerebrally into 6–12-day-old rats and the radioactivities of the cerebral gangliosides were analysed. Radioactivity from [3H]acetate was determined in sialic acid, sphingosine and stearic acid and from [1-14C]glucosamine in hexosamine and sialic acid. The gangliosides were labelled in proportion to their pool size. In 6 day-old rats the labelling was approx. 30 per cent lower in the sialidase-stable sialyl group than in the labile one. When the brain gangliosides were labelled in 12-day-old rats, however, the specific activities of sialidase-labile and stable sialyl groups were the same at 0.5 months after the injection of precursors and disappeared at the same rate. The results indicate that at the age of 6 days a small pool of monosialogangliosides exists, which is converted to di- and trisialogangliosides. The degradation of gangliosides was studied by following the radioactivities in sphingosine and stearic acid from 2 to 6 months after the injection of labelled acetate. The specific activities of sphingosine and stearic acid decreased simultaneously at the same rate in all the four major gangliosides. The specific activity of stearic acid was the same in total brain lipids as in gangliosides. The half-lives for the degradation of the gangliosides were age-dependent and estimated to 60 days in adult rats. They were much shorter in younger rats but no reliable figures could be determined.  相似文献   

9.
Nuclear gangliosides were characterized using two distinct fractions of large (N1) and small (N2) nuclear populations from rat brain. The ganglioside concentration of N1 nuclei from adult rat brain was 0.92 microg sialic acid/mg protein, which was about 3.8 times higher than that of N2 nuclei. N1 and N2 nuclear gangliosides showed similar compositional profiles; they contained major gangliosides of GM1, GD1a, GD1b, and GT1b, with GM3 in lesser amounts. c-Series gangliosides such as GT3, GQ1c, and GP1c were also detected in both nuclear preparations. Nuclear localization of gangliosides was confirmed by immunofluorescence with anti-GM1 antibody, cholera toxin B subunit, and c-series ganglioside-specific monoclonal antibody A2B5. Developmental changes of nuclear gangliosides were examined using rats of different ages ranging from embryonic day 14 (E14) to postnatal 7 weeks. The concentration of N1 nuclear gangliosides changed only slightly during development and did not correlate with that of whole-brain gangliosides. The developmental pattern of ganglioside composition of N1 nuclei was also distinguished from that of microsomal membranes; the ganglioside changes in N1 nuclei included reduced expression of di- and polysialogangliosides at E16 and higher proportions of GM3 at early and late stages of the period. These findings suggest that gangliosides in nuclear membranes are developmentally regulated in a distinct manner in brain cells.  相似文献   

10.
Abstract: The labeling pattern of the major individual gangliosides from the microsomal and synaptosomal fractions of rat brain was determined following intracerebral injection of the radioactive sialic acid precursor, N-acetylmannosamine. Microsomal gangliosides initially had a higher specific radioactivity than synaptosomal gangliosides, with both fractions reaching similar specific radioactivities 18 h after precursor injection. In both subcellular fractions, the polysialogangliosides GT1b and GQ1b were initially more highly labeled than all other gangliosides. With the establishment of the labeling pattern, the effect of the convulsant pentylenetetrazol on brain gangliosides was examined in detail. Significant decreases in radioactive label were noted in the polysialogangliosides, GT1b and GQ1b, from the synaptosomal and microsomal fractions of the convulsed animals. The decreases may be due to activation of the membrane-bound neuraminidase present with the gangliosides in neuronal tissue. Prior to experimentation, a methodology was developed to insure quantitative isolation of small amounts of ganglioside free of other lipids and water-soluble contaminants. Combination of this isolation procedure with quantitative densitometry of thin-layer chromatograms permits accurate distributional analyses for individual gangliosides. In applications involving radioactive gangliosides, the method allows the determination of both radioactivity and sialic acid distributions from the same thin-layer chromatogram.  相似文献   

11.
A solvent partition method for microscale ganglioside purification   总被引:15,自引:0,他引:15  
A simple and rapid method for the purification of gangliosides from the total lipid extract of plasma, cells, or tissue is described. The novel component of the method is the partition of the dried total lipid extract in the three-component solvent system consisting of diisopropyl ether, 1-butanol, and 50 mM aqueous NaCl (6/4/5, v/v/v). Gangliosides partition nearly quantitatively into the lower aqueous phase, and other lipids into the upper organic phase, resulting from the mixture of these three solvents. The ganglioside-containing aqueous phase is then freed of salts and other low-molecular-weight impurities by gel filtration. The thin-layer chromatographic patterns of total gangliosides thus obtained are clear and distinct, even when small samples with very low ganglioside concentrations (e.g., 1-ml samples of plasma) are processed by this method. Thus, this new ganglioside purification method is especially applicable to comparative qualitative studies of gangliosides requiring the analysis of multiple small samples.  相似文献   

12.
Developmental profiles of gangliosides in trisomy 19 mice   总被引:1,自引:0,他引:1  
The ganglioside composition of the cerebrum, cerebellum, brainstem, liver, heart, and spleen was analyzed quantitatively in trisomy 19 (Ts19) mice aged 4 to 12 days postpartum. The developmental profiles of cerebral gangliosides were similar in Ts19 mice and control littermates: Total ganglioside-sialic acid as well as the proportions of the individual gangliosides GD1a and GM1 increased with age, while the percentages of GQ1b and GT1b decreased during development. Both the accretion of the total ganglioside content and the development of the individual ganglioside fractions were delayed by 2-3 days in the Ts19 telencephalon. Likewise, the shift from the b- to the a-pathway of ganglioside synthesis was retarded. Ganglioside development was equally delayed in the cerebellum and the brainstem of Ts19 mice. Since in Ts19 mice, morphogenesis of several brain regions is similarly delayed by 2 days, these results confirm the usefulness of gangliosides as biochemical markers for brain maturation. In contrast to brain gangliosides, the ganglioside composition of the Ts19 livers was clearly distinguished from that of control livers. Total ganglioside-bound sialic acid was increased by 35-50% in Ts19 livers. This elevation in ganglioside content not explicable by a simple delay in development was mainly due to an increase in GD3 and fraction 2, which is likely to contain GD1a and GD1b. In contrast, GM2 which increased considerably with age in control mice persisted on a low level in Ts19 livers. Comparable alterations of the ganglioside pattern were neither observed in the spleen nor in the heart of Ts19 mice. The data presented give additional evidence that ganglioside synthesis in the liver is under a different regulation mechanism than that in the brain, heart, and spleen.  相似文献   

13.
Activation of an acid sphingomyelinase (aSMase) leading to a biosynthesis of GD3 disialoganglioside has been associated with Fas-induced apoptosis of lymphoid cells. The present study was undertaken to clarify the role of this enzyme in the generation of gangliosides during apoptosis triggered by Fas ligation. The issue was addressed by using aSMase-deficient and aSMase-corrected cell lines derived from Niemann-Pick disease (NPD) patients. Fas cross-linking elicited a rapid production of large amounts of complex a- and b-series species of gangliosides with a pattern and a chromatographic behavior as single bands reminiscent of brain gangliosides. The gangliosides were synthesized within the first ten minutes and completely disappeared within thirty minutes after stimulation. Noteworthy is the observation that GD3 was not the only ganglioside produced. The production of gangliosides and the onset of apoptotic hallmarks occurred similarly in both aSMase-deficient and aSMase-corrected NPD lymphoid cells, indicating that aSMase activation is not accountable for ganglioside generation. Hampering ganglioside production by inhibiting the key enzyme glucosylceramide synthase did not abrogate the apoptotic process. In addition, GM3 synthase-deficient lymphoid cells underwent Fas-induced apoptosis, suggesting that gangliosides are unlikely to play an indispensable role in transducing Fas-induced apoptosis of lymphoid cells.  相似文献   

14.
Eighteen gangliosides were isolated from dogfish (Squalus acanthias) brain, and their structures and compositions were determined by methylation analysis, enzymatic hydrolysis and partial hydrolysis with mild acid. Tetra- and pentasialogangliosides were also analysed by liquid secondary ion mass spectrometry. The dogfish brain gangliosides were characterized by a variety of molecular species. The most abundant ganglioside was GM2 (22.8% of the total sialic acid content), followed by GQ1c (16.0%), GP1c (13.4%), and GD2 (12.5%). The abundance of gangliosides containing a gangliotriaose core (GM2 and GD2), and c-series polysialogangliosides (GQ1c and GP1c) was a prominent feature of dogfish brain, differing from the brain gangliosides of teleosts and other vertebrates. A battery of trisialogangliosides was also found. A ganglioside which had an a- and -series hybrid-structure (IV3NeuAc,III6NeuAc,II3NeuAc-Gg4Cer) comprised 1.4% of the total. The major fatty acids comprised 16:0, 18:0, 18:1, 22:1 and 24:1. The gangliosides with a gangliotriaose core predominantly contained 22:1. Sphinganine and 4-sphingenine comprised the long-chain bases.  相似文献   

15.
A potential role for glycolipid gangliosides to act as immunomodulating agents has been suggested. Most studies have employed brain gangliosides. We have systematically investigated highly purified murine brain gangliosides for their ability to modulate lymphocyte activation. All sialic acid classes of ganglioside inhibited lipopolysaccharide (LPS)-induced antibody secretion and all polysialated gangliosides inhibited LPS-induced DNA synthesis. Monosialated gangliosides had no effect on DNA synthesis induced by LPS. 8-BrcGMP-induced DNA synthesis was also inhibited, suggesting that a negative signal was delivered to B lymphocytes by co-cultivation with exogenous gangliosides. The lack of specificity with respect to sialic acid class observed in these studies suggests that further investigation of an immunomodulatory role for gangliosides focus on endogenous lymphocyte gangliosides.  相似文献   

16.
—Calf brain was treated in order to prepare separately the cytosol from neuronal bodies and glial cells, and the cytosol from nerve endings. The first cytosol contained 29 μg of ganglioside bound sialic acid/g fresh tissue, the latter 3.1 μg. Upon addition of ammonium sulphate until saturation the gangliosides contained in the two cytosols precipitated and were totally recovered in the pellet. while, under the same conditions, pure gangliosides were completely soluble. After stepwise ammonium sulphate fractionation all the different fractions obtained contained gangliosides and carried an approximately constant ganglioside/protein ratio. Thus cytosolic gangliosides occur in calf brain as ganglioside-protein complexes. The qualitative and quantitative pattern of gangliosides appeared to be similar in the two cytosols and in the different ammonium sulphate fractions obtained from the same cytosols. In addition, the pattern of cytosolic gangliosides was similar to that of membrane bound gangliosides.  相似文献   

17.
A 19-year-old Irish-Jewish male had a slow neurologic regression starting at age 4 1/2 years with stuttering. The chronic course resembled that of Spielmeyer-Vogt (juvenile ceroid-lipofuscinosis) disease. The brain was atrophic with neuronal losses and huge compound inclusions in the remaining neurons. Lipid NANA was within normal limits in gray and white matter and GM2 gangliosides were moderately elevated at 11.5% lipid NANA. Beta-hexosaminidase A activity was lipid composition showed nonspecific abnormalities. Exhaustive tissue extraction ruled out the possibility of tightly bound gangliosides to account for the relatively low GM2 ganglioside concentration. The extract contained unidentified chromogenic substances interfering with the resorcinol reaction. The similarly affected patient's sister lived to age 26 years and her brain was even more atrophic. No biochemical abnormality to account for progressive neuronal losses and relative lack of GM2 ganglioside storage was found.Deceased.Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

18.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has been applied primarily to the analysis of glycosphingolipids separated from other complex mixtures by TLC, but it is difficult to obtain quantitative profiling of each glycosphingolipid among the different spots on TLC by MALDI-MS. Thus, the development of a convenient approach that utilizes liquid chromatography/electrospray ionization (LC/ESI)-MS has received interest. However, previously reported methods have been insufficient to separate and distinguish each ganglioside class. Here we report an effective method for the targeted analysis of theoretically expected ganglioside molecular species by LC/ESI tandem mass spectrometry (LC/ESI-MS/MS) in combination with multiple reaction monitoring (MRM). MRM detection specific for sialic acid enabled us to analyze ganglioside standards such as GM1, GM2, GM3, GD1, and GT1 at picomolar to femtomolar levels. Furthermore, other gangliosides, such as GD2, GD3, GT2, GT3, and GQ1, were also detected in glycosphingolipid standard mixtures from porcine brain and acidic glycolipid extract from mouse brain by theoretically expanded MRM. We found that this approach was also applicable to sulfatides contained in the glycosphingolipid mixtures. In addition, we established a method to separate and distinguish regioisomeric gangliosides, such as GM1a and -1b, GD1a, -1b, and -1c, and GT1a, -1b, and -1c with diagnostic sugar chains in the MRM.  相似文献   

19.
The ganglioside composition of the brain from an individual with classical Tay-Sachs disease and from an individual with Sandhoff disease was examined using our new quantitative methods for ganglioside content determination and compared with that of age-matched control brains. The concentration of GM2 was found to be 12.2 and 13.0 mumol/g of fresh tissue in Tay-Sachs disease and in Sandhoff disease cerebral gray matter, respectively. GM2 was 86 and 87% respectively, of total gangliosides. The concentration of GM1 and, in particular, GM3 ganglioside was also found to be increased, whereas the concentration of the major di- and trisialogangliosides (GD1a, GD1b, and GT1b) had diminished markedly. There was no significant increase in level of any other ganglioside than lyso-GM2. Its concentration was 12 and 16 nmol/g in cerebral gray matter of two Tay-Sachs disease brains and 43 nmol/g in Sandhoff disease brain. The Sandhoff disease brain also differed from the classical Tay-Sachs disease brain by having a much higher concentration of gangliotriaosylceramide and globotetraosylceramide. The structures of relevant gangliosides and neutral glycolipids were established by fast atom bombardment-mass spectrometry and permethylation studies.  相似文献   

20.
Abstract— In agreement with other investigators it has been shown that endogenous as well as added gangliosides are a substrate for brain sialidase. The release of sialic acid was enhanced in the presence of Triton X-100; this might be due to the action of the detergent on the ganglioside micelles. The sialic acid release from endogenous gangliosides was observed over 48 h and compared with the effect of the sialidase on the endogenous glycoproteins. Though the hydrolysis of sialic acid from gangliosides is much faster in the first hours, after 48 h 40 per cent of the total bound sialic was released from both substrates at pH 4.0 and 37°C.
Sialoglycopeptides obtained from brain glycoproteins are also metabolized by the sialidase. No effect of Triton X-100 on this substrate has been observed. From sialoglycopeptides, fractions can be obtained by DEAE-Sephadex A-50 column chromatography with a sialic acid content from 8 to 26 per cent. The fractions with a high sialic acid content were about equally active towards brain sialidase as gangliosides. The results agree with the similar turnover rate observed for the carbohydrate chains from gangliosides and glycoproteins, but are in contrast to the observations of other investigators who have stated that glycoproteins are a poor substrate for brain sialidase. In our experiments bovine and ovine submaxillary mucins and sialyl-lactoses showed only slight activity compared to gangliosides and selected brain sialoglycopeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号