首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial contamination of hydrogel contact lenses   总被引:1,自引:0,他引:1  
Bacterial contamination of contact lenses (CLs) may contribute to CL-related corneal infection and inflammation. This study reports CL biota over time during daily and extended wear. Microbial contamination of a 58% water, ionic hydrogel CL and a 38% water, non-ionic hydrogel CL was evaluated in an Australian and an Indian population. Fifty wearers were repeatedly sampled over 18 months. Overnight CL use did not alter the frequency of positive cultures, nor the spectrum of organisms compared with daily CL wear. There were no differences in type and frequency of CL contamination between the CL types. Positive cultures were more frequently recovered from the Indian population compared with the Australian population. Streptococcus spp. and Propionibacterium spp. were more frequently isolated from the Australian population. Fungi and Bacillus spp. were more frequently isolated from the Indian population. Normal CL biota alone cannot explain the increased rate of infection and inflammation in extended wear.  相似文献   

2.
Aims:  To assess the ability of Listeria monocytogenes to form biofilm on different food-contact surfaces with regard to different temperatures, cellular hydrophobicity and motility.
Methods and Results:  Forty-four L. monocytogenes strains from food and food environment were tested for biofilm formation by crystal violet staining. Biofilm levels were significantly higher on glass at 4, 12 and 22°C, as compared with polystyrene and stainless steel. At 37°C, L. monocytogenes produced biofilm at significantly higher levels on glass and stainless steel, as compared with polystyrene. Hydrophobicity was significantly ( P  < 0·05) higher at 37°C than at 4, 12 and 22°C. Thirty (68·2%) of 44 strains tested showed swimming at 22°C and 4 (9·1%) of those were also motile at 12°C. No correlation was observed between swimming and biofilm production.
Conclusions:  L. monocytogenes can adhere to and form biofilms on food-processing surfaces. Biofilm formation is significantly influenced by temperature, probably modifying cell surface hydrophobicity.
Significance and Impacts of the Study:  Biofilm formation creates major problems in the food industry because it may represent an important source of food contamination. Our results are therefore important in finding ways to prevent contamination because they contribute to a better understanding on how L. monocytogenes can establish biofilms in food industry and therefore survive in the processing environment.  相似文献   

3.
The role of bacterial biofilms in ocular infections   总被引:7,自引:0,他引:7  
There is increasing evidence that bacterial biofilms play a role in a variety of ocular infections. Bacterial growth is characterized as a biofilm when bacteria attach to a surface and/or to each other. This is distinguished from a planktonic or free-living mode of bacterial growth where these interactions are not present. Biofilm formation is a genetically controlled process in the life cycle of bacteria resulting in numerous changes in the cellular physiology of the organism, often including increased antibiotic resistance compared to growth under planktonic conditions. The presence of bacterial biofilms has been demonstrated on many medical devices including intravenous catheters, as well as materials relevant to the eye such as contact lenses, scleral buckles, suture material, and intraocular lenses. Many ocular infections often occur when such prosthetic devices come in contact with or are implanted in the eye. For instance, 56% of corneal ulcers in the United States are associated with contact lens wear. Bacterial biofilms may participate in ocular infections by allowing bacteria to persist on abiotic surfaces that come in contact with, or are implanted in the eye, and by direct biofilm formation on the biotic surfaces of the eye. An understanding of the role of bacterial biofilm formation in ocular infections may aid in the development of future antimicrobial strategies in ophthalmology. We review the current literature and concepts relating to biofilm formation and infections of the eye.  相似文献   

4.
材料表面特征对生物膜形成的影响及其应用   总被引:1,自引:0,他引:1  
生物膜是微生物细胞粘附于材料表面的群体性生长方式。在实践应用中,有目的地调控微生物在材料表面的成膜进程具有重要意义。本文概述了生物膜在材料表面的形成机制及其影响因素,综述了材料表面的电荷特征、亲疏水性、形貌模式和功能性化学修饰等物化特性对细胞粘附和生物膜形成的影响,并介绍了目前在不同实际应用场景中抑制成膜和促进成膜材料的研发现状。  相似文献   

5.
Single-species microbial biofilm screening for industrial applications   总被引:2,自引:0,他引:2  
While natural microbial biofilms often consist of multiple species, single-species biofilms are of great interest to biotechnology. The current study evaluates biofilm formation for common industrial and laboratory microorganisms. A total of 68 species of biosafety level one bacteria and yeasts from over 40 different genera and five phyla were screened by growing them in microtiter plates and estimating attached biomass by crystal violet staining. Most organisms showed biofilm formation on surfaces of polystyrene within 24 h. By changing a few simple conditions such as substratum characteristics, inoculum and nutrient availability, 66 strains (97%) demonstrated biofilm formation under at least one of the experimental conditions and over half of these strains were classified as strong biofilm formers, potentially suitable as catalysts in biofilm applications. Many non-motile bacteria were also strong biofilm formers. Biofilm morphologies were visualized for selected strains. A model organism, Zymomonas mobilis, easily established itself as a biofilm on various reactor packing materials, including stainless steel.  相似文献   

6.
解脲脲原体(Uu)生物膜的培养及药敏检测技术是继支原体体外游离药敏试验之后,探讨Uu耐药水平与耐药机制的又一重要手段。然而由于支原体生长的生物学特性,使实验中需要多次更换培养基,增加了污染的概率。培养过程中的杂菌污染由此成为决定Uu生物膜实验成功与否的一大问题。本文将对解脲脲原体生物膜的培养与药敏检测技术,从检测方法、常见污染途径与解决策略3个方面展开,对相关文献作一综述。  相似文献   

7.
The effects of changes in formulation pH and storage temperature on the preservative activities of some aerosol propellants—butane, carbon dioxide, dimethylether and their combinations were investigated. A preservative challenge test method was used to determine the survival rates of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans and Aspergillus niger at formulation pH levels 5·80, 7·28 and 8·10 and storage temperatures of 20°, 30° and 40°C.
A significant decrease in the pH of formulations was observed with no corresponding changes in the antimicrobial effectiveness when carbon dioxide was incorporated. Alterations in the antimicrobial profiles of these propellants due to changes in formulation pH were dependent on the propellant and the species of the micro-organism, especially when single propellants were used. Results also showed that the propellants exert antimicrobial activities against the various organisms at the three storage temperatures but there were significantly greater inhibitory activities at 40°C. With a combination of 10% butane/dimethylether (1:2) and 10 bar carbon dioxide there were no differences in the degree of microbial inhibition at the various formulation pH levels and storage temperatures. In most cases, the organisms were completely inactivated within 24 h. These findings showed that the combination of butane/dimethylether with carbon dioxide could be used to protect against microbial contamination and spoilage of formulations of different pH levels as well as those meant for storage at different temperatures.  相似文献   

8.
Biofilms: implications in bioremediation   总被引:2,自引:0,他引:2  
Biofilms are assemblages of single or multiple populations that are attached to abiotic or biotic surfaces through extracellular polymeric substances. Gene expression in biofilm cells differs from planktonic stage expression and these differentially expressed genes regulate biofilm formation and development. Biofilm systems are especially suitable for the treatment of recalcitrant compounds because of their high microbial biomass and ability to immobilize compounds. Bioremediation is also facilitated by enhanced gene transfer among biofilm organisms and by the increased bioavailability of pollutants for degradation as a result of bacterial chemotaxis. Strategies for improving bioremediation efficiency include genetic engineering to improve strains and chemotactic ability, the use of mixed population biofilms and optimization of physico-chemical conditions. Here, we review the formation and regulation of biofilms, the importance of gene transfer and discuss applications of biofilm-mediated bioremediation processes.  相似文献   

9.
Marine biofouling has severe economic impacts and cyanobacteria play a significant role as early surface colonizers. Despite this fact, cyanobacterial biofilm formation studies in controlled hydrodynamic conditions are scarce. In this work, computational fluid dynamics was used to determine the shear rate field on coupons that were placed inside the wells of agitated 12-well microtiter plates. Biofilm formation by three different cyanobacterial strains was assessed at two different shear rates (4 and 40 s−1) which can be found in natural ecosystems and using different surfaces (glass and perspex). Biofilm formation was higher under low shear conditions, and differences obtained between surfaces were not always statistically significant. The hydrodynamic effect was more noticeable during the biofilm maturation phase rather than during initial cell adhesion and optical coherence tomography showed that different shear rates can affect biofilm architecture. This study is particularly relevant given the cosmopolitan distribution of these cyanobacterial strains and the biofouling potential of these organisms.  相似文献   

10.
Biofilms are sessile microbial aggregates on the interfaces, and they were usually considered as microbial contamination sources in medical care and various industries. We studied the control and application of biofilms formed by food-related microorganisms, and mechanism of the biofilm formation was also investigated. We studied the biofilm formation in mixed cultures using various combinations of two strains of food-related microorganisms. There were various microorganisms that showed decreased or increased biofilm formation in the mixed culture in comparison with that in a single culture. Biofilm formed by lactic acid bacteria and yeast isolated from traditional fermented food, Fukuyama pot vinegar, exhibited unique feature in that structure and formation mechanism, and expected to be used as an immobilized microorganism in fermentation production. Here our studies on the control and application of biofilms and the mechanisms of its formation were described.  相似文献   

11.
The aim of present study was to investigate the microbial colonization of worn contact lenses (CLs) and to evaluate the inhibitory effect of pomelo (Citrus maxima) peels essential oil on the biofilm development on unworn CLs. The essential oil was isolated by steam distillation and analyzed by gas chromatography coupled with mass spectrometry, twenty compounds being isolated. The antimicrobial activity of pomelo oil was tested against S. epidermidis and P. aeruginosa strains, known for their ability to develop biofilms on prosthetic devices, by qualitative screening methods and quantitative assay of the minimal inhibitory concentrations (MIC) in order to evaluate the antibiofilm activity. Our study revealed that all worn CLs where 100% colonized by staphylococci and Enterobacteriaceae strains. The pomelo essential oil inhibited the development of bacterial biofilms formed by Gram-positive and Gram-negative microorganisms on soft CLs, its antibiofilm activity being specific and dependent on different physical parameters (contact time and temperature). The architecture of bacterial biofilms developed on soft contact lenses was analyzed using confocal scanning laser microscopy (CSLM).  相似文献   

12.

Background  

Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented.  相似文献   

13.
Biofilm formation on reverse osmosis (RO) systems represents a drawback in the application of this technology by different industries, including oil refineries. In RO systems the feed water maybe a source of microbial contamination and thus contributes for the formation of biofilm and consequent biofouling. In this study the planktonic culturable bacterial community was characterized from a feed water of a RO system and their capacities were evaluated to form biofilm in vitro. Bacterial motility and biofilm control were also analysed using phages. As results, diverse Protobacteria, Actinobacteria and Bacteroidetes were identified. Alphaproteobacteria was the predominant group and Brevundimonas, Pseudomonas and Mycobacterium the most abundant genera. Among the 30 isolates, 11 showed at least one type of motility and 11 were classified as good biofilm formers. Additionally, the influence of non-specific bacteriophage in the bacterial biofilms formed in vitro was investigated by action of phages enzymes or phage infection. The vB_AspP-UFV1 (Podoviridae) interfered in biofilm formation of most tested bacteria and may represent a good alternative in biofilm control. These findings provide important information about the bacterial community from the feed water of a RO system that may be used for the development of strategies for biofilm prevention and control in such systems.  相似文献   

14.
Aim:  To determine the critical component(s) of skim milk for biofilm formation of Cronobacter species.
Methods and Results:  Biofilm forming ability of 72 Cronobacter strains in skim milk preparation was assayed by crystal violet staining. The results revealed that whey protein and casein are more important determinants of skim milk for biofilm formation than lactose, although there was a wide variation in biofilm forming ability. Biofilm structure and capsular material of six strains exhibiting different biofilm forming ability was investigated via electron microscopes. Scanning electron microscopy showed visually that while the strong biofilm formers (E27B, FSM 30 and 2·82) resulted in almost complete coagulation of skim milk, the weak biofilm formers (55, FSM 290 and 2·84) caused less coagulation. No capsule was clearly delineated in transmission electron micrographs of either strong or weak biofilm formers.
Conclusion:  These results indicate that, for biofilm formation of Cronobacter species in skim milk, nitrogen source is probably a more important determinant than carbohydrate, and that strong biofilm formers are responsible for substantial coagulation of skim milk.
Significance and Impact of the Study:  This study provides information for better understanding of the underlying mechanisms by which Cronobacter species form biofilm in infant formula milk.  相似文献   

15.
菌膜是细菌群落发展的一种高度组织化的群体状态。在菌膜形成过程中,细菌胞外物质EPS(Exopolysaccharides)、eDNA(Extracellular DNA)、胞外蛋白等都参与菌膜的形成,它们为菌膜提供机械稳定性,帮助细菌粘附到物体表面,促进菌膜中不同细菌间物质的循环及基因的水平转移。菌膜形成涉及到群体感应、C-di-GMP(Cyclic diguanylate monophosphate)和sRNA等一系列调控机制。土壤环境中栖息着大量的微生物,许多土壤微生物定殖于植物根际,从而与植物发生着密切的相互作用;菌膜的形成是细菌稳定定殖于植物根际的关键因素,有助于植物促生菌或致病菌在根际更好的生存。本文就菌膜的成分、调控及其与植物的关系等三个方面的内容进行综述。  相似文献   

16.
生物膜(Biofilm)是指微生物为适应周围环境,黏附于介质表面并被其自身分泌的胞外基质包裹而形成的一种复杂的、高度异质的聚合结构。生物膜对宿主防御和药物具有很强的抵御能力,使用单一药物防治往往效果不显著,而利用协同作用将不同抗菌药物的优势联合起来用于生物膜的防控则优势明显。重点阐述了抗生素与抗生素、抗生素与中药、抗生素与噬菌体、抗生素与酶的协同作用研究,以期为生物膜的防控提供新思路。  相似文献   

17.
Biofilm is a ubiquitous material generated by microorganisms proliferating on solid surfaces in water exposed to appropriate aqueous nutrients. It is suggested that model biofilm fermenters will be useful in investigating and in the end controlling biofilm formation. The Cardiff constant depth film fermenter is described. The growth of cutting fluid organisms on a model amine: carboxylate medium in this system is discussed. A simple film model based on a dominant metal-working fluid organism Pseudomonas aeruginosa was investigated and preliminary results using formaldehyde as a biocide are presented.  相似文献   

18.
Adhesion of bacteria to hydrogel lenses is thought to be an initial step of ocular colonization allowing evasion of normal host defences. The salt concentration of media is an important parameter controlling microbial adhesion. Salinity varies from 0·97% NaCl equivalents in the open eye to 0·89% in the closed eye state. In this study, the effect of sodium chloride in the concentration range of 0·8–1·0% (w/v) NaCl on adhesion of ocular bacteria to soft contact lenses was investigated using a static adhesion assay. Pseudomonas aeruginosa was found to adhere to lenses in significantly greater amounts than Serratia marcescens, Flavobacterium meningosepticum, Stenotrophomonas maltophilia and Staphylococcus intermedius . Increasing NaCl from 0·8% to 1·0% (w/v) increased adhesion of all bacteria tested. This adhesion was strong since the organisms could not be removed by washing in low ionic buffer. Adhesion of these organisms did not correlate with their cell surface properties as determined by bacterial adhesion to hydrocarbons (BATH) and retention on sepharose columns.  相似文献   

19.
Listeria monocytogenes has the ability to form biofilms on food-processing surfaces, potentially leading to food product contamination. The objective of this research was to standardize a polyvinyl chloride (PVC) microtiter plate assay to compare the ability of L. monocytogenes strains to form biofilms. A total of 31 coded L. monocytogenes strains were grown in defined medium (modified Welshimer's broth) at 32 degrees C for 20 and 40 h in PVC microtiter plate wells. Biofilm formation was indirectly assessed by staining with 1% crystal violet and measuring crystal violet absorbance, using destaining solution. Cellular growth rates and final cell densities did not correlate with biofilm formation, indicating that differences in biofilm formation under the same environmental conditions were not due to growth rate differences. The mean biofilm production of lineage I strains was significantly greater than that observed for lineage II and lineage III strains. The results from the standardized microtiter plate biofilm assay were also compared to biofilm formation on PVC and stainless steel as assayed by quantitative epifluorescence microscopy. Results showed similar trends for the microscopic and microtiter plate assays, indicating that the PVC microtiter plate assay can be used as a rapid, simple method to screen for differences in biofilm production between strains or growth conditions prior to performing labor-intensive microscopic analyses.  相似文献   

20.

Biofilm formation is a typical life strategy used by microorganisms populating acidic water systems. The same strategy might be used by microbes in highly acidic soils that are, however, neglected in this regard. In the present study, the microbial community in such highly acidic soil in the Soos National Nature Reserve (Czech Republic) has been investigated using high-throughput DNA sequencing and the organisms associated with biofilm life mode and those preferring planktonic life were distinguished using the biofilm trap technique. Our data show the differences between biofilm and planktonic microbiota fraction, although the majority of the organisms were capable of using both life modes. The by far most abundant prokaryotic genus was Acidiphilium and fungi were identified among the most abundant eukaryotic elements in biofilm formations. On the other hand, small flagellates from diverse taxonomical groups predominated in plankton. The application of cellulose amendment as well as the depth of sampling significantly influenced the composition of the detected microbial community.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号