首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Guennoun S  Horisberger JD 《FEBS letters》2002,513(2-3):277-281
The accessibility of the residues of the sixth transmembrane segment (TM) of the Bufo marinus Na,K-ATPase alpha subunit was explored by cysteine scanning mutagenesis. Methanethiosulfonate reagents reached only the two most extracellular positions (T803, D804) in the native conformation of the Na,K-pump. Palytoxin induced a conductance in all mutants, including D811C, T814C and D815C which showed no active electrogenic transport. After palytoxin treatment, four additional positions (V805, L808, D811 and M816) became accessible to the sulfhydryl reagent. We conclude that one side of the sixth TM helix forms a wall of the palytoxin-induced channel pore and, probably, of the cation pathway from the extracellular side to one of their binding sites.  相似文献   

2.
Guennoun S  Horisberger JD 《FEBS letters》2000,482(1-2):144-148
To study the structure of the pathway of cations across the Na, K-ATPase, we applied the substituted cysteine accessibility method to the putative 5th transmembrane segment of the alpha subunit of the Na,K-ATPase of the toad Bufo marinus. Only the most extracellular amino acid position (A(796)) was accessible from the extracellular side in the native Na,K-pump. After treatment with palytoxin, six other positions (Y(778), L(780), S(782), P(785), E(786) and L(791)), distributed along the whole length of the segment, became readily accessible to a small-size methanethiosulfonate compound (2-aminoethyl methanethiosulfonate). The accessible residues are not located on the same side of an alpha-helical model but the pattern of reactivity would rather suggest a beta-sheet structure for the inner half of the putative transmembrane segment. These results demonstrate the contribution of the 5th transmembrane segment to the palytoxin-induced channel and indicate which amino acid positions are exposed to the pore of this channel.  相似文献   

3.
We have previously reported that three residues of the fourth transmembrane segment (TM4) of the Na,K- and gastric H,K-ATPase alpha-subunits appear to play a major role in the distinct cation selectivities of these pumps [Mense, M., et al. (2000) J. Biol. Chem. 275, 1749-1756]. Substituting these three residues in the Na,K-ATPase sequence with their H,K-ATPase counterparts (L319F, N326Y, T340S) and replacing the TM3-TM4 ectodomain sequence with that of the H,K-ATPase alpha-subunit result in a pump that exhibits 50% of its maximal ATPase activity in the absence of Na(+) when the assay is performed at pH 6.0. This effect is not seen when the ectodomain alone is replaced. To gain more insight into the contributions of the three residues to establishing the selectivity of these pumps for Na(+) ions versus protons, we generated Na,K-ATPase constructs in which these residues are replaced by their H,K-ATPase counterparts either singly or in combinations. Surprisingly, none of the point mutants nor even the triple mutant was able to hydrolyze ATP at pH 6.0 at a rate greater than 20% of their respective V(max)s. For the point mutants L319F and N326Y, protons seem to competitively inhibit ATP hydrolysis at pH 6.0, based on the low apparent affinity for Na(+) ions at pH 6.0 compared to pH 7.5. It would appear, therefore, that the cation selectivity of Na,K- and H,K-ATPase is generated through a cooperative effort between residues of transmembrane segments and the flanking loops that connect these transmembrane domains. This view is further supported by homology modeling of the Na,K-ATPase based on the crystal structure of the SERCA pump.  相似文献   

4.
The roles of Ser775 and Glu779, two amino acids in the putative fifth transmembrane segment of the Na,K-ATPase alpha subunit, in determining the voltage and extracellular K+ (K+(o)) dependence of enzyme-mediated ion transport, were examined in this study. HeLa cells expressing the alpha1 subunit of sheep Na,K-ATPase were voltage clamped via patch electrodes containing solutions with 115 mM Na+ (37 degrees C). Na,K-pump current produced by the ouabain-resistant control enzyme (RD), containing amino acid substitutions Gln111Arg and Asn122Asp, displayed a membrane potential and K+(o) dependence similar to wild-type Na,K-ATPase during superfusion with 0 and 148 mM Na+-containing salt solutions. Additional substitution of alanine at Ser775 or Glu779 produced 155- and 15-fold increases, respectively, in the K+(o) concentration that half-maximally activated Na,K-pump current at 0 mV in extracellular Na+-free solutions. However, the voltage dependence of Na,K-pump current was unchanged in RD and alanine-substituted enzymes. Thus, large changes in apparent K+(o) affinity could be produced by mutations in the fifth transmembrane segment of the Na,K-ATPase with little effect on voltage-dependent properties of K+ transport. One interpretation of these results is that protein structures responsible for the kinetics of K+(o) binding and/or occlusion may be distinct, at least in part, from those that are responsible for the voltage dependence of K+(o) binding to the Na,K-ATPase.  相似文献   

5.
The transport activity of the Na,K-ATPase (a 3 Na+ for 2 K+ ion exchange) is electrogenic, whereas the closely related gastric and non-gastric H,K-ATPases perform electroneutral cation exchange. We have studied the role of a highly conserved serine residue in the fifth transmembrane segment of the Na,K-ATPase, which is replaced with a lysine in all known H,K-ATPases. Ouabain-sensitive 86Rb uptake and K+-activated currents were measured in Xenopus oocytes expressing the Bufo bladder H,K-ATPase or the Bufo Na,K-ATPase in which these residues, Lys800 and Ser782, respectively, were mutated. Mutants K800A and K800E of the H,K-ATPase showed K+-stimulated and ouabain-sensitive electrogenic transport. In contrast, when the positive charge was conserved (K800R), no K+-induced outward current could be measured, even though rubidium transport activity was present. Conversely, the S782R mutant of the Na,K-ATPase had non-electrogenic transport activity, whereas the S782A mutant was electrogenic. The K800S mutant of the H,K-ATPase had a more complex behavior, with electrogenic transport only in the absence of extracellular Na+. Thus, a single positively charged residue in the fifth transmembrane segment of the alpha-subunit can determine the electrogenicity and therefore the stoichiometry of cation transport by these ATPases.  相似文献   

6.
Na,K-ATPase is the main active transport system that maintains the large gradients of Na(+) and K(+) across the plasma membrane of animal cells. The crystal structure of a K(+)-occluding conformation of this protein has been recently published, but the movements of its different domains allowing for the cation pumping mechanism are not yet known. The structure of many more conformations is known for the related calcium ATPase SERCA, but the reliability of homology modeling is poor for several domains with low sequence identity, in particular the extracellular loops. To better define the structure of the large fourth extracellular loop between the seventh and eighth transmembrane segments of the alpha subunit, we have studied the formation of a disulfide bond between pairs of cysteine residues introduced by site-directed mutagenesis in the second and the fourth extracellular loop. We found a specific pair of cysteine positions (Y308C and D884C) for which extracellular treatment with an oxidizing agent inhibited the Na,K pump function, which could be rapidly restored by a reducing agent. The formation of the disulfide bond occurred preferentially under the E2-P conformation of Na,K-ATPase, in the absence of extracellular cations. Using recently published crystal structure and a distance constraint reproducing the existence of disulfide bond, we performed an extensive conformational space search using simulated annealing and showed that the Tyr(308) and Asp(884) residues can be in close proximity, and simultaneously, the SYGQ motif of the fourth extracellular loop, known to interact with the extracellular domain of the beta subunit, can be exposed to the exterior of the protein and can easily interact with the beta subunit.  相似文献   

7.
We have generated protein chimeras to investigate the role of the fourth transmembrane segments (TM4) of the Na,K- and gastric H, K-ATPases in determining the distinct cation selectivities of these two pumps. Based on a helical wheel analysis, three residues of TM4 of the Na,K-ATPase were changed to their H,K-counterparts. A construct carrying three mutations in TM4 (L319F, N326Y, and T340S) and two control constructs were heterologously expressed in Xenopus laevis oocytes and in the pig kidney epithelial cell line LLC-PK(1). Biochemical ATPase assays demonstrated a large sodium-independent ATPase activity at pH 6.0 for the pump carrying the TM4 substitutions, whereas the control constructs exhibited little or no activity in the absence of sodium. Furthermore, at pH 6.0 the K(1/2)(Na(+)) shifted to 1.5 mM for the TM4 construct compared with 9.4 and 5.9 mM for the controls. In contrast, at pH 7.5 all three constructs had characteristics similar to wild type Na,K-ATPase. Large increases in K(1/2)(K(+)) were observed for the TM4 construct compared with the control constructs both in two-electrode voltage clamp experiments in Xenopus oocytes and in ATPase assays. ATPase assays also revealed a 10-fold shift in vanadate sensitivity for the TM4 construct. Based on these findings, it appears that the three identified TM4 residues play an important role in determining both the specific cation selectivities and the E(1)/E(2) conformational equilibria of the Na,K- and H,K-ATPase.  相似文献   

8.
The H,K-adenosine triphosphatase (ATPase) of gastric parietal cells is targeted to a regulated membrane compartment that fuses with the apical plasma membrane in response to secretagogue stimulation. Previous work has demonstrated that the alpha subunit of the H, K-ATPase encodes localization information responsible for this pump's apical distribution, whereas the beta subunit carries the signal responsible for the cessation of acid secretion through the retrieval of the pump from the surface to the regulated intracellular compartment. By analyzing the sorting behaviors of a number of chimeric pumps composed of complementary portions of the H, K-ATPase alpha subunit and the highly homologous Na,K-ATPase alpha subunit, we have identified a portion of the gastric H,K-ATPase, which is sufficient to redirect the normally basolateral Na,K-ATPase to the apical surface in transfected epithelial cells. This motif resides within the fourth of the H,K-ATPase alpha subunit's ten predicted transmembrane domains. Although interactions with glycosphingolipid-rich membrane domains have been proposed to play an important role in the targeting of several apical membrane proteins, the apically located chimeras are not found in detergent-insoluble complexes, which are typically enriched in glycosphingolipids. Furthermore, a chimera incorporating the Na, K-ATPase alpha subunit fourth transmembrane domain is apically targeted when both of its flanking sequences derive from H,K-ATPase sequence. These results provide the identification of a defined apical localization signal in a polytopic membrane transport protein, and suggest that this signal functions through conformational interactions between the fourth transmembrane spanning segment and its surrounding sequence domains.  相似文献   

9.
In oligomeric P2-ATPases such as Na,K- and H,K-ATPases, beta subunits play a fundamental role in the structural and functional maturation of the catalytic alpha subunit. In the present study we performed a tryptophan scanning analysis on the transmembrane alpha-helix of the Na,K-ATPase beta1 subunit to investigate its role in the stabilization of the alpha subunit, the endoplasmic reticulum exit of alpha-beta complexes, and the acquisition of functional properties of the Na,K-ATPase. Single or multiple tryptophan substitutions in the beta subunits transmembrane domain had no significant effect on the structural maturation of alpha subunits expressed in Xenopus oocytes nor on the level of expression of functional Na,K pumps at the cell surface. Furthermore, tryptophan substitutions in regions of the transmembrane alpha-helix containing two GXXXG transmembrane helix interaction motifs or a cysteine residue, which can be cross-linked to transmembrane helix M8 of the alpha subunit, had no effect on the apparent K(+) affinity of Na,K-ATPase. On the other hand, substitutions by tryptophan, serine, alanine, or cysteine, but not by phenylalanine of two highly conserved tyrosine residues, Tyr(40) and Tyr(44), on another face of the transmembrane helix, perturb the transport kinetics of Na,K pumps in an additive way. These results indicate that at least two faces of the beta subunits transmembrane helix contribute to inter- or intrasubunit interactions and that two tyrosine residues aligned in the beta subunits transmembrane alpha-helix are determinants of intrinsic transport characteristics of Na,K-ATPase.  相似文献   

10.
N-terminal deletion mutants of Na,K-ATPase alpha 1 isoforms initiating translation at Met34 (alpha 1T1) or at Met43 (alpha 1T2) were expressed in X. laevis oocytes. Compared to beta 3 cRNA injected controls, the co-expression of alpha 1wt, alpha 1T1, alpha 1T2 with beta 3 subunits results in a 2- to 3-fold increase of ouabain binding sites, parallelled by a concomitant increase in Na,K-pump current. The apparent K1/2 for potassium activation of the alpha 1T2/beta 3 Na,K-pumps is significantly higher than that of the alpha 1wt/beta 3 or alpha 1T1/beta 3 Na,K-pumps expressed at the cell surface. Total deletion of the lysine-rich N-terminal domain thus allows the expression of active Na,K-pump but with distinct cation transport properties.  相似文献   

11.
We have mapped the membrane topology of the renal Na,K-ATPase alpha-subunit by using a combination of introduced cysteine mutants and surface labeling with a membrane impermeable Cys-directed reagent, N-biotinylaminoethyl methanethiosulfonate. To begin our investigation, two cysteine residues (Cys(911) and Cys(964)) in the wild-type alpha-subunit were substituted to create a background mutant devoid of exposed cysteines (Lutsenko, S., Daoud, S., and Kaplan, J. H. (1997) J. Biol. Chem. 272, 5249-5255). Into this background construct were then introduced single cysteines in each of the five putative extracellular loops (P118C, T309C, L793C, L876C, and M973C) and the resulting alpha-subunit mutants were co-expressed with the beta-subunit in baculovirus-infected insect cells. All of our expressed Na,K-ATPase mutants were functionally active. Their ATPase, phosphorylation, and ouabain binding activities were measured, and the turnover of the phosphoenzyme intermediate was close to the wild-type enzyme, suggesting that they are folded properly in the infected cells. Incubation of the insect cells with the cysteine-selective reagent revealed essentially no labeling of the alpha-subunit of the background construct and labeling of all five mutants with single cysteine residues in putative extracellular loops. Two additional mutants, V969C and L976C, were created to further define the M9M10 loop. The lack of labeling for these two mutants showed that although Met(973) is apparently exposed, Val(969) and Leu(976) are not, demonstrating that this method may also be utilized to define membrane aqueous boundaries of membrane proteins. Our labeling studies are consistent with a specific 10-transmembrane segment model of the Na,K-ATPase alpha-subunit. This strategy utilized only functional Na,K-ATPase mutants to establish the membrane topology of the entire alpha-subunit, in contrast to most previously applied methods.  相似文献   

12.
The staphylococcal multidrug exporter QacA confers resistance to a wide range of structurally dissimilar monovalent and bivalent cationic antimicrobial compounds. To understand the functional importance of transmembrane segment 10, which is thought to be involved in substrate binding, cysteine-scanning mutagenesis was performed in which 35 amino acid residues in the putative transmembrane helix and its flanking regions were replaced in turn with cysteine. Solvent accessibility analysis of the introduced cysteine residues using fluorescein maleimide indicated that transmembrane segment 10 of QacA contains a 20-amino-acid hydrophobic core and may extend from Pro-309 to Ala-334. Phenotypic analysis and fluorimetric transport assays of these mutants showed that Gly-313 is important for the efflux of both monovalent and bivalent cationic substrates, whereas Asp-323 is only important for the efflux of bivalent substrates and probably forms part of the bivalent substrate-binding site(s) together with Met-319. Furthermore, the effects of N-ethyl-maleimide treatment on ethidium and 4',6-diamidino-2-phenylindole export mediated by the QacA mutants suggest that the face of transmembrane segment 10 that contains Asp-323 may also be close to the monovalent substrate-binding site(s), making this helix an integral component of the QacA multidrug-binding pocket.  相似文献   

13.
Na,K-ATPase, the main active transport system for monovalent cations in animal cells, is responsible for maintaining Na(+) and K(+) gradients across the plasma membrane. During its transport cycle it binds three cytoplasmic Na(+) ions and releases them on the extracellular side of the membrane, and then binds two extracellular K(+) ions and releases them into the cytoplasm. The fourth, fifth, and sixth transmembrane helices of the alpha subunit of Na,K-ATPase are known to be involved in Na(+) and K(+) binding sites, but the gating mechanisms that control the access of these ions to their binding sites are not yet fully understood. We have focused on the second extracellular loop linking transmembrane segments 3 and 4 and attempted to determine its role in gating. We replaced 13 residues of this loop in the rat alpha1 subunit, from E314 to G326, by cysteine, and then studied the function of these mutants using electrophysiological techniques. We analyzed the results using a structural model obtained by homology with SERCA, and ab initio calculations for the second extracellular loop. Four mutants were markedly modified by the sulfhydryl reagent MTSET, and we investigated them in detail. The substituted cysteines were more readily accessible to MTSET in the E1 conformation for the Y315C, W317C, and I322C mutants. Mutations or derivatization of the substituted cysteines in the second extracellular loop resulted in major increases in the apparent affinity for extracellular K(+), and this was associated with a reduction in the maximum activity. The changes produced by the E314C mutation were reversed by MTSET treatment. In the W317C and I322C mutants, MTSET also induced a moderate shift of the E1/E2 equilibrium towards the E1(Na) conformation under Na/Na exchange conditions. These findings indicate that the second extracellular loop must be functionally linked to the gating mechanism that controls the access of K(+) to its binding site.  相似文献   

14.
The cardiac glycoside ouabain inhibits Na,K-ATPase by binding to the alpha subunit. In a highly ouabain resistant clone from the MDCK cell line, we have found two alleles of the alpha subunit in which the cysteine, present in the wild-type first transmembrane segment, is replaced by a tyrosine (Y) or a phenylalanine (F). We have studied the kinetics of ouabain inhibition by measuring the current generated by the Na,K-pump in Xenopus oocytes injected with wild-type and mutated alpha 1 and wild-type beta 1 subunit cRNAs. When these mutations, alpha 1C113Y and alpha 1C113F [according to the published sequence [Verrey et al. (1989) Am. J. Physiol., 256, F1034] were introduced in the alpha 1 subunit of the Na,K-ATPase from Xenopus laevis, the inhibition constant (Ki) of ouabain increased greater than 1000-fold compared with wild-type. A more conservative mutation, serine alpha 1C113S did not change the Ki. We observed that the decreased affinity for ouabain was mainly due to a faster dissociation, but probably also to a slower association. Thus we propose that an amino acid residue of the first transmembrane segment located deep in the plasma membrane participates in the structure and the function of the ouabain binding site.  相似文献   

15.
Sánchez G  Blanco G 《Biochemistry》2004,43(28):9061-9074
The Na,K- and H,K-ATPases are plasma membrane enzymes responsible for the active exchange of extracellular K(+) for cytoplasmic Na(+) or H(+), respectively. At present, the structural determinants for the specific function of these ATPases remain poorly understood. To investigate the cation selectivity of these ATPases, we constructed a series of Na,K-ATPase mutants in which residues in the membrane spanning segments of the alpha subunit were changed to the corresponding residues common to gastric H,K-ATPases. Thus, mutants were created with substitutions in transmembrane domains TM1, TM4, TM5, TM6, TM7, and TM8 independently or together (designated TMAll). The function of each mutant was assessed after coexpression with the beta subunit in Sf-9 cells using baculoviruses. The enzymatic properties of TM1, TM7, and TM8 mutants were similar to the wild-type Na,K-ATPase, and while TM5 showed modest changes in apparent affinity for Na(+), TM4, TM6, and TMAll displayed an abnormal activity. This resulted in a Na(+)-independent hydrolysis of ATP, a 2-fold higher K(0.5) for Na(+) activation, and the ability to function at low pH. These results suggest a loss of discrimination for Na(+) over H(+) for the enzymes. In addition, TM4, TM6, and TMAll mutants exhibited a 1.5-fold lower affinity for K(+) and a 4-5-fold decreased sensitivity to vanadate. Altogether, these results provide evidence that residues in transmembrane domains 4 and 6 of the alpha subunit of the Na,K-ATPase play an important role in determining the specific cation selectivity of the enzyme and also its E1/E2 conformational equilibrium.  相似文献   

16.
The Na(+)/H(+) exchanger isoform 1 (NHE1) is an integral membrane protein that regulates intracellular pH by removing one intracellular H(+) in exchange for one extracellular Na(+). It has a large N-terminal membrane domain of 12 transmembrane segments and an intracellular C-terminal regulatory domain. We characterized the cysteine accessibility of amino acids of the putative transmembrane segment IX (residues 339-363). Each residue was mutated to cysteine in a functional cysteineless NHE1 protein. Of 25 amino acids mutated, 5 were inactive or nearly so after mutation to cysteine. Several of these showed aberrant targeting to the plasma membrane and reduced expression of the intact protein, whereas others were expressed and targeted correctly but had defective NHE1 function. Of the active mutants, Glu(346) and Ser(351) were inhibited >70% by positively charged [2-(trimethylammonium)-ethyl]methanethiosulfonate but not by anionic [2-sulfonatoethyl]methanethiosulfonate, suggesting that they are pore lining and make up part of the cation conduction pathway. Both mutants also had decreased affinity for Na(+) and decreased activation by intracellular protons. The structure of a peptide representing amino acids 338-365 was determined by using high resolution NMR in dodecylphosphocholine micelles. The structure contained two helical regions (amino acids Met(340)-Ser(344) and Ile(353)-Ser(359)) kinked with a large bend angle around a pivot point at amino acid Ser(351). The results suggest that transmembrane IX is critical with pore-lining residues and a kink at the functionally important residue Ser(351).  相似文献   

17.
The sodium- and chloride-dependent gamma-aminobutyric acid (GABA) transporter is essential for synaptic transmission by this neurotransmitter. GAT-1 expressed in Xenopus laevis oocytes exhibits sodium-dependent GABA-induced inward currents reflecting electrogenic sodium-coupled transport. In lithium-containing medium, GAT-1 mediates GABA-independent currents, the relationship of which to the physiological transport process is poorly understood. In this study, mutants are described that appear to be locked in this cation leak mode. When Gly(63), located in the middle of the highly conserved transmembrane domain I, was mutated to serine or cysteine, sodium-dependent GABA currents were abolished. Strikingly, these mutants exhibited robust inward currents in lithium- as well as potassium-containing media. Membrane-impermeant sulfhydryl reagents inhibited these currents of the cysteine but not of the serine mutant, indicating that this position was accessible to the external aqueous medium. The cation leak currents mediated by wild-type GAT-1 were inhibited by low millimolar sodium concentrations in a noncompetitive manner. Mutations at other positions of transmembrane domain I increased or decreased the apparent sodium affinity, as monitored by the sodium-dependent steady-state GABA currents or transient currents. In parallel, the ability of sodium to inhibit the cation leak currents was increased or decreased, respectively. Thus, transmembrane domain I of GAT-1 contains determinants controlling both sodium-coupled GABA flux and the cation leak pathway as well as the interconversion of these distinct modes. Our observations suggest the possibility that the permeation pathway in both modes shares common structural elements.  相似文献   

18.
The Na+,K+-ATPase pump achieves thermodynamically uphill exchange of cytoplasmic Na+ ions for extracellular K+ ions by using ATP-mediated phosphorylation, followed by autodephosphorylation, to power conformational changes that allow ion access to the pump's binding sites from only one side of the membrane at a time. Formally, the pump behaves like an ion channel with two tightly coupled gates that are constrained to open and close alternately. The marine agent palytoxin disrupts this coupling, allowing both gates to sometimes be open, so temporarily transforming a pump into an ion channel. We made a cysteine scan of Na+,K+-ATPase transmembrane (TM) segments TM1 to TM6, and used recordings of Na+ current flow through palytoxin-bound pump-channels to monitor accessibility of introduced cysteine residues via their reaction with hydrophilic methanethiosulfonate (MTS) reagents. To visualize the open-channel pathway, the reactive positions were mapped onto a homology model of Na+,K+-ATPase based on the structure of the related sarcoplasmic- and endoplasmic-reticulum (SERCA) Ca2+-ATPase in a BeF3--trapped state1,2, in which the extra-cytoplasmic gate is wide open (although the cytoplasmic access pathway is firmly shut). The results revealed a single unbroken chain of reactive positions that traverses the pump from the extracellular surface to the cytoplasm, comprises residues from TM1, TM2, TM4, and TM6, and passes through the equivalent of cation binding site II in SERCA, but not through site I. Cavity search analysis of the homology model validated its use for mapping the data by yielding a calculated extra-cytoplasmic pathway surrounded by MTS-reactive residues. As predicted by previous experimental results, that calculated extra-cytoplasmic pathway abruptly broadens above residue T806, at the outermost end of TM6 which forms the floor of the extracellular-facing vestibule. These findings provide a structural basis for further understanding cation translocation by the Na+,K+-ATPase and by other P-type pumps like the Ca2+- and H+,K+-ATPases.  相似文献   

19.
The integral membrane protein, the gastric H,K-ATPase, is an alpha-beta heterodimer, with 10 putative transmembrane segments in the alpha-subunit and one such segment in the beta-subunit. All transmembrane segments remain within the membrane domain following trypsinization of the intact gastric H,K-ATPase in the presence of K+ ions, identified as M1M2, M3M4, M5M6, and M7, M8, M9, and M10. Removal of K+ ions from this digested preparation results in the selective loss of the M5M6 hairpin from the membrane. The release of the M5M6 fragment is directed to the extracellular phase as evidenced by the accumulation of the released M5M6 hairpin inside the sealed inside out vesicles. The stabilization of the M5M6 hairpin in the membrane phase by the transported cation as well as loss to the aqueous phase in the absence of the transported cation has been previously observed for another P2-type ATPase, the Na, K-ATPase (Lutsenko, S., Anderko, R., and Kaplan, J. H. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7936-7940). Thus, the effects of the counter-transported cation on retention of the M5M6 segment in the membrane as compared with the other membrane pairs may be a general feature of P2-ATPase ion pumps, reflecting a flexibility of this region that relates to the mechanism of transport.  相似文献   

20.
Hruz PW  Mueckler MM 《Biochemistry》2000,39(31):9367-9372
The glucose permeation pathway within the GLUT1 facilitative glucose transporter is hypothesized to be formed by the juxtaposition of the hydrophilic faces of several transmembrane alpha-helices. The role of transmembrane segment 11 in forming a portion of this central aqueous channel was investigated using cysteine-scanning mutagenesis in conjunction with sulfhydryl-directed chemical modification. Each of the amino acid residues within transmembrane segment 11 were individually mutated to cysteine in an engineered GLUT1 molecule devoid of all native cysteines (C-less). Measurement of 2-deoxyglucose uptake in a Xenopus oocyte expression system revealed that all of these mutants retain measurable transport activity. Four of the cysteine mutants (N411, W412, N415, and F422) had significantly reduced specific activity relative to the C-less protein. Specific activity was increased in five of the mutants (A402, A405, V406, F416, and M420). The solvent accessibility and relative orientation of the residues to the glucose permeation pathway were investigated by determining the sensitivity of the mutant transporters to inhibition by the sulfhydryl-directed reagent p-chloromercuribenzenesulfonate (pCMBS). Cysteine replacement at five positions (I404, G408, F416, G419, and M420) produced transporters that were inhibited by incubation with extracellular pCMBS. All of these residues cluster along a single face of the alpha-helix within the regions showing altered specific activities. These data demonstrate that the exofacial portion of transmembrane segment 11 is accessible to the external solvent and provide evidence for the positioning of this alpha-helix within or near the glucose permeation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号