首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial arrangements and associative behavior of Actinomyces naeslundii, Veillonella dispar, Fusobacterium nucleatum, Streptococcus sobrinus, and Streptococcus oralis strains in an in vitro model of supragingival plaque were determined. Using species-specific fluorescence-labeled antibodies in conjunction with confocal laser scanning microscopy, the volumes and distribution of the five strains were assessed during biofilm formation. The volume-derived cell numbers of each strain correlated well with respective culture data. Between 15 min and 64 h, populations of each strain increased in a manner reminiscent of batch growth. The microcolony morphologies of all members of the consortium and their distributions within the biofilm were characterized, as were interspecies associations. Biofilms formed 15 min after inoculation consisted principally of single nonaggregated cells. All five strains adhered strongly to the saliva-conditioned substratum, and therefore, coadhesion played no role during the initial phase of biofilm formation. This observation does not reflect the results of in vitro coaggregation of the five strains, which depended upon the nature of the suspension medium. While the possibility cannot be excluded that some interspecies associations observed at later stages of biofilm formation were initiated by coadhesion, increase in bacterial numbers appeared to be largely a growth phenomenon regulated by the prevailing cultivation conditions.  相似文献   

2.
The spatial arrangements and associative behavior of Actinomyces naeslundii, Veillonella dispar, Fusobacterium nucleatum, Streptococcus sobrinus, and Streptococcus oralis strains in an in vitro model of supragingival plaque were determined. Using species-specific fluorescence-labeled antibodies in conjunction with confocal laser scanning microscopy, the volumes and distribution of the five strains were assessed during biofilm formation. The volume-derived cell numbers of each strain correlated well with respective culture data. Between 15 min and 64 h, populations of each strain increased in a manner reminiscent of batch growth. The microcolony morphologies of all members of the consortium and their distributions within the biofilm were characterized, as were interspecies associations. Biofilms formed 15 min after inoculation consisted principally of single nonaggregated cells. All five strains adhered strongly to the saliva-conditioned substratum, and therefore, coadhesion played no role during the initial phase of biofilm formation. This observation does not reflect the results of in vitro coaggregation of the five strains, which depended upon the nature of the suspension medium. While the possibility cannot be excluded that some interspecies associations observed at later stages of biofilm formation were initiated by coadhesion, increase in bacterial numbers appeared to be largely a growth phenomenon regulated by the prevailing cultivation conditions.  相似文献   

3.
Caulobacter crescentus is an oligotrophic alpha-proteobacterium with a complex cell cycle involving sessile-stalked and piliated, flagellated swarmer cells. Because the natural lifestyle of C. crescentus intrinsically involves a surface-associated, sessile state, we investigated the dynamics and control of C. crescentus biofilms developing on glass surfaces in a hydrodynamic system. In contrast to biofilms of the well-studied Pseudomonas aeruginosa, Escherichia coli, and Vibrio cholerae, C. crescentus CB15 cells form biphasic biofilms, consisting predominantly of a cell monolayer biofilm and a biofilm containing densely packed, mushroom-shaped structures. Based on comparisons between the C. crescentus strain CB15 wild type and its holdfast (hfsA; DeltaCC0095), pili (DeltapilA-cpaF::Omegaaac3), motility (motA), flagellum (flgH) mutants, and a double mutant lacking holdfast and flagellum (hfsA; flgH), a model for biofilm formation in C. crescentus is proposed. For both biofilm forms, the holdfast structure at the tip of a stalked cell is crucial for mediating the initial attachment. Swimming motility by means of the single polar flagellum enhances initial attachment and enables progeny swarmer cells to escape from the monolayer biofilm. The flagellum structure also contributes to maintaining the mushroom structure. Type IV pili enhance but are not absolutely required for the initial adhesion phase. However, pili are essential for forming and maintaining the well-defined three-dimensional mushroom-shaped biofilm. The involvement of pili in mushroom architecture is a novel function for type IV pili in C. crescentus. These unique biofilm features demonstrate a spatial diversification of the C. crescentus population into a sessile, "stem cell"-like subpopulation (monolayer biofilm), which generates progeny cells capable of exploring the aqueous, oligotrophic environment by swimming motility and a subpopulation accumulating in large mushroom structures.  相似文献   

4.
The architecture of a Sphingomonas biofilm was studied during early phases of its formation, using strain L138, a gfp-tagged derivative of Sphingomonas sp. strain LB126, as a model organism and flow cells and confocal laser scanning microscopy as experimental tools. Spatial and temporal distribution of cells and exopolymer secretions (EPS) within the biofilm, development of microcolonies under flow conditions representing varied Reynolds numbers, and changes in diffusion length with reference to EPS production were studied by sequential sacrificing of biofilms grown in multichannel flow cells and by time-lapse confocal imaging. The area of biofilm in terms of microscopic images required to ensure representative sampling varied by an order of magnitude when area of cell coverage (2 x 10(5) microm(2)) or microcolony size (1 x 10(6) microm(2)) was the biofilm parameter under investigation. Hence, it is necessary to establish the inherent variability of any biofilm metric one is attempting to quantify. Sphingomonas sp. strain L138 biofilm architecture consisted of microcolonies and extensive water channels. Biomass and EPS distribution were maximal at 8 to 9 mum above the substratum, with a high void fraction near the substratum. Time-lapse confocal imaging and digital image analysis showed that growth of the microcolonies was not uniform: adjacently located colonies registered significant growth or no growth at all. Microcolonies in the biofilm had the ability to move across the attachment surface as a unit, irrespective of fluid flow direction, indicating that movement of microcolonies is an inherent property of the biofilm. Width of water channels decreased as EPS production increased, resulting in increased diffusion distances in the biofilm. Changing hydrodynamic conditions (Reynolds numbers of 0.07, 52, and 87) had no discernible influence on the characteristics of microcolonies (size, shape, or orientation with respect to flow) during the first 24 h of biofilm development. Inherent factors appear to have overriding influence, vis-a-vis environmental factors, on early stages of microcolony development under these laminar flow conditions.  相似文献   

5.
Summary After prolonged cultivation at room temperature, papillae are formed by most strains of staphylococci. This secondary growth starts as micro-colonies developing inside the agar, beneath the primary colony; these micro-colonies grow towards the surface, leading to the formation of papillae. These micro-colonies are formed by micro-aerophilic variants developing during growth of the primary colony. Coagulase production and hemolytic activity of cultures derived from tested papillae, are similar to that of the mother strain. Nudlear structure of the bacteria forming the micro-colonies is similar to that of normal cells of staphylococci. A search for L forms in the micro-colonies remained negative.   相似文献   

6.
We describe here a role for quorum sensing in the detachment, or sloughing, of Serratia marcescens filamentous biofilms, and we show that nutrient conditions affect the biofilm morphotype. Under reduced carbon or nitrogen conditions, S. marcescens formed a classical biofilm consisting of microcolonies. The filamentous biofilm could be converted to a microcolony-type biofilm by switching the medium after establishment of the biofilm. Similarly, when initially grown as a microcolony biofilm, S. marcescens could be converted back to a filamentous biofilm by increasing the nutrient composition. Under high-nutrient conditions, an N-acyl homoserine lactone quorum-sensing mutant formed biofilms that were indistinguishable from the wild-type biofilms. Similarly, other quorum-sensing-dependent behaviors, such as swarming motility, could be rendered quorum sensing independent by manipulating the growth medium. Quorum sensing was also found to be involved in the sloughing of the filamentous biofilm. The biofilm formed by the bacterium consistently sloughed from the substratum after approximately 75 to 80 h of development. The quorum-sensing mutant, when supplemented with exogenous signal, formed a wild-type filamentous biofilm and sloughed at the same time as the wild type, and this was independent of surfactant production. When we removed the signal from the quorum-sensing mutant prior to the time of sloughing, the biofilm did not undergo significant detachment. Together, the data suggest that biofilm formation by S. marcescens is a dynamic process that is controlled by both nutrient cues and the quorum-sensing system.  相似文献   

7.
Steps in the development of a Vibrio cholerae El Tor biofilm   总被引:8,自引:0,他引:8  
We report that, in a simple, static culture system, wild-type Vibrio cholerae El Tor forms a three-dimensional biofilm with characteristic water channels and pillars of bacteria. Furthermore, we have isolated and characterized transposon insertion mutants of V. cholerae that are defective in biofilm development. The transposons were localized to genes involved in (i) the biosynthesis and secretion of the mannose-sensitive haemagglutinin type IV pilus (MSHA); (ii) the synthesis of exopolysaccharide; and (iii) flagellar motility. The phenotypes of these three groups suggest that the type IV pilus and flagellum accelerate attachment to the abiotic surface, the flagellum mediates spread along the abiotic surface, and exopolysaccharide is involved in the formation of three-dimensional biofilm architecture.  相似文献   

8.
Esp-independent biofilm formation by Enterococcus faecalis   总被引:12,自引:0,他引:12       下载免费PDF全文
Enterococcus faecalis is a gram-positive opportunistic pathogen known to form biofilms in vitro. In addition, this organism is often isolated from biofilms on the surfaces of various indwelling medical devices. However, the molecular mechanisms regulating biofilm formation in these clinical isolates are largely unknown. Recent work has suggested that a specific cell surface protein (Esp) of E. faecalis is critical for biofilm formation by this organism. However, in the same study, esp-deficient strains of E. faecalis were found to be capable of biofilm formation. To test the hypothesis that Esp is dispensable for biofilm formation by E. faecalis, we used microtiter plate assays and a chemostat-based biofilm fermentor assay to examine biofilm formation by genetically well-defined, non-Esp-expressing strains. Our results demonstrate that in vitro biofilm formation occurs, not only in the absence of esp, but also in the absence of the entire pathogenicity island that harbors the esp coding sequence. Using scanning electron microscopy to evaluate biofilms of E. faecalis OG1RF grown in the fermentor system, biofilm development was observed to progress through multiple stages, including attachment of individual cells to the substratum, microcolony formation, and maturation into complex multilayered structures apparently containing water channels. Microtiter plate biofilm analyses indicated that biofilm formation or maintenance was modulated by environmental conditions. Furthermore, our results demonstrate that expression of a secreted metalloprotease, GelE, enhances biofilm formation by E. faecalis. In summary, E. faecalis forms complex biofilms by a process that is sensitive to environmental conditions and does not require the Esp surface protein.  相似文献   

9.
Microcolony and biofilm formation as a survival strategy for bacteria   总被引:1,自引:0,他引:1  
Bacterial communities such as biofilms are widely recognized as being important for survival and persistence of bacteria in harsh environments. Mechanistic models of biofilm growth indicate that the way in which the surface is seeded can effect the morphology of simulated biofilms. Experimental studies indicate that genes which are important for chemotaxis also influence biofilm formation, perhaps by influencing aggregation on a surface. Understanding aggregation and microcolony formation could therefore help clarify factors influencing biofilm formation and illuminate how groups influence the fitness of bacteria. In this paper I develop an individual based model to examine how different behaviors involved in microcolony formation on a surface determine patterns of group sizes and link patterns to bacterial fitness.  相似文献   

10.
The genome of the endophytic diazotrophic bacterial species Gluconacetobacter diazotrophicus PAL5 (PAL5) revealed the presence of a gum gene cluster. In this study, the gumD gene homologue, which is predicted to be responsible for the first step in exopolysaccharide (EPS) production, was insertionally inactivated and the resultant mutant (MGD) was functionally studied. The mutant MGD presented normal growth and nitrogen (N(2)) fixation levels but did not produce EPS when grown on different carbon sources. MGD presented altered colony morphology on soft agar plates (0.3% agar) and was defective in biofilm formation on glass wool. Most interestingly, MGD was defective in rice root surface attachment and in root surface and endophytic colonization. Genetic complementation reverted all mutant phenotypes. Also, the addition of EPS purified from culture supernatants of the wild-type strain PAL5 to the mutant MGD was effective in partially restoring wild-type biofilm formation and plant colonization. These data provide strong evidence that the PAL5 gumD gene is involved in EPS biosynthesis and that EPS biosynthesis is required for biofilm formation and plant colonization. To our knowledge, this is the first report of a role of EPS in the endophytic colonization of graminaceous plants by a nitrogen-fixing bacterium.  相似文献   

11.
Glass plates are frequently used as the substratum in flow cell experiments to allow continuous non-destructive observations of biofilm development via microscopy. The aim of this study was to evaluate hydroxyapatite-coated glass as a substratum for flow cell experiments, in comparison to plain glass, for modelling primary colonization of the tooth surface by Streptococcus sanguis. Glass plates were magnetron sputter coated with hydroxyapatite, producing a thin transparent layer. Biofilm development in the flow cell was recorded using image capture from a microscope, and images were analyzed to determine percentage coverage of the substratum over 24 h. Removal of biofilm by increasing the flow rate was also assessed. No statistically significant differences were detected between S. sanguis biofilms grown on the two different substratum materials. Hence, this work supports the proposal that the conditioning film reduces the influence of substratum surface properties.  相似文献   

12.
13.
Digital image analysis and light microscopy were used to study and quantify the growth and behavior of two variants and selected flagellar mutants of Vibrio parahaemolyticus in glass flow cells under high- and low-viscosity conditions. The observations showed a series of surface-associated behaviors, including attachment, microcolony formation, migration, chemotactic movements, and aggregation, indicating a substantial degree of adaptive flexibility and multicellular behavior during growth of V. parahaemolyticus at interfaces.  相似文献   

14.
The ability to form biofilm is seen as an increasingly important colonization strategy among both pathogenic and environmental Klebsiella pneumoniae strains. The aim of the present study was to identify abiotic surface colonization factors of K. pneumoniae using different models at different phases of biofilm development. A 2200 K. pneumoniae mutant library previously obtained by signature-tagged mutagenesis was screened in static and dynamic culture models to detect clones impaired at early and/or mature stages of biofilm formation. A total of 28 mutants were affected during late phases of biofilm formation, whereas 16 mutants displayed early adhesion defect. These mutants corresponded to genes involved in potential cellular and DNA metabolism pathways and to membrane transport functions. Eight mutants were deficient in capsule or LPS production. Gene disruption and microscopic analyses showed that LPS is involved in initial adhesion on both glass and polyvinyl-chloride and the capsule required for the appropriate initial coverage of substratum and the construction of mature biofilm architecture. These results give new insight into the bacterial factors sequentially associated with the ability to colonize an abiotic surface and reveal the dual roles played by surface exopolysaccharides during K. pneumoniae biofilm formation.  相似文献   

15.
Biodeterioration of glass under the influence of fungi and cyanobacteria was simulated on model glasses produced according to the old recipes. Strains of fungi and cyanobacteria chosen for the investigation were isolated from biodeteriorated glass windows or similar indoor environment and are reported to be frequently involved in glass alteration. Growth of fungi and cyanobacteria resulted in the dense colonisation of the material with an expressed biofilm formation on the glass surface. The following deterioration phenomena were observed: micropitting and crack formation by all studied fungi and cyanobacteria; delineatingtraces of cells, hyphae and filaments on the glass surface; colour change of the surface due to fungal or cyanobacterial growth; biogenic minerals deposition as a consequence of the microbial metabolism on the glass surface. The pattern of glass biopitting produced in the experiment was very similar to the biopits observed on antique and medieval glasses (Krumbein et al., 1991). Crack formation pattern was strain-specific, but appeared to be independent of the chemical composition of the glass itself. The degree of deterioration was changing according to the sensitivity of the glass in question to corrosion.  相似文献   

16.
The architecture of a Sphingomonas biofilm was studied during early phases of its formation, using strain L138, a gfp-tagged derivative of Sphingomonas sp. strain LB126, as a model organism and flow cells and confocal laser scanning microscopy as experimental tools. Spatial and temporal distribution of cells and exopolymer secretions (EPS) within the biofilm, development of microcolonies under flow conditions representing varied Reynolds numbers, and changes in diffusion length with reference to EPS production were studied by sequential sacrificing of biofilms grown in multichannel flow cells and by time-lapse confocal imaging. The area of biofilm in terms of microscopic images required to ensure representative sampling varied by an order of magnitude when area of cell coverage (2 × 105 μm2) or microcolony size (1 × 106 μm2) was the biofilm parameter under investigation. Hence, it is necessary to establish the inherent variability of any biofilm metric one is attempting to quantify. Sphingomonas sp. strain L138 biofilm architecture consisted of microcolonies and extensive water channels. Biomass and EPS distribution were maximal at 8 to 9 μm above the substratum, with a high void fraction near the substratum. Time-lapse confocal imaging and digital image analysis showed that growth of the microcolonies was not uniform: adjacently located colonies registered significant growth or no growth at all. Microcolonies in the biofilm had the ability to move across the attachment surface as a unit, irrespective of fluid flow direction, indicating that movement of microcolonies is an inherent property of the biofilm. Width of water channels decreased as EPS production increased, resulting in increased diffusion distances in the biofilm. Changing hydrodynamic conditions (Reynolds numbers of 0.07, 52, and 87) had no discernible influence on the characteristics of microcolonies (size, shape, or orientation with respect to flow) during the first 24 h of biofilm development. Inherent factors appear to have overriding influence, vis-à-vis environmental factors, on early stages of microcolony development under these laminar flow conditions.  相似文献   

17.
Biofilms, or surface-attached communities of cells encapsulated in an extracellular matrix, represent a common lifestyle for many bacteria. Within a biofilm, bacterial cells often exhibit altered physiology, including enhanced resistance to antibiotics and other environmental stresses. Additionally, biofilms can play important roles in host-microbe interactions. Biofilms develop when bacteria transition from individual, planktonic cells to form complex, multi-cellular communities. In the laboratory, biofilms are studied by assessing the development of specific biofilm phenotypes. A common biofilm phenotype involves the formation of wrinkled or rugose bacterial colonies on solid agar media. Wrinkled colony formation provides a particularly simple and useful means to identify and characterize bacterial strains exhibiting altered biofilm phenotypes, and to investigate environmental conditions that impact biofilm formation. Wrinkled colony formation serves as an indicator of biofilm formation in a variety of bacteria, including both Gram-positive bacteria, such as Bacillus subtilis, and Gram-negative bacteria, such as Vibrio cholerae, Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Vibrio fischeri. The marine bacterium V. fischeri has become a model for biofilm formation due to the critical role of biofilms during host colonization: biofilms produced by V. fischeri promote its colonization of the Hawaiian bobtail squid Euprymna scolopes. Importantly, biofilm phenotypes observed in vitro correlate with the ability of V. fischeri cells to effectively colonize host animals: strains impaired for biofilm formation in vitro possess a colonization defect, while strains exhibiting increased biofilm phenotypes are enhanced for colonization. V. fischeri therefore provides a simple model system to assess the mechanisms by which bacteria regulate biofilm formation and how biofilms impact host colonization. In this report, we describe a semi-quantitative method to assess biofilm formation using V. fischeri as a model system. This method involves the careful spotting of bacterial cultures at defined concentrations and volumes onto solid agar media; a spotted culture is synonymous to a single bacterial colony. This 'spotted culture' technique can be utilized to compare gross biofilm phenotypes at single, specified time-points (end-point assays), or to identify and characterize subtle biofilm phenotypes through time-course assays of biofilm development and measurements of the colony diameter, which is influenced by biofilm formation. Thus, this technique provides a semi-quantitative analysis of biofilm formation, permitting evaluation of the timing and patterning of wrinkled colony development and the relative size of the developing structure, characteristics that extend beyond the simple overall morphology.  相似文献   

18.
Recently, we demonstrated that Salmonella enterica serovar Typhimurium can form biofilm on HEp-2 cells in a type 1 fimbria-dependent manner. Previous work on Salmonella exopolysaccharide (EPS) in biofilm indicated that the EPS composition can vary based upon the substratum on which the bacterial biofilm forms. We have investigated the role of genes important in the production of colanic acid and cellulose, common components of EPS. A mutation in the colanic acid biosynthetic gene, wcaM, was introduced into S. enterica serovar Typhimurium strain BJ2710 and was found to disrupt biofilm formation on HEp-2 cells and chicken intestinal tissue, although biofilm formation on a plastic surface was unaffected. Complementation of the wcaM mutant with the functional gene restored the biofilm phenotype observed in the parent strain. A mutation in the putative cellulose biosynthetic gene, yhjN, was found to disrupt biofilm formation on HEp-2 cells and chicken intestinal epithelium, as well as on a plastic surface. Our data indicate that Salmonella attachment to, and growth on, eukaryotic cells represent complex interactions that are facilitated by species of EPS.  相似文献   

19.
Abstract. The zebra mussel is an introduced fouling organism in North American inland waters. This field study tested whether natural biofilms, formed by covering substrata with a 100-μm mesh that allows microorganisms to attach and films to develop in the absence of postveligers, influenced the attachment of zebra mussel postveligers to artificial surfaces. Low-wettable polycarbonate and wettable glass surfaces were used in the experiments over four field seasons to study biofilm formation (1997–1998) and mussel attachment (1998–2000). The presence of the mesh did not quantitatively affect biofilm development on either substratum as determined by microscopic direct counts and colony-forming units on R2A agar. Natural biofilms on polycarbonate surfaces positively influenced postveliger attachment compared to substrata that initially had no film (ANOVA, p-values ranged from ≤.05 to ≤.001). Biofilms did not influence postveliger attachment to glass surfaces (ANOVA, p>.05). Attachment to both substrata was similar on surfaces with and without previously settled postveligers. Based on these results, we conclude that biofilms can enhance postveliger attachment to some but not all artificial surfaces.  相似文献   

20.
Microbes attach to surfaces and form dense communities known as biofilms, which are central to how microbes live and influence humans. The key defining feature of biofilms is adhesion, whereby cells attach to one another and to surfaces, via attachment factors and extracellular polymers. While adhesion is known to be important for the initial stages of biofilm formation, its function within biofilm communities has not been studied. Here we utilise an individual-based model of microbial groups to study the evolution of adhesion. While adhering to a surface can enable cells to remain in a biofilm, consideration of within-biofilm competition reveals a potential cost to adhesion: immobility. Highly adhesive cells that are resistant to movement face being buried and starved at the base of the biofilm. However, we find that when growth occurs at the base of a biofilm, adhesion allows cells to capture substratum territory and force less adhesive, competing cells out of the system. This process may be particularly important when cells grow on a host epithelial surface. We test the predictions of our model using the enteric pathogen Vibrio cholerae, which produces an extracellular matrix important for biofilm formation. Flow cell experiments indicate that matrix-secreting cells are highly adhesive and form expanding clusters that remove non-secreting cells from the population, as predicted by our simulations. Our study shows how simple physical properties, such as adhesion, can be critical to understanding evolution and competition within microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号