首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Nontoxic, low surface free energy silicone coatings having reduced biofouling adhesion strength have been developed as an alternative to antifouling paints. Silicone coatings permit macrofouling to adhere; however, fouling can be removed easily by water pressure or light scrubbing. One of the current methods used to evaluate the performance of non‐toxic silicone fouling‐release coatings relies heavily on fouling coverage. The organismal community structure as well as total coverage can affect the ease of fouling removal from these coatings. This paper explores fouling coverage and organismal adhesion over time. Long‐term fouling coverage data were collected at four sites (in Massachusetts, Hawaii and Florida) using static immersion panels coated with silicone and oil‐amended silicone systems. Inter‐site differences in fouling coverage and community structure were observed for each coating. Intra‐site variation and temporal change in coverage of fouling was minimal, regardless of coating formulation. The extent of coverage was affected by the duration of immersion and the local environmental conditions; these factors may also have an impact on the foul‐release capability of the silicone coatings. Organismal adhesion data was collected in Hawaii and Florida. These adhesion measurements were used as a tool to discriminate and rank fouling release coatings.  相似文献   

2.

This study compared the shear adhesion strength of barnacles, oysters and tubeworms on eight RTV 11‐based silicone fouling‐release coatings containing different silicone oil additives. It was found that adhesion strength differed among species and coating types. In most cases, oysters and tubeworms had higher adhesion strengths than barnacles. Barnacle adhesion strength was reduced on all coatings containing oil additives; however, this was not generally true for oysters and tubeworms. The difference in the adhesion strength among the three organisms tested in this study emphasizes the importance of understanding the fundamental interaction between marine invertebrate adhesives and the substratum.  相似文献   

3.
Silicone coatings with critical surface tensions (CST) between 20 and 30 mN m-1 more easily release diverse types of biofouling than do materials of higher and lower CST. Oils added to these coatings selectively further diminish the attachment strengths of different marine fouling organisms, without significantly modifying the initial CST. In a search for the mechanisms of this improved biofouling resistance, the interfacial instabilities of four silicone coatings were characterised by comprehensive contact angle analyses, using up to 12 different diagnostic fluids selected to mimic the side chain chemistries of the common amino acids of bioadhesive proteins. The surfaces of painted steel test panels were characterised both before and after exposure to freshwater, brackish water, and seawater over periods ranging from 9 months to nearly 4 years. Contact angle measurements demonstrated significant surface activity of the oil-amended coatings both before and after long-term underwater exposure. The surface activity of the control (coating without oil) increased as a result of underwater exposure, consistent with mild surface chain scission and hydrolysis imparting a self-surfactancy to the coating and providing a weak boundary layer promoting continuing easy release of attaching foulants. Coatings with additives that most effectively reduced biofouling showed both initial and persistent contact angle anomalies for the test liquid, thiodiglycol, suggesting lower-shear biofouling release mechanisms based upon diminished bioadhesive crosslinking by interfering with hydrogen- and sulfhydryl bonds. Swelling of the silicone elastomeric coatings by hydrocarbon fluids was observed for all four coatings, before and after immersion.  相似文献   

4.
Thomas J  Choi SB  Fjeldheim R  Boudjouk P 《Biofouling》2004,20(4-5):227-236
The preparation of biocide-incorporated silicone coatings for antifouling/fouling release applications is described. The biocide Triclosan (5-chloro-2-(2, 4-dichlorophenoxy) phenol) was modified with alkenyl moieties and incorporated into a silicone backbone through covalent bonds. The presence of the biocide on the coating surface was expected to deter fouling organisms from attaching to the surface of the coating. Allyl glycidyl ether was used to provide crosslink functionalities. Resins were cured using vinyl-terminated polydimethylsiloxane for hydrosilyl functionality and 1, 3-cyclohexane-bis (methylamine) for epoxy crosslinking functionality. Coatings were characterized by static water contact angle measurements and dynamic mechanical thermal analysis. Synthetic control over the incorporation of crosslink functionalities within the polymer resin allowed tuning of the surface of the coating and of mechanical properties. Resistance to macrofouling was tested by static immersion tests in the Indian River Lagoon at the Florida Institute of Technology from 15 October 2003 to 13 November 2003. Preliminary results showed that the coatings prepared from biocide-incorporated silicones with the appropriate bulk modulus significantly reduced macrofouling.  相似文献   

5.
Abstract

Silicone coatings with critical surface tensions (CST) between 20 and 30 mN m?1 more easily release diverse types of biofouling than do materials of higher and lower CST. Oils added to these coatings selectively further diminish the attachment strengths of different marine fouling organisms, without significantly modifying the initial CST. In a search for the mechanisms of this improved biofouling resistance, the interfacial instabilities of four silicone coatings were characterised by comprehensive contact angle analyses, using up to 12 different diagnostic fluids selected to mimic the side chain chemistries of the common amino acids of bioadhesive proteins. The surfaces of painted steel test panels were characterised both before and after exposure to freshwater, brackish water, and seawater over periods ranging from 9 months to nearly 4 years. Contact angle measurements demonstrated significant surface activity of the oil-amended coatings both before and after long-term underwater exposure. The surface activity of the control (coating without oil) increased as a result of underwater exposure, consistent with mild surface chain scission and hydrolysis imparting a self-surfactancy to the coating and providing a weak boundary layer promoting continuing easy release of attaching foulants. Coatings with additives that most effectively reduced biofouling showed both initial and persistent contact angle anomalies for the test liquid, thiodiglycol, suggesting lower-shear biofouling release mechanisms based upon diminished bioadhesive crosslinking by interfering with hydrogen- and sulfhydryl bonds. Swelling of the silicone elastomeric coatings by hydrocarbon fluids was observed for all four coatings, before and after immersion.  相似文献   

6.
Grooming may be defined as the frequent and gentle cleaning of a ship hull coating, when it is in port or idle, to prevent the establishment of fouling. This study assessed the effectiveness of grooming with a five-headed rotating brush system on epoxy, ablative copper and two silicone fouling release (FR) coatings. These coatings were placed under static immersion at Port Canaveral, FL on a weekly and biweekly frequency. The results showed that grooming reduced fouling on all surfaces and was able to prevent fouling on the ablative copper and FR coatings when performed weekly. It was concluded that the grooming tool used for these tests was sufficient to remove biofilm and most hard fouling. However, when fouling pressure increased or when grooming was performed less frequently, insufficient forces were imparted by the brush to remove all of the established hard fouling organisms.  相似文献   

7.

The preparation of biocide-incorporated silicone coatings for antifouling/fouling release applications is described. The biocide Triclosan (5-chloro-2-(2, 4-dichlorophenoxy) phenol) was modified with alkenyl moieties and incorporated into a silicone backbone through covalent bonds. The presence of the biocide on the coating surface was expected to deter fouling organisms from attaching to the surface of the coating. Allyl glycidyl ether was used to provide crosslink functionalities. Resins were cured using vinyl-terminated polydimethylsiloxane for hydrosilyl functionality and 1, 3-cyclohexane-bis (methylamine) for epoxy crosslinking functionality. Coatings were characterized by static water contact angle measurements and dynamic mechanical thermal analysis. Synthetic control over the incorporation of crosslink functionalities within the polymer resin allowed tuning of the surface of the coating and of mechanical properties. Resistance to macrofouling was tested by static immersion tests in the Indian River Lagoon at the Florida Institute of Technology from 15 October 2003 to 13 November 2003. Preliminary results showed that the coatings prepared from biocide-incorporated silicones with the appropriate bulk modulus significantly reduced macrofouling.  相似文献   

8.
Nevell TG  Edwards DP  Davis AJ  Pullin RA 《Biofouling》1996,10(1-3):199-212
The performances of some silicone elastomers as compliant coatings which are resistant to marine fouling have been assessed from a sea-water exposure trial covering three fouling seasons. Measurements of contact angles (polar and non-polar liquids, recently-advanced and recently-receded liquid drops and air bubbles) have been used to investigate the surface properties of materials and of coatings resistant to fouling after two years' exposure. The unmodified poly (dimethyIsiloxane) elastomer General Electric (GE) 21 was still resistant to marine settlement after three seasons and the poly(dimethyldiphenylsiloxane) GE655 only became fouled during the third season. No other unmodified material showed resistance to fouling beyond two seasons. The addition of a low-viscosity poly(dimethylsiloxane) oil to GE655 in a sufficient quantity (20 mass %) to cause blooming resulted in a material that remained free of fouling. Time-dependent behaviour by drops of all liquids on freshly prepared samples was observed in recently-advanced contact angles but not by recently-receded contact angles. With polar liquids, hard clear elastomers showed stepwise changes and also gave considerable contact-angle hysteresis effects. Immersion in water over a period of several weeks brought about a slow decrease in the hydrophobicity of all elastomers. GE21, after exposure in seawater for over two years, also showed a decrease as indicated by the contact angle of distilled water drops on its surface. The slow changes in the interfacial properties of silicones with polar liquids are attributed to rearrangements of polymer chains close to the surface, driven by the formation of hydrogen bonds between the solvent and oxygen atoms in the backbone. Penetration of the material by water gradually increases the surface energy and, sooner or later, the material becomes susceptible to fouling. For GE655, this may be delayed by incorporating with the formulation a relatively incompatible low-viscosity silicone oil.  相似文献   

9.
Silicone coatings are currently the most effective non-toxic fouling release surfaces. Understanding the mechanisms that contribute to the performance of silicone coatings is necessary to further improve their design. The objective of this study was to examine the effect of coating thickness on basal plate morphology, growth, and critical removal stress of the barnacle Balanus amphitrite. Barnacles were grown on silicone coatings of three thicknesses (0.2, 0.5 and 2 mm). Atypical ("cupped") basal plate morphology was observed on all surfaces, although there was no relationship between coating thickness and i) the proportion of individuals with the atypical morphology, or ii) the growth rate of individuals. Critical removal stress was inversely proportional to coating thickness. Furthermore, individuals with atypical basal plate morphology had a significantly lower critical removal stress than individuals with the typical ("flat") morphology. The data demonstrate that coating thickness is a fundamental factor governing removal of barnacles from silicone coatings.  相似文献   

10.
An antifouling or foul-release coating cannot be globally effective if it does not perform well in a range of environmental conditions, against a diversity of fouling organisms. From 1996 to 1998, the field test sites participating in the United States Navy's Office of Naval Research 6.2 Biofouling program examined global variation in the performance of 3 silicone foul-release coatings, viz. GE RTV11, Dow Corning RTV 3140, and Intersleek (International Coatings Ltd), together with a control anticorrosive coating (Ameron Protective Coatings F-150 series). At the University of Hawaii's test site in Pearl Harbor, significant differences were observed among the coatings in the rate of accumulation of fouling. The control coating failed rapidly; after 180-220 d immersion a community dominated by molluscs and sponges developed that persisted for the remainder of the experiment. Fouling of the GE and Dow Corning silicone coatings was slower, but eventually reached a similar community structure and coverage as the control coatings. The Intersleek coating remained lightly fouled throughout the experiment. Spatial variation in the structure of the community fouling the coatings was observed, but not in the extent of fouling. The rate of accumulation of fouling reflected differences among the coatings in adhesion of the tubeworm Hydroides elegans. The surface properties of these coatings may have affected the rate of fouling and the structure of the fouling community through their influence on larval settlement and subsequent interactions with other residents, predators, and the physical environment.  相似文献   

11.
Hydrophilic coatings exhibit ultra-low fouling properties in numerous laboratory experiments. In stark contrast, the antifouling effect of such coatings in vitro failed when performing field tests in the marine environment. The fouling release performance of nonionic and zwitterionic hydrophilic polymers was substantially reduced compared to the controlled laboratory environment. Microscopy and spectroscopy revealed that a large proportion of the accumulated material in field tests contains inorganic compounds and diatomaceous soil. Diatoms adhered to the accumulated material on the coating, but not to the pristine polymer. Simulating field tests in the laboratory using sediment samples collected from the test sites showed that incorporated sand and diatomaceous earth impairs the fouling release characteristics of the coatings. When exposed to marine sediment from multiple locations, particulate matter accumulated on these coatings and served as attachment points for diatom adhesion and enhanced fouling. Future developments of hydrophilic coatings should consider accumulated sediment and its potential impact on the antifouling performance.  相似文献   

12.
Abstract

A two-part study was designed to investigate the efficacy of using UVC to prevent biofouling in the context of ship hull coatings. The first study determined the frequency of UVC required for a coating that does not have any additives (epoxy). It was found that 1?min/day was effective at preventing hard fouling but not biofilm development. The second study addressed several variables: coating type (epoxy, copper, fouling release), frequency of UVC (no exposure, continuous exposure, 1min/6h, 1?min/day), and distance from the lamp (25 and 50?mm). Continuous UVC exposure resulted in no biofouling settlement but it did damage the copper coating. Intermittent UVC exposure was effective at preventing biofouling recruitment to both the copper and the fouling release coatings. Variations were observed with regards to the fouling composition, especially biofilms, sedimentary tubeworms and barnacles, suggesting tolerances within the community.  相似文献   

13.
The effect of modulus and film thickness on the release of adhered spores and sporelings (young plants) of the green fouling alga Ulva (syn. Enteromorpha) was investigated. PDMS elastomers of constant thickness (100 microm) but different elastic moduli were prepared by varying cross-link density with functional silicone oligomers with degrees of polymerization ranging from 18-830. This provided a 50-fold range of modulus values between 0.2 and 9.4 MPa. Three PDMS coatings of different thicknesses were tested at constant elastic modulus (0.8 MPa). The data revealed no significant increase in percentage spore removal except at the lowest modulus of 0.2 MPa although sporelings released more readily at all but the highest modulus. The influence of coating thickness was also greater for the release of sporelings compared to spores. The release data are discussed in the light of fracture mechanics models that have been applied to hard fouling. New concepts appertaining to the release of soft fouling organisms are proposed, which take into account the deformation in the adhesive base of the adherand and deformation of the PDMS film.  相似文献   

14.
A laminar flow biofilm-monitoring system was used to determine the efficacies of three antifouling (AF) coatings and five fouling-release (FR) coatings againstVibrio harveyi attachment. On-line measurements of tryptophan fluorescence and bioluminescence from each coating, normalized to an upstream stainless steel coupon, were used to determine the effects of AF and FR surfaces on biofilm formation. The AF coatings consisted of 5, 10, and 35 wt% Sea Nine 211 (C9211) incorporated into a vinyl copolymer. Both the 10 and 35 wt% coatings significantly inhibited biofilm biomass development measured by tryptophan fluorescence compared to the stainless steel control.V. harveyi bioluminescence was significantly greater than tryptophan fluorescence in cells attached to these coatings, suggesting that bioluminescence expression may be a marker for cellular stress or toxicity in biofilms. Five different polydimethylsiloxane (PDMS) FR coatings did not inhibit biofilm formation under low flow conditions. However, four PDMS coatings demonstrated decreased biomass levels compared to stainless steel after exposure to a shear stress of 330 dynes cm–2. There was no toxic additive in these coatings; bioluminescence and tryptophan fluorescence were proportional.  相似文献   

15.
Quick and reliable testing is crucial for the development of new fouling release (FR) coatings. Exposure of these coatings to natural multispecies communities is essential in evaluating their efficacy. To this end, we present a rotating disk setup for dynamic field exposure. To achieve a well-defined flow on the surface of the disk, an easy to use sample mounting system was developed that provides a smooth and even surface. We related the angular velocity of the disk to the wall shear stress on the surface with a hydrodynamic model. The wall shear stress was adjusted to values previously found to be suitable to discriminate dynamic diatom attachment on different coating chemistries in the lab. The effect of the dynamic conditions was shown by comparing polystyrene slides under static and dynamic exposure. Using a set of self-assembled monolayers, the discrimination potential of the assay in a multispecies environment was demonstrated.  相似文献   

16.
Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700?. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.  相似文献   

17.
Song Y  Zheng Q 《Bioresource technology》2008,99(16):7665-7671
The aim of the present work has been to study the influence of hydrophobic liquids on the morphology and the properties of thermo-molded plastics based on glycerol-plasticized wheat gluten (WG). While the total amount of castor oil and glycerol was remained constant at 30 wt%, castor oil with various proportions with respect to glycerol was incorporated with WG by mixing at room temperature and the resultant mixtures were thermo-molded at 120 degrees C to prepare sheet samples. Moisture absorption, morphology, dynamic mechanical properties, and tensile properties (Young's modulus, tensile strength and elongation at break) of the plastics were evaluated. Experimental results showed that the physical properties of WG plastic were closely related to glycerol to castor oil ratio. Increasing in castor oil content reduces the moisture absorption markedly, which is accompanied with a significant improvement in tensile strength and Young's modulus. These observations were further confirmed in 24 wt% glycerol-plasticized WG plastics containing 6 wt% silicone oil or polydimethylsiloxane (PDMS) liquid rubber.  相似文献   

18.

Barnacle release mechanisms and the durability of silicone coatings have been studied. Release studies were performed on both transparent, single‐layer silicone coatings and duplex silicone coatings. The release forces of pseudobarnacles (epoxied studs) and Chesapeake Bay barnacles (Balanus improvisus) were measured with a pull‐off (tension) tester; modes of release were revealed in video recordings of the separation process from transparent coatings on glass. Scratch tests with 0.8 mm spherically‐tipped diamond provided a measure of durability (tear resistance). Release forces from both coatings decreased as coating thickness increased. Both pseudobarnacles and barnacles separated by a peeling process, although differences in peeling modes were seen. The durability of coatings increased with increasing coating thickness. Release behavior is discussed in terms of a fracture mechanic's model for pull‐off separation, and the differences in adhesion between barnacles and pseudobarnacles are described.  相似文献   

19.
Abstract

Today, ship hull fouling is managed through fouling-control coatings, complemented with in-water cleaning. During cleaning, coating damage and wear must be avoided, for maximum coating lifetime and reduced antifoulant release. When possible, cleaning should target early stages of fouling, using minimal forces. However, such forces, and their effects on coatings, have not yet been fully quantified. In this one-year study, minimal cleaning forces were determined using a newly-designed immersed waterjet. The results show that bi-monthly/monthly cleaning, with maximum wall shear stress up to ~1.3?kPa and jet stagnation pressure ~0.17?MPa, did not appear to cause damage or wear on either the biocidal antifouling (AF) or the biocide-free foul-release (FR) coatings. The AF coating required bi-monthly cleanings to keep fouling to incipient slime (time-averaged results), while the FR coating had a similar fouling level even without cleaning. The reported forces may be used in matching cleaning parameters to the adhesion strength of the early stages of fouling.  相似文献   

20.
Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700?. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号