首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Brain-derived neurotropic factor (BDNF) plays an important role in mechanisms of depression. Precursor protein of this factor (proBDNF) can initiate apoptosis in the brain, while the mature form of BDNF is involved in neurogenesis. It is known that chronic alcoholization leads to the activation of apoptotic processes, neurodegeneration, brain injury, and cognitive dysfunction. In this work, we have studied the influence of long-term ethanol exposure on the proBDNF and BDNF protein levels, as well as on the expression of genes that encode these proteins in the brain structures of ASC mice with genetic predisposition to depressive-like behavior and in mice from parental nondepressive CBA strain. It was shown that chronic alcoholization results in a reduction of the BDNF level in the hippocampus and an increase in the amount of TrkB and p75 receptors in the frontal cortex of nondepressive CBA mice. At the same time, the long-term alcoholization of depressive ASC mice results in an increase of the proBDNF level in the frontal cortex and a reduction in the p75 protein level in the hippocampus. It has also been shown that, in depressive ASC mice, proBDNF and BDNF levels are significantly lower in the hippocampus and the frontal cortex compared with nondepressive CBA strain. However, no significant differences in the expression of genes encoding the studied proteins were observed. Thus, changes in the expression patterns of proBDNF, BDNF, and their receptors under the influence of alcoholization in the depressive ASC strain and nondepressive CBA strain mice are different.  相似文献   

2.
The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+)-activated K(+) channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.  相似文献   

3.
Brain-derived neurotrophic factor (BDNF) is a protein that allows the survival of specific neuronal populations. This study reports on the distribution of the BDNF mRNA in the adult mouse brain, where the BDNF gene is strongly expressed, using quantitative Northern blot analysis and in situ hybridization. All brain regions examined were found to contain substantial amounts of BDNF mRNA, the highest levels being found in the hippocampus followed by the cerebral cortex. In the hippocampus, which is also the site of highest nerve growth factor (NGF) gene expression in the central nervous system (CNS), there is approximately 50-fold more BDNF mRNA than NGF mRNA. In other brain regions, such as the granule cell layer of the cerebellum, the differences between the levels of BDNF and NGF mRNAs are even more pronounced. The BDNF mRNA was localized by in situ hybridization in hippocampal neurons (pyramidal and granule cells). These data suggest that BDNF may play an important role in the CNS for a wide variety of adult neurons.  相似文献   

4.
Immunohistochemical distribution and cellular localization of neurotrophins was investigated in adult monkey brains using antisera against nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Western blot analysis showed that each antibody specifically recognized appropriate bands of approximately 14.7 kDa, 14.2 kDa, 13.6 kDa, and 14.5 kDa, for NGF, BDNF, NT-3, and NT-4, respectively. These positions coincided with the molecular masses of the neurotrophins studied. Furthermore, sections exposed to primary antiserum preadsorbed with full-length NGF, BDNF, NT-3, and NT-4 exhibited no detectable immunoreactivity, demonstrating specificities of the antibodies against the tissues prepared from rhesus monkeys. The study provided a systematic report on the distribution of NGF, BDNF, NT-3, and NT-4 in the monkey brain. Varying intensity of immunostaining was observed in the somata and processes of a wide variety of neurons and glial cells in the cerebrum, cerebellum, hippocampus, and other regions of the brain. Neurons in some regions such as the cerebral cortex and the hippocampus, which stained for neurotrophins, also expressed neurotrophic factor mRNA. In some other brain regions, there was discrepancy of protein distribution and mRNA expression reported previously, indicating a retrograde or anterograde action mode of neurotrophins. Results of this study provide a morphological basis for the elucidation of the roles of NGF, BDNF, NT-3, and NT-4 in adult primate brains.  相似文献   

5.
6.
7.
Space travel induces many deleterious effects on the flight crew due to the '0' g environment. The brain experiences a tremendous fluid shift, which is responsible for many of the detrimental changes in physical behavior seen in astronauts. It therefore indicates that the brain may undergo major changes in its protein levels in a '0' g environment to counteract the stress. Analysis of these global changes in proteins may explain to better understand the functioning of brain in a '0' g condition. Toward such an effort, we have screened proteins in the hippocampus of mice kept in simulated microgravity environment for 7 days and have observed a few changes in major proteins as compared to control mice. Essentially, the results show a major loss of proteins in the hippocampus of mice subjected to simulated microgravity. These changes occur in structural proteins such as tubulin, coupled with the loss of proteins involved in metabolism. This preliminary investigation leads to an understanding of the alteration of proteins in the hippocampus in response to the microgravity environment.  相似文献   

8.
9.
Proteomic Analysis of Mouse Hypothalamus under Simulated Microgravity   总被引:2,自引:0,他引:2  
Exposure to altered microgravity during space travel induces changes in the brain and these are reflected in many of the physical behavior seen in the astronauts. The vulnerability of the brain to microgravity stress has been reviewed and reported. Identifying microgravity-induced changes in the brain proteome may aid in understanding the impact of the microgravity environment on brain function. In our previous study we have reported changes in specific proteins under simulated microgravity in the hippocampus using proteomics approach. In the present study the profiling of the hypothalamus region in the brain was studied as a step towards exploring the effect of microgravity in this region of the brain. Hypothalamus is the critical region in the brain that strictly controls the pituitary gland that in turn is responsible for the secretion of important hormones. Here we report a 2-dimensional gel electrophoretic analysis of the mouse hypothalamus in response to simulated microgravity. Lowered glutathione and differences in abundance expression of seven proteins were detected in the hypothalamus of mice exposed to microgravity. These changes included decreased superoxide dismutase-2 (SOD-2) and increased malate dehydrogenase and peroxiredoxin-6, reflecting reduction of the antioxidant system in the hypothalamus. Taken together the results reported here indicate that oxidative imbalance occurred in the hypothalamus in response to simulated microgravity.  相似文献   

10.
11.
The present study was aimed to investigate the behavioral and molecular effects of lamotrigine. To this aim, Wistar rats were treated with lamotrigine (10 and 20 mg/kg) or imipramine (30 mg/kg) acutely and chronically. The behavior was assessed using forced swimming test. Brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), Proteina Kinase B (PKB, AKT), glycogen synthase kinase 3 (GSK-3) and B-cell lymphoma 2 (Bcl-2) levels, citrate synthase, creatine kinase and mitochondrial chain (I, II, II-III and IV) activities were assessed in the brain. The results showed that both treatments reduced the immobility time. The BDNF were increased in the prefrontal after acute treatment with lamotrigine (20 mg/kg), and the BDNF and NGF were increased in the prefrontal after chronic treatment with lamotrigine in all doses. The AKT increased and Bcl-2 and GSK-3 decreased after both treatments in all brain areas. The citrate synthase and creatine kinase increased in the amygdala after acute treatment with imipramine. Chronic treatment with imipramine and lamotrigine (10 mg/kg) increased the creatine kinase in the hippocampus. The complex I was reduced and the complex II, II-III and IV were increased, but related with treatment and brain area. In conclusion, lamotrigine exerted antidepressant-like, which can be attributed to its effects on pathways related to depression, such as neurotrophins, metabolism energy and signaling cascade.  相似文献   

12.
Neurotrophins and their trk receptors constitute major classes of signaling molecules with important actions in the developing and adult nervous system. With regard to the sympathoadrenal cell lineage, which gives rise to sympathetic neurons and chromaffin cells, neurotrophin-3 (NT-3) and nerve growth factor (NGF) are thought to influence developing sympathetic neurons. Neurotrophin requirements of chromaffin cells of the adrenal medulla are less well understood than those for NGF. In order to provide the bases for understanding of putative functions of neurotrophins for the development and maintenance of chromaffin cells and their preganglionic innervation, in situ hybridization has been used to study the expression of brain-derived neurotrophic factor (BDNF) and NT-3, together with their cognate receptors trkB and trkC, in the adrenal gland and in the intermediolateral column (IML) of the spinal cord. BDNF is highly expressed in the embryonic adrenal cortex and later in cells of the cortical reticularis zone. Adrenal medullary chromaffin cells fail to express detectable levels of mRNAs for BDNF, NT-3, and their cognate receptors trkB and trkC. Neurons in the IML express BDNF and trkB, and low levels of NT-3 and trkC. Our data make it unlikely that BDNF and NT-3 serve as retrograde trophic factors for IML neurons but suggest roles of BDNF and NT-3 locally within the spinal cord and possibly for sensory nerves of the adrenal cortex.  相似文献   

13.
To obtain insight into the site and stage specificity of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) action in vivo, we compared the expression patterns of the genes for these three related neurotrophic factors as well as for the NGF receptor in developing and adult rats. Initial embryonic expression of these related neurotrophic factors approximately coincides with the onset of neurogenesis. However, the levels at which the three factors are expressed at this time and throughout the developing nervous system are dramatically different. NT-3 is by far the most highly expressed in immature regions of the CNS in which proliferation, migration, and differentiation of neuronal precursors is ongoing. NT-3 expression dramatically decreases with maturation of these regions. By contrast, BDNF expression is low in developing regions of the CNS and increases as these regions mature. NGF expression varies during the development of discrete CNS regions, but not in any consistent manner compared with NT-3 and BDNF. Despite the dramatic variations, NT-3, BDNF, and NGF do share one striking similarity--high level expression in the adult hippocampus. Our observations are consistent with the idea that NT-3, BDNF, and NGF have paralleled as well as reciprocal roles in vivo.  相似文献   

14.
In this study we investigate the effects of short-term hypergravity on lung and heart neurotrophins and mast cell distribution. Our results showed that brain derived-neurotrophic factor (BDNF) protein and mRNA expression are increased in the lungs of mice exposed to hypergravity while in the heart hypergravity causes a marked reduction in BDNF mRNA expression, and a decrease in BDNF protein. Compared to controls, nerve growth factor (NGF) protein was expressed more in the heart of rotated mice. These observations demonstrate that altered hypergravity can affect, though differentially, the local expression of NGF and BDNF proteins and their mRNAs in the lung and heart and indicates that short-term exposure to hypergravity causes a marked increase in BDNF, but not in NGF in the lungs of adult mice. Moreover, mast cells, which are NGF-producing cells and implicated in cardiac and respiratory activity, increased in number in proximity to blood vessels in the heart and in lung airway epithelium of rotated mice. This study indicates that hypergravity influences cardiovascular and respiratory tissue and suggests a neurotrophin involvement in the reaction to this environmental exposure.  相似文献   

15.
1. We investigated the immunohistochemical alterations of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus 1 h to 14 days after transient cerebral ischemia in gerbils. We also examined the effect of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor pitavastatin against the changes of BDNF, NGF, HSP 70 and ubiquitin in the hippocampus after cerebral ischemia in the hippocampus after ischemia. 2. The transient cerebral ischemia was carried out by clamping the carotid arteries with aneurismal clips for 5 min. 3. In the present study, the alteration of HSP 70 and ubiquitin immunoreactivity in the hippocampal CA1 sector was more pronounced than that of BDNF and NGF immunoreactivity after transient cerebral ischemia. In double-labeled immunostainings, BDNF, NGF and ubiquitin immunostaining was observed both in GFAP-positive astrocytes and MRF-1-positive microglia in the hippocampal CA1 sector after ischemia. Furthermore, prophylactic treatment with pitavastatin prevented the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after ischemia. 4. These findings suggest that the expression of stress protein including HSP 70 and ubiquitin may play a key role in the protection against the hippocampal CA1 neuronal damage after transient cerebral ischemia in comparison with the expression of neurotrophic factor such as BDNF and NGF. The present findings also suggest that the glial BDNF, NGF and ubiquitin may play some role for helping surviving neurons after ischemia. Furthermore, our present study indicates that prophylactic treatment with pitavastatin can prevent the damage of neurons with neurotrophic factor and stress proteins in the hippocampal CA1 sector after transient cerebral ischemia. Thus our study provides further valuable information for the pathogenesis after transient cerebral ischemia. The first two authors contributed equally  相似文献   

16.
The mRNAs of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) exhibit a similar, though not identical, regional and cellular distribution in the rodent brain. In situ hybridization experiments have shown that BDNF, like NGF, is predominantly expressed by neurons. The neuronal localization of the mRNAs of these two neurotrophic molecules raised the question as to whether neuronal activity might be involved in the regulation of their synthesis. After we had demonstrated that depolarization with high potassium (50 mM) resulted in an increase in the levels of both BDNF and NGF mRNAs in cultures of hippocampal neurons, we investigated the effect of a large number of transmitter substances. Kainic acid, a glutamate receptor agonist, was by far the most effective in increasing BDNF and NGF mRNA levels in the neurons, but neither N-methyl-D-aspartic acid (NMDA) nor inhibitors of the NMDA glutamate receptors had any effect. However, the kainic acid mediated increase was blocked by antagonists of non-NMDA receptors. Kainic acid also elevated levels of BDNF and NGF mRNAs in rat hippocampus and cortex in vivo. These results suggest that the synthesis of these two neurotrophic factors in the brain is regulated by neuronal activity via non-NMDA glutamate receptors.  相似文献   

17.
Differential Regulation of Hippocampal Neurotrophins During Aging in Rats   总被引:10,自引:1,他引:9  
Abstract: Neurotrophins are a family of neurotrophic factors with considerable structural homology. We used sensitive and specific two-site enzyme immunoassays to assess age-associated changes in levels of three neurotrophins—nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3)—in the hippocampus of Fischer 344 rats. Expressions of these proteins and their mRNAs were compared in the same animals. More than 200 ng of BDNF per gram of tissue was detected in the hippocampus of 2-month-old rats. This amount was two and 100 times greater than that of NT-3 and NGF, respectively. The levels of BDNF and NT-3 increased further 2–6 months after birth, whereas NGF content declined during this period, and the altered protein levels of all three neurotrophins were maintained 6–18 months postnatally. In contrast to the patterns of protein expression, BDNF mRNA levels increased during both of these periods, and the NT-3 mRNA levels appeared to decline. Changes in the expression of BDNF mRNA and NGF protein were opposite to those reported to occur in Alzheimer's disease. These results suggest that, during normal aging in rats, neurotrophin expression is regulated independently at both the mRNA and posttranslational levels. Any deficiency in their regulation might contribute to neurodegenerative disorders.  相似文献   

18.
Expression of tyrosine receptor kinase B (TrkB), a receptor for brain‐derived neurotrophic factor (BDNF), is markedly elevated in the adrenal medulla during immobilization stress. Catecholamine release was confirmed in vitro by stimulating chromaffin cells with recombinant BDNF. We investigated the role of TrkB and the localization of BDNF in the adrenal gland during immobilization stress for 60 min. Blood catecholamine levels increased after stimulation with TrkB expressed in the adrenal medulla during 60‐min stress; however, blood catecholamine levels did not increase in adrenalectomized rats. Furthermore, expression of BDNF mRNA and protein was detected in the adrenal medulla during 60‐min stress. Similarly, in rats undergoing sympathetic nerve block with propranolol, BDNF mRNA and protein were detected in the adrenal medulla during 60‐min stress. These results suggest that signal transduction of TrkB in the adrenal medulla evokes catecholamine release. In addition, catecholamine release was evoked by both the hypothalamic–pituitary–adrenal axis and autocrine signaling by BDNF in the adrenal gland. BDNF–TrkB interaction may play a role in a positive feedback loop in the adrenal medulla during immobilization stress.  相似文献   

19.
The circadian expression of clock and clock-controlled cognition-related genes in the hippocampus would be essential to achieve an optimal daily cognitive performance. There is some evidence that retinoid nuclear receptors (RARs and RXRs) can regulate circadian gene expression in different tissues. In this study, Holtzman male rats from control and vitamin A-deficient groups were sacrificed throughout a 24-h period and hippocampus samples were isolated every 4 or 5 h. RARα and RXRβ expression level was quantified and daily expression patterns of clock BMAL1, PER1, RORα, and REVERB genes, RORα and REVERB proteins, as well as temporal expression of cognition-related RC3 and BDNF genes were determined in the hippocampus of the two groups of rats. Our results show significant daily variations of BMAL1, PER1, RORα, and REVERB genes, RORα and REVERB proteins and, consequently, daily oscillating expression of RC3 and BDNF genes in the rat hippocampus. Vitamin A deficiency reduced RXRβ mRNA level as well as the amplitude of PER1, REVERB gene, and REVERB protein rhythms, and phase-shifted the daily peaks of BMAL1 and RORα mRNA, RORα protein, and RC3 and BDNF mRNA levels. Thus, nutritional factors, such as vitamin A and its derivatives the retinoids, might modulate daily patterns of BDNF and RC3 expression in the hippocampus, and they could be essential to maintain an optimal daily performance at molecular level in this learning-and-memory-related brain area.  相似文献   

20.
Regulation of neuropeptide expression in the brain by neurotrophins   总被引:3,自引:0,他引:3  
Neurotrophins, which are structurally related to nerve growth factor, have been shown to promote survival of various neurons. Recently, we found a novel activity of a neurotrophin in the brain: Brain-derived neurotrophic factor (BDNF) enhances expression of various neuropeptides. The neuropeptide differentiation activity was then compared among neurotrophins both in vivo and in vitro. In cultured neocortical neurons, BDNF and neurotrophin-5 (NT-5) remarkably increased levels of neuropeptide Y and somatostatin, and neurotrophin-3 (NT-3) also increased these peptides but required higher concentrations. At elevating substance P, however, NT-3 was as potent as BDNF. In contrast, NGF had negligible or no effect. Neurotrophins administered into neonatal brain exhibited slightly different potencies for increasing these neuropeptides: The most marked increase in neuropeptide Y levels was obtained in the neocortex by NT-5, whereas in the striatum and hippocampus by BDNF, although all three neurotrophins increased somatostatin similarly in all the brain regions examined. Overall spatial patterns of the neuropeptide induction were similar among the neurotrophins. Neurons in adult rat brain can also react with the neurotrophins and alter neuropeptide expression in a slightly different fashion. Excitatory neuronal activity and hormones are known to change expression of neurotrophins. Therefore, neurotrophins, neuronal activity, and hormones influence each other and all regulate neurotransmitter/peptide expression in developing and mature brain. Physiological implication of the neurotransmitter/peptide differentiation activities is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号