首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated membranes of the extreme haloalkaliphilic archaeon Natronococcus occultus were able to hydrolyze ATP via an ATPase, which required the presence of Mg(2+), high concentrations of NaCl, and a pH value of 9. The native molecular mass of the purified ATPase was 130 kDa and was composed of 74- and 61-kDa subunits. Enzyme activity was specific for the hydrolysis of ATP with slight activity towards GTP, CTP, and ITP. The enzyme required NaCl for maximal activity but Na(2)SO(4) and (NH(4))(2)SO(4) could substitute. The enzyme showed no activity if Na(2)SO(3) or sodium citrate was substituted for NaCl. The ATPase from N. occultus was inhibited by NBD-Cl, NaN(3), and ouabain, and was sensitive to nitrate, vanadate, DCCD, and bafilomycin A(1). It was not inhibited by NEM in contrast to other previously characterized halophile ATPases. The ATPase had a K(M) of 0.5 mM and appeared to be non-competitively inhibited by NaN(3) with a K(I) of 3.1 mM.  相似文献   

2.
Clofibrate increased oligomycin-resistant ATPase activity in peroxisomes more than 17-fold (5.15 +/- 0.71 milliunits/mg protein) in rat liver. The activity was dependent on divalent cations (Mg2+ > Ca2+) with an optimum pH of 7.5. This activity was partially inhibited by N-ethylmaleimide (NEM), 4,4'-dithiocyanatostilbene-2,2'-disulfonic acid (DIDS), silicotungstic acid (STA), and high concentrations of N,N'-dicyclohexylcarbodiimide (DCCD). Proteinase K digestion of intact peroxisomes severely reduced the NEM-sensitive activity, but little affected the NEM-resistant activity. NEM-sensitive and -resistant ATPases showed Km values for ATP of 780 and 73 microM, respectively. The NEM-sensitive activity was inhibited completely by DIDS, 7-chloro-4- nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), tributyltin chloride (TBT), and quercetin, and partially by DCCD and STA, whereas the NEM-resistant activity was totally insensitive to these chemicals except for STA. These activities had unique requirements for divalent cations, anions, and substrates, respectively. They were partially separated by gel filtration chromatography and had molecular masses of 520 kDa (NEM-sensitive enzyme) and 450 kDa (NEM-resistant enzyme), respectively.  相似文献   

3.
Lysosomal H+-translocating ATPase (H+-ATPase) was solubilized with lysophosphatidylcholine and reconstituted into liposomes (Moriyama, Y., Takano, T. and Ohkuma, S. (1984) J. Biochem. (Tokyo) 96, 927-930). In this study, the sensitivities of membrane-bound, solubilized and liposome-incorporated ATPase to various anions and drugs were measured in comparison with those of similar forms of mitochondrial H+-ATPase (mitochondrial F0F1-ATPase) with the following results. (1) Bicarbonate and sulfite activated solubilized lysosomal H+-ATPase, but not the membrane-bound ATPase or ATPase incorporated into liposomes. All three forms of mitochondrial F0F1-ATPase were activated by these anions. (2) All three forms of both lysosomal H+-ATPase and mitochondrial F0F1-ATPase were strongly inhibited by SCN-, NO3- and F-, but scarcely affected by Cl-, Br- and SO2-4. (3) The solubilized lysosomal H+-ATPase was strongly inhibited by azide, quercetin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and oligomycin. Its sensitivity was almost the same as that of mitochondrial F0F1-ATPase. Neither membrane-bound ATPase nor ATPase incorporated into liposomes was affected appreciably by these drugs. These results indicate that the sensitivity to anions and drugs of lysosomal H+-ATPase depends on the form of the enzyme and that the sensitivity of the solubilized lysosomal H+-ATPase is very similar to that of mitochondrial F0F1-ATPase. On the other hand, the two ATPases differ in their sensitivity to N-ethylmaleimide and pyridoxal phosphate: only the mitochondrial ATPase is inhibited by pyridoxal phosphate whereas only the lysosomal ATPase is inhibited by N-ethylmaleimide.  相似文献   

4.
The catalytic properties of two ATPases which had been purified from bovine brain microtubules (Tominaga, S. & Kaziro, Y. (1983) J. Biochem. 93, 1085-1092) were studied. ATPase I, which had a molecular weight of 33,000, required the presence of 1.0 microM tubulin, 0.2 mM Mg2+, and 10 mM Ca2+ for maximal activity. The activation of ATPase I by tubulin was specific to the native form of tubulin, which could not be replaced by F-actin or tubulin denatured either by heat or more mildly by dialysis in the absence of glycerol. ATPase I was not specific to ATP, and GTP, and to a lesser extent, UTP and CTP were also hydrolyzed. Km for ATP of ATPase I was about 0.04 mM. ATPase I was inhibited by 5 mM Mg2+, 0.04 M K+, 10(-3) M vanadate, 10 mM N-ethylmaleimide, or 20% (v/v) glycerol. ATPase II, which was associated with membrane vesicles, required the presence of 0.2-2.0 mM Mg2+ and 20 mM KCl for activity. Tubulin stimulated the reaction of ATPase II only partially, and the addition of Ca2+ was rather inhibitory. ATPase II was specific to ATP with a Km value of 0.14 mM. It was inhibited by 1.6 mM N-ethylmaleimide and 20% (v/v) glycerol, but was not very sensitive to vanadate. Instead, ATPase II was inhibited by trifluoperazine, chlorpromazine, and nicardipin at 10(-3) M.  相似文献   

5.
A soluble Mg-dependent ATPase, similar to the mitochondrial ATPase from beef heart, has been isolated from heart mitochondria of salmon (Salmo salar). The salmon heart ATPase has 5 subunits with molecular weights similar to the beef heart enzyme, but the Stoke's radius of the intact salmon enzyme is larger. The salmon heart ATPase is less temperature labile than the beef heart enzyme. The salmon heart ATPase is strongly inhibited by ADP, and the inhibition is highly temperature dependent. The ITPase activity is also inhibited by IDP (Ki = 180 micron). 2,4-Dinitrophenol in small concentrations stimulates the ITPase activity as well as the ATPase activity of the "washed" salmon heart enzyme. However, in an enzyme preparation which had been freed of most of the bound nucleotides by dialysis in the presence of glycerol (Roveri et al., 1980) the ITPase activity is not stimulated by 2,4-dinitrophenol.  相似文献   

6.
Ward JM  Sze H 《Plant physiology》1992,99(1):170-179
The vacuolar H+-translocating ATPase (H+-ATPase), originally reported to consist of three major subunits, has been further purified from oat roots (Avena sativa var Lang) to determine the complete subunit composition. Triton-solubilized ATPase activity was purified by gel filtration on Sephacryl S400 and ion-exchange chromatography (Q-Sepharose). ATP hydrolysis activity of purified preparations was inhibited by 100 nanomolar bafilomycin A1, a specific vacuolar-type ATPase inhibitor. The purified oat H+-ATPase (relative molecular weight = 650,000) was composed of polypeptides of 70, 60, 44, 42, 36, 32, 29, 16, 13, and 12 kilodaltons. To analyze the organization of the H+-ATPase subunits, native vacuolar membranes were treated with KI and MgATP to dissociate peripheral proteins. Release of 70, 60, 44, 42, 36, and 29 kilodalton polypeptides from the membrane was accompanied by a loss of ATP hydrolysis and ATP-dependent H+-pumping activities. Five of the peripheral subunits were released from the membrane as a large complex of 540 kilodaltons. Vesicles that had lost the peripheral sector of the ATPase could hold a pH gradient generated by the proton-translocating pyrophosphatase, suggesting that the integral sector of the ATPase did not form a H+-conducting pathway. Negative staining of native vesicles revealed knob-like structures of 10 to 12 nanometers in dense patches on the surface of vacuolar membranes. These structures were removed by MgATP and KI, which suggested that they were the peripheral sectors of the H+-ATPase. These results demonstrate that the vacuolar H+-ATPase from oat roots has 10 different subunits. The oat vacuolar ATPase is organized as a large peripheral sector and an integral sector with a subunit composition similar, although not identical to, other eukaryotic vacuolar ATPases. Variations in subunit composition observed among several ATPases support the idea that distinct types of vacuolar H+-ATPases exist in plants.  相似文献   

7.
We have isolated a chaperonin from the hyperthermophilic archaeon Sulfolobus solfataricus based on its ability to inhibit the spontaneous refolding at 50 degrees C of dimeric S. solfataricus malic enzyme. The chaperonin, a 920-kDa oligomer of 57-kDa subunits, displays a potassium-dependent ATPase activity with an optimum temperature at 80 degrees C. S. solfataricus chaperonin promotes correct refoldings of several guanidine hydrochloride-denatured enzymes from thermophilic and mesophilic sources. At a molar ratio of chaperonin oligomer to single polypeptide chain of 1:1, S. solfataricus chaperonin completely inhibits spontaneous refoldings and suppresses aggregation upon dilution of the denaturant; refoldings resume upon ATP hydrolysis, with yields of active molecules and rates of folding notably higher than in spontaneous processes. S. solfataricus chaperonin prevents the irreversible inactivations at 90 degrees C of several thermophilic enzymes by the binding of the denaturation intermediate; the time-courses of inactivations are unaffected and most activity is regained upon hydrolysis of ATP. S. solfataricus chaperonin completely prevents the formation of aggregates during thermal inactivation of chicken egg white lysozyme at 70 degrees C, without affecting the rate of activity loss; ATP hydrolysis results in the recovery of most lytic activity. Tryptophan fluorescence measurements provide evidence that S. solfataricus chaperonin undergoes a dramatic conformational rearrangement in the presence of ATP/Mg, and that the hydrolysis of ATP is not required for the conformational change. The ATP/Mg-induced conformation of the chaperonin is fully unable to bind the protein substrates, probably due to disappearance or modification of the substrate binding sites. This is the first archaeal chaperonin whose involvement in protein folding has been demonstrated.  相似文献   

8.
A new isolate of the aceticlastic methanogen Methanothrix thermophila utilizes only acetate as the sole carbon and energy source for methanogenesis (Y. Kamagata and E. Mikami, Int. J. Syst. Bacteriol. 41:191-196, 1991). ATPase activity in its membrane was found, and ATP hydrolysis activity in the pH range of 5.5 to 8.0 in the presence of Mg2+ was observed. It had maximum activity at around 70 degrees C and was specifically stimulated up to sixfold by 50 mM NaHSO3. The proton ATPase inhibitor N,N'-dicyclohexylcarbodiimide inhibited the membrane ATPase activity, but azide, a potent inhibitor of F0F1 ATPase (H(+)-translocating ATPase of oxidative phosphorylation), did not. Since the enzyme was tightly bound to the membranes and could not be solubilized with dilute buffer containing EDTA, the nonionic detergent nonanoyl-N-methylglucamide (0.5%) was used to solubilize it from the membranes. The purified ATPase complex in the presence of the detergent was also sensitive to N,N'-dicyclohexylcarbodiimide, and other properties were almost the same as those in the membrane-associated form. The purified enzyme revealed at least five kinds of subunits on a sodium dodecyl sulfate-polyacrylamide gel, and their molecular masses were estimated to be 67, 52, 37, 28, and 22 kDa, respectively. The N-terminal amino acid sequences of the 67- and 52-kDa subunits had much higher similarity with those of the 64 (alpha)- and 50 (beta)-kDa subunits of the Methanosarcina barkeri ATPase and were also similar to those of the corresponding subunits of other archaeal ATPases. The alpha beta complex of the M. barkeri ATPase has ATP-hydrolyzing activity, suggesting that a catalytic part of the Methanothrix ATPase contains at least the 67- and 52-kDa subunits.  相似文献   

9.
A novel ATPase was solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, with low ionic strength buffer containing EDTA. The enzyme was purified to homogeneity by hydrophobic chromatography and gel filtration. The molecular weight of the purified enzyme was estimated to be 360,000. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate revealed that it consisted of three kinds of subunits, alpha, beta, and gamma, whose molecular weights were approximately 69,000, 54,000, and 28,000, respectively, and the most probable subunit stoichiometry was alpha 3 beta 3 gamma 1. The purified ATPase hydrolyzed ATP, GTP, ITP, and CTP but not UTP, ADP, AMP, or p-nitrophenylphosphate. The enzyme was highly heat stable and showed an optimal temperature of 85 degrees C. It showed an optimal pH of around 5, very little activity at neutral pH, and another small activity peak at pH 8.5. The ATPase activity was significantly stimulated by bisulfite and bicarbonate ions, the optimal pH remaining unchanged. The Lineweaver-Burk plot was linear, and the Km for ATP and the Vmax were estimated to be 1.6 mM and 13 mumol Pi.mg.-1.min-1, respectively, at pH 5.2 at 60 degrees C in the presence of bisulfite. The chemical modification reagent, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, caused inactivation of the ATPase activity although the enzyme was not inhibited by N,N'-dicyclohexylcarbodiimide, N-ethyl-maleimide, azide or vanadate. These results suggest that the ATPase purified from membranes of S. acidocaldarius resembles other archaebacterial ATPases, although a counterpart of the gamma subunit has not been found in the latter. The relationship of the S. acidocaldarius ATPase to other ion-transporting ATPases, such as F0F1 type or E1E2 type ATPases, was discussed.  相似文献   

10.
S. cervi showed particulate bound Ca2+ ATPase and Na+,K(+)-ATPase activities while Mg2+ ATPase was detected in traces. ATPase of S. cervi was also differentiated from the nonspecific p-nitrophenyl phosphatase activity. Female parasite and microfilariae exhibited higher Ca2+ ATPase and Na+,K(+)-ATPase activities than the male adults and the enzyme Na+,K(+)-ATPase was mainly concentrated in the gastrointestinal tract of the filarial parasite. Na+,K(+)-ATPase of the filariid was ouabain-sensitive while Ca2(+)-ATPase activity was regulated by concentration of Ca2+ ions and inhibited by EGTA. Phenothiazines, viz. trifluoperazine, promethazine and chlorpromazine caused significant inhibition of Ca2+ ATPase and Na+,K(+)-ATPase. Diethylcarbamazine was a potent inhibitor of these ATPases. Mebendazole, levamisole and centperazine also caused significant inhibition of the ATPases indicating this enzyme system as a common target for the action of anthelmintic drugs.  相似文献   

11.
An ATPase with Mr of 360,000 was purified from plasma membranes of a thermophilic eubacterium Thermus thermophilus, and was characterized. ATP hydrolytic activity of the purified enzyme was extremely low, 0.07 mumol of Pi released mg-1 min-1, and it was stimulated up to 30-fold by bisulfite. The following properties of the enzyme indicate that it is not a usual F1-ATPase but that it belongs to the V-type ATPase family, another class of ATPases found in membranes of archaebacteria and eukaryotic endomembranes. Among its four kinds of subunits with approximate Mr values of 66,000 (alpha), 55,000 (beta), 30,000 (gamma), and 12,000 (delta), the alpha subunit had a similar molecular size to the catalytic subunits of the V-type ATPases but was significantly larger than the alpha subunit of F1-ATPases. ATP hydrolytic activity was not affected by azide, an inhibitor of F1-ATPases, but was inhibited by nitrate, an inhibitor of the V-type ATPase. N-terminal amino acid sequences determined for the purified alpha and beta subunits showed much higher similarity to those of the V-type ATPases than those of F1-ATPases. Thus the distribution of the V-type ATPase in the prokaryotic kingdom may not be restricted to archaebacteria.  相似文献   

12.
Gradient purified preparations of the maize 400-kDa tonoplast ATPase are enriched in two major polypeptides, 72 and 62 kDa. Polyclonal antibodies were prepared against these two putative subunits after elution from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel slices and against the solubilized native enzyme. Antibodies to both the 72- and 62-kDa polypeptides cross-reacted with similar bands on immunoblots of a tonoplast-enriched fraction from barley, while only the 72-kDa antibodies cross-reacted with tonoplast and tonoplast ATPase preparations from Neurospora. Antibodies to the 72-kDa polypeptide and the native enzyme both strongly inhibited enzyme activity, but the 62-kDa antibody was without effect. The identity and function of the subunits was further probed using radiolabeled covalent inhibitors of the tonoplast ATPase, 7-chloro-4-nitro[14C]benzo-2-oxa-1,3-diazole ([14C]NBD-Cl) and N,N'-[14C]dicyclohexylcarbodiimide ([14C]DCCD). [14C]NBD-Cl preferentially labeled the 72-kDa polypeptide, and labeling was prevented by ATP. [14C]DCCD, an inhibitor of the proton channel portion of the mitochondrial ATPase, bound to a 16-kDa polypeptide. Venturicidin blocked binding to the mitochondrial 8-kDa polypeptide but did not affect binding to the tonoplast 16-kDa polypeptide. Taken together, the results implicate the 72-kDa polypeptide as the catalytic subunit of the tonoplast ATPase. The DCCD-binding 16-kDa polypeptide may comprise the proton channel. The presence of nucleotide-binding sites on the 62-kDa polypeptide suggests that it may function as a regulatory subunit.  相似文献   

13.
A membrane-associated ATPase with an M(r) of approximately 510,000 and containing subunits with M(r)s of 80,000 (alpha), 55,000 (beta), and 25,000 (gamma) was isolated from the methanogen Methanococcus voltae. Enzymatic activity was not affected by vanadate or azide, inhibitors of P- and F1-ATPase, respectively, but was inhibited by nitrate and bafilomycin A1, inhibitors of V1-type ATPases. Since dicyclohexylcarbodiimide inhibited the enzyme when it was present in membranes but not after the ATPase was solubilized, we suggest the presence of membrane-associated component analogous to the F0 and V0 components of both F-type and V-type ATPases. N-terminal amino acid sequence analysis of the alpha subunit showed a higher similarity to ATPases of the V-type family than to those of the F-type family.  相似文献   

14.
The native tonoplast and the mitochondrial H+-ATPase from oat roots were compared to determine whether the two enzymes have similar mechanisms. H+ pumping in low-density microsomal vesicles reflected activity from the tonoplast-type ATPase, as ATPase activity and ATP-dependent H+ pumping (quinacrine fluorescence quenching) showed similar sensitivities to inhibition by N-ethylmaleimide, N,N'-dicyclohexylcarbodiimide, 4,4'-diisothiocyano-2,2'-stilbene disulfonate, nitrate, quercetin, or 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. The tonoplast-type ATPase was stimulated by C1-,Br- greater than HCO3- whereas the mitochondrial ATPase was stimulated by HCO3- much greater than C1-,Br-. Both enzymes hydrolyzed ATP preferentially and were inhibited competitively by AMP or ADP. Apart from resistance to azide, the tonoplast-type ATPase was strikingly similar in its inhibitor sensitivities to the mitochondrial ATPase. The insensitivity to vanadate of both enzymes suggests the reaction mechanisms do not involve a covalent phosphoenzyme. Inhibition by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and N-ethylmaleimide and protection by ATP suggests tyrosine and cysteine residues are in the catalytic site of the tonoplast ATPase. The mitochondrial ATPase was 100 times more sensitive to N,N'-dicyclohexyl-carbodiimide inhibition than the tonoplast H+-ATPase. These results suggest the tonoplast and the mitochondrial H+-ATPases share common steps in their catalytic and vectorial reaction mechanisms, yet sufficient differences exist to indicate they are two distinct ATPases.  相似文献   

15.
ATP synthesis and hydrolysis by Rhodospirillum rubrum chromatophores as well as the soluble RrF1-ATPase activity are inhibited by 4-chloro-7-nitrobenzofurazan (NBD-C1) in a dithiothreitol-reversible manner. Using the method earlier developed in these chromatophores to remove specifically the beta-subunit from their membrane-bound RrF1 leaving all other subunits attached to the resulting inactive beta-less chromatophores (Philosoph, S., Binder, A., and Gromet-Elhanan, Z. (1977) J. Biol. Chem. 252, 8747-8752), we have tested the effect of NBD-Cl also on the isolated beta-subunit and on the beta-less chromatophores before and after their reconstitution with the missing beta-subunit. The isolated purified beta-subunit as well as the RrF1-ATPase bind covalently [14C]NBD-Cl with an accompanying increase in absorbance at 385 nm, indicative of a tyrosyl-O-NBD bond. But, unlike the inactive RrF1-NBD complex, the beta-NBD adduct is as capable as the native beta-subunit to reconstitute beta-less chromatophores and restore their ATP synthesis and hydrolysis activities. On the other hand, incubation of beta-less chromatophores with NBD-Cl before or after their reconstitution with either native beta or the NBD-saturated beta adduct results in complete inhibition of their restored activities. It is, therefore, concluded that there are different binding sites for NBD-Cl on the isolated beta-subunit and on the beta-less chromatophores or on chromatophores reconstituted with the beta-NBD adduct, where the beta-site is already occupied. Furthermore, the site responsible for inactivation by NBD-Cl of the coupled and reconstituted chromatophores and of the soluble RrF1 is different from the site modified by NBD-Cl on the isolated beta-subunit. Its subunit location is as yet unknown.  相似文献   

16.
The tonoplast ATPase from etiolated seedlings of Vigna radiata L. (mung bean) was isolated using a two-step detergent solubilization modified from Mandala and Taiz (S Mandala, L Taiz [1985] Plant Physiol 78: 327-333). After ultracentrifugation on 10 to 28% sucrose gradient, the ATPase showed a 31.6-fold purification over the initial specific activity of the starting tonoplast-enriched membranes. The purified ATPase used Mg2+-ATP as the preferred substrate. The tonoplast ATPase was isolated in a form with characteristics similar to that on its native membrane environment. Analysis by SDS-PAGE revealed two prominent bands with molecular weights of 78,000 (α subunit) and 64,000 (β subunit). The intensity of Coomassie blue staining showed a 1:1 stoichiometry for α and β subunits. The amino acid composition of α and β subunits also confirmed the suggested stoichiometry of the subunit composition of the tonoplast ATPase. Moreover, radiation inactivation analysis yielded a functional size of 414 ± 24 and 405 ± 25 kilodaltons for soluble and membrane bound tonoplast ATPases, respectively. It is possible that the functioning tonoplast ATPase may be in a form of αβ-heteromultimer.  相似文献   

17.
An energy-transducing adenosine triphosphatase (ATPase, EC 3.6.1.3) that contains an extra polypeptide (delta) as well as three intrinsic subunits (alpha, beta, gamma) was purified from Micrococcus lysodeikticus membranes. The apparent subunit stoichiometry of this soluble ATPase complex is alpha 3 beta 3 gamma delta. The functional role of the subunits was studied by correlating subunit sensitivity to trypsin and effect of antibodies raised against holo-ATPase and its alpha, beta and gamma subunits with changes in ATPase activity and ATPase rebinding to membranes. A form of the ATPase with the subunit proportions 1.67(alpha):3.00(beta:0.17(gamma) was isolated after trypsin treatment of purified ATPase. This form has more than twice the specific activity of native enzyme. Other forms with less relative proportion of alpha subunits and absence of gamma subunit are not active. Of the antisera to subunits, only anti-(beta-subunit) serum shows a slight inhibitory effect on ATPase activity, but its combination with either anti-(alpha-subunit) or anti-(gamma-subunit) serum increases the effect. The results suggest that beta subunit is required for full ATPase activity, although a minor proportion of alpha and perhaps gamma subunit(s) is also required, probably to impart an active conformation to the protein. The additional polypeptide not hitherto described in Micrococcus lysodeikticus ATPase had a molecular weight of 20 000 and was found to be involved in ATPase binding to membranes. This 20 000-dalton component can be equated with the delta subunit of other energy-transducing ATPases and its association with the (alpha, beta, gamma) M. lysodeikticus ATPase complex appears to be dependent on bivalent cations. The present results do not preclude the possibility that the gamma subunit also plays a role in ATPase binding, in which, however, the major subunits do not seem to play a role.  相似文献   

18.
The coupling-factor ATPases from photosynthetically grown Rhodopseudomonas palustris and Rhodopseudomonas sphaeroides were purified by the same procedure to homogeneity. Gel chromatography on Sephacryl S-300 Superfine shortened the process of purification and improved its yield. Solubilization of the ATPase from both bacteria was found to be dependent on a specific sonication treatment of the cell suspensions, indicating a very weakly bound F1-ATPase in R. palustris. Depleted chromatophores could be restored in photophosphorylation and membrane-bound ATPase activities by adding the solubilized ATPase protein. The purified enzymes did not show a markedly trypsin-stimulated or dithiothreitol-stimulated activity. Isoelectric focusing and chromatofocusing revealed isoelectric points of 5.0 for both F1-ATPases. The molecular weights were determined by gel chromatography plus high-performance liquid chromatography. Hence, we calculated a molecular weight of 350000 for both F1-ATPases. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed five subunits for both enzymes. Kinetic parameters, regarding substrate specificity, the effect of divalent cations, Km and Ki values for the membrane-bound and solubilized ATPases were determined.  相似文献   

19.
The clathrin-coated vesicle proton-translocating complex is composed of a maximum of eight major polypeptides. Of these potential subunits, only the 17-kDa component, which is a proton pore, has been defined functionally (Sun, S.Z., Xie, X. S., and Stone, D. K. (1987) J. Biol. Chem. 262, 14790-14794). ATPase-and proton-pumping activities of the 200-fold purified proton-translocating complex are supported by Mg2+, whereas Ca2+ will only activate ATP hydrolysis. Like Mg2+-activated ATPase activity, Ca2+-supported ATP hydrolysis is inhibited by N-ethylmaleimide, NO3-, and an inhibitory antibody and is stimulated by Cl- and phosphatidylserine. Thus, Ca2+ prevents coupling of ATPase activity to vectoral proton movement, and Ca2+-activated ATPase activity is a partial reaction useful for analyzing the subunit structure required for ATP hydrolysis. The 530-kDa holoenzyme was dissociated with 3 M urea and subcomplexes, and isolated subunits were partially resolved by glycerol gradient centrifugation. No combination of these components yielded Mg2+-activated ATPase or proton pumping. Ca2+-activated ATP hydrolysis was not catalyzed by a subcomplex containing the 70- and 58-kDa subunits but was restored by recombination of the 70-, 58-, 40-, and 33-kDa polypeptides, indicating that these are subunits of the clathrin-coated vesicle proton pump which are necessary for ATP hydrolysis.  相似文献   

20.
Using a coupled transport assay which detects only those ATPase molecules functionally inserted into the platelet dense granule membrane, we have characterized the inhibitor sensitivity, substrate specificity, and divalent cation requirements of the granule H+ pump. Under identical assay conditions, the granule ATPase was insensitive to concentrations of NaN3, oligomycin, and efrapeptin which almost completely inhibit ATP hydrolysis by mitochondrial membranes. The granule ATPase was inhibited by dicyclohexylcarbodiimide but only at concentrations much higher than those needed to maximally inhibit mitochondrial ATPase. Vanadate (VO3-) ion and ouabain also failed to inhibit granule ATPase activity at concentrations which maximally inhibited purified Na+,K+-ATPase. Two alkylating agents, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and N-ethylmaleimide both completely inhibited H+ pumping by the granule ATPase under conditions where ATP hydrolysis by mitochondrial membranes or Na+,K+-ATPase was hardly affected. These results suggest that the H+-pumping ATPase of platelet granule membrane may belong to a class of ion-translocating ATPases distinct from both the phosphoenzyme-type ATPases present in plasma membrane and the F1F0-ATPases of energy-transducing membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号