首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hemodynamic effects of a converting-enzyme inhibitor (CEI) given during 12 consecutive hours were studied in severe chronic renal hypertensive and normotensive Wistar rats. Hemodynamic parameters were obtained by thermodilution method in conscious unrestrained animals twenty-four hours after surgery. A bolus of CEI induced a significant decrease of mean arterial pressure (MAP) (from 192.2 +/- 8.2 to 163.3 +/- 5.9 mmHg, p less than 0.001) and total peripheral resistance (TPR) (from 7.69 +/- 0.53 to 5.83 +/- 0.33 mmHg.min/ml 100 g) in hypertensive animals. Cardiac index (CI) and heart rate increased significantly (p less than 0.05). Infusion of CEI to hypertensive animals during 12 consecutive hours produced a further progressive decrease in MAP and TPR (p less than 0.05) and an increase in CI (p less than 0.05). Heart rate did not change. Acute and prolonged infusions of CEI to normotensive group induced less but similar effect to those observed in hypertensive group. These results suggest that an increase of the renin-angiotensin system activity is the principal mechanism involved in the maintenance of high blood pressure during chronic phase of renal hypertension on the rats.  相似文献   

2.
Fetal sheep were thyroidectomized at 80 days' gestation and reoperated at 118-122 days for insertion of vascular catheters. The effects of hypoxaemia and intravenous tyramine infusion on plasma catecholamine concentrations, blood pressure and heart rate were then determined in experiments at 125-135 days' gestation. Age matched intact fetuses were also studied. Thyroidectomy was associated with increased concentrations of noradrenaline, adrenaline and dopamine in some thoracic and abdominal organs, increased noradrenaline concentrations in the cerebellum, and decreased adrenaline concentrations in the hypothalamus, cervical spinal cord, and superior cervical and inferior mesenteric ganglia. Arterial pressure was significantly lower in the thyroidectomized fetuses (34.0 +/- 0.15 mmHg) than in intact fetuses (44.7 +/- 0.2 mmHg; p less than 0.001). In contrast, plasma noradrenaline concentrations were significantly higher in the thyroidectomized fetuses (2.04 +/- 0.25 ng/ml) compared to the intact fetuses (0.99 +/- 0.08 ng/ml; P less than 0.001). In the intact fetuses there was a significant increase in plasma noradrenaline concentration and blood pressure during hypoxaemia, and bradycardia at the onset of hypoxaemia. In contrast, in the thyroidectomized fetuses hypoxaemia did not cause significant change in plasma catecholamine concentrations, blood pressure or heart rate. Infusion of tyramine produced a 1.9-fold increase of plasma noradrenaline in thyroidectomized fetuses compared to a 9.2-fold increase in the intact fetuses (P less than 0.05). Tyramine infusion caused a similar proportional increase of blood pressure in both thyroidectomized and intact fetuses. Heart rate decreased during the tyramine-induced hypertension in the intact fetus, but increased in the thyroidectomized fetuses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We tested the hypothesis that, in canine embolic pulmonary hypertension, upstream transmission of increased left atrial pressure (LAP) is inversely related to the level of the pressure intercept (PI) obtained by extrapolation from the linear pulmonary vascular pressure-flow (P-Q) plot. P-Q coordinates were obtained by varying Q through systemic fistulas. Seven group 1 dogs were embolized with autologous blood clot to produce marked pulmonary hypertension and mean pulmonary arterial pressure (PAP), and PI increased from 15 to 41 mmHg (P less than 0.001) and from 8.8 to 31 mmHg (P less than 0.001), respectively. Before and after embolization we assessed effects of increased LAP, produced by inflation of a left atrial balloon, on PAP at constant Q. Embolization depressed the mean slope of this relationship from 0.78 to 0.16 (P less than 0.001). Subsequently, six group 2 dogs were embolized to produce moderate pulmonary hypertension with a mean PI of 22 mmHg. This value was significantly less than PI in group 1 (P less than 0.01). After embolization, the slope of the PAP-LAP relationship was greater in group 2 than group 1: 0.47 vs. 0.16 (P less than 0.01). We conclude that the upstream transmission of left atrial pressure is inversely related to PI and that marked embolic pulmonary hypertension produces an effective vascular waterfall.  相似文献   

4.
The relationship of plasma levels of adrenaline, noradrenaline, arginine vasopressin (AVP) and plasma renin activity (PRA) to heart rate were studied in normoxaemic and hypoxaemic fetal, neonatal and adult sheep. The mean heart rate response of fetuses at the end of a 30 minute period of 10% oxygen delivery to the maternal ewe was tachycardia. However bradycardia, usually of a transient nature, was observed in 9 of the 12 fetuses (P less than 0.05). Multiple regression analysis was used to determine the contribution of blood gas, blood pressure and plasma hormone levels to the variance in heart rate in the perinatal sheep. 22% of the variance in fetal heart rate was provided by PRA and age from conception (P less than 0.001). Tachycardia was the invariable heart rate response of the neonates and adults to hypoxaemia. 61% of the variance in neonatal heart rate was contributed by PaO2, PaCO2, AVP, PRA and systolic blood pressure (SBP, P less than 0.001). PaO2 and plasma levels of adrenaline were significantly related to adult heart rate (P less than 0.001). Those fetuses which developed bradycardia had lower PaO2 but higher AVP and PRA during hypoxaemia than those which did not develop bradycardia. The major determinant of the area of the fetal bradycardia response was found, by multiple regression analysis, to be plasma adrenaline concentration (P less than 0.05). Thus different hormonal factors may play a role in the regulation of heart rate in normoxaemic and hypoxaemic fetal, neonatal and adult sheep.  相似文献   

5.
The catecholamine content (noradrenaline, NA; adrenaline, A; dopamine, DA, and its metabolite, DOPAC) was measured, by the HPLC method, in brain and blood plasma of eels studied at atmospheric pressure (1 ATA) or at 101 ATA of hydrostatic pressure (HP). In the brain, HP induces a slight but significant increase (P less than 0.05) in A and DA contents but NA and DOPAC levels are not modified at 101 ATA when compared to 1 ATA. In the plasma, only A and NA are detected, adrenaline being the predominant amine. In eels exposed to 101 ATA HP, A and NA are strongly increased (+100%; P less than 0.01). The significance of the catecholamine increase in brain and plasma of the eels under HP is discussed.  相似文献   

6.
Neuropeptide Y and sympathetic vascular control in man   总被引:7,自引:0,他引:7  
A parallel increase in systemic plasma levels of neuropeptide Y (NPY)-like immunoreactivity (LI) and noradrenaline (NA) was found during thoracotomy and surgery involving cardiopulmonary bypass in man. Thus, plasma levels of NPY-LI increased from 29 +/- 4 pmol/l before anaesthesia to 59 +/- 10 after thoracotomy and to 87 +/- 8 pmol/l upon cardiopulmonary bypass. The corresponding NA levels increased from 1.3 +/- 0.1 nmol/l before anaesthesia to 3.0 +/- 0.6 and 4.2 +/- 5 nmol/l after thoracotomy and cardiopulmonary bypass, respectively. A significant correlation was found between plasma levels of NPY-LI and NA during the operation but not between NPY-LI and adrenaline. The NPY-LI in human plasma was found to be similar to synthetic porcine NPY on reversed phase high performance liquid chromatography. Human submandibular arteries contained high levels of NPY-LI (24 +/- 3 pmol/g). In in vitro experiments on isolated human submandibular arteries, NPY in low concentrations (1000 pmol/l) was found to potentiate the contractile effects of NA or transmural nerve stimulation and to exert vasoconstrictor activity per se in higher concentrations. The calcium-entry antagonist nifedipine abolished both the NPY-induced contractions and the enhancement of NA-evoked contractions. NPY depressed the nerve stimulation-evoked 3H-NA release from human submandibular arteries via a prejunctional mechanism which was resistant to nifedipine. NPY contracted human mesenteric veins and renal arteries, but not mesenteric arteries. In conclusion, NPY seems to be co-released with NA upon sympathetic activation in man. Furthermore, NPY exerts both pre- and postjunctional effects on sympathetic control of human blood vessels.  相似文献   

7.
People with "primary obesity" may be hypertensive because they have lost their ability to compensate for the effect of low Na+-K+-ATPase levels on blood pressure. In obese patients receiving hypertensive medication (n = 13), but not in normotensive nonmedicated patients (n = 42), diastolic blood pressure was inversely correlated with erythrocyte ouabain binding (P less than 0.02) and directly correlated with intracellular Na+ concentration (P less than 0.01). Moreover, there was a stronger inverse relationship between ouabain binding and intracellular Na+ in patients receiving medication for hypertension (P less than 0.01) than in normotensive patients (P less than 0.05). These data suggest that patients receiving hypertensive medication may be less able to compensate than normotensive patients, (a) for the potential effect of Na+-K+-ATPase levels on intracellular Na+ and (b) for the potential effect of intracellular Na+ concentration on diastolic blood pressure. We propose that obese people with low levels of ouabain binding (primary obesity) may have an increased risk of developing hypertension if their compensatory mechanisms fail.  相似文献   

8.
The occurrence of neuropeptide Y (NPY)-like immunoreactivity (LI) in the adrenal gland of several species as well as in tumor tissue and plasma from pheochromocytoma patients was investigated. NPY-LI was present in chromaffin cells of the adrenaline type in all species investigated except in the pig, as demonstrated by a colocalization of NPY-LI and the adrenaline-synthetizing enzyme phenylethanolamine N-methyltransferase (PNMT). NPY-LI in the adrenaline cells of the cat was clearly separated from the neurotensin-LI in the noradrenaline dopamine-beta-hydroxylase-positive, PNMT-negative cells. NPY-LI seems to co-exist with enkephalin-like material in the chromaffin cells. In addition, NPY-LI was present in nerves both within the adrenal cortex and medulla. The highest levels of NPY-LI were found in mouse and cat, while only a very low amount of NPY-LI was present in the pig adrenal. Characterization of the adrenal NPY-LI by reversed-phase high-performance liquid chromatography revealed that the main peak was similar to porcine NPY. In addition, two minor peaks of NPY-LI were present. High levels of NPY-LI were found in plasma and tumors from the pheochromocytoma patients. During manipulation of the tumors upon surgical removal, there was a marked increase in plasma NPY-LI in parallel with the raise in catecholamines and in blood pressure. At least two forms of NPY-LI were present in plasma and tumor extracts from pheochromocytoma patients with the main peak corresponding to porcine NPY. Since NPY exerts vasoconstrictor effects, it may be postulated that NPY contributes to the adrenal cardiovascular response and to the hypertension seen in pheochromocytoma patients.  相似文献   

9.
The influence of endurance training on functional capacity [maximal O2 consumption (VO2 max)], caudal arterial blood pressure, and myocardial capillary density were investigated in normotensive rats and rats made hypertensive using the two-kidney one-clip approach (Goldblatt's hypertension). Male Sprague-Dawley rats were assigned to sham (N: 120-140 mmHg), moderately hypertensive (MH = 0.30-mm clips, 150-170 mmHg), or severely hypertensive (SH = 0.25-mm clips, 190-230 mmHg) groups. Rats designated to be runners (T) were exercised on a motor-driven treadmill equal to 50-70% of their VO2 max values for 8-12 wk. Compared with their nontrained (NT) controls, training was associated with significantly higher VO2 max values (12-15%) and muscle cytochrome-c oxidase activities (33-78%). Resting systolic blood pressure was not significantly changed in the N-and MH-T subgroups; however, it was 20-30 mmHg higher in the SH-T subgroup. Mean absolute heart weight for only the N-T group was significantly heavier than their NT controls. However, the mean predicted heart weights (heart wt = 0.639 X body wt of N-NT + 0.001 g) of the two SH groups were significantly higher than expected. The SH-T group had a lower (11%) subepicardial capillary density mean than its NT control and significantly fewer capillaries in the subendocardial region than the other five subgroups. It was concluded that moderate exercise training appeared to be detrimental to rats with severe hypertension because it increased resting blood pressure and decreased myocardial capillary density, even though it improved their functioning capacity.  相似文献   

10.
H Dietl 《Life sciences》1987,41(2):217-226
The effects of longer lasting blood pressure changes on the release of endogenous catecholamines (CA) in limbic and hypothalamic areas were studied in anaesthetized rats. For this purpose the central nucleus of the amygdala (AC), ventral hippocampus (VH) and medial hypothalamus (MH) were simultaneously superfused through push-pull cannulae with artificial cerebrospinal fluid and the release of the endogenous catecholamines dopamine (DA), noradrenaline (NA) and adrenaline (A) was determined before and after blood pressure manipulations. A fall in blood pressure elicited by the ganglionic blocking agent chlorisondamine resulted in different changes of the various CA release patterns in AC. Short lasting increased CA release rates as compared to prehypotension levels could be observed in the hippocampus. The activity of catecholaminergic neurons in MH remained unchanged. A rise in arterial blood pressure induced by intravenous injection of tramazoline did not change the release rates of DA in all 3 brain areas studied. In hippocampus, NA levels in the superfusates decreased initially during hypertension but returned to normal values 40 min after drug injection. In the late phase of hypertension increased rates of release of NA in the amygdala and of A in the hypothalamus could be observed. The different patterns in the release of CA suggest that DA, NA and A are differentially implicated in the regulation of experimentally induced blood pressure changes.  相似文献   

11.
The responses to brief maximal exercise of 10 male subjects have been studied. During 30 s of exercise on a non-motorized treadmill, the mean power output (mean +/- SD) was 424.8 +/- 41.9 W, peak power 653.3 +/- 103.0 W and the distance covered was 167.3 +/- 9.7 m. In response to the exercise blood lactate concentrations increased from 0.60 +/- 0.26 to 13.46 +/- 1.71 mmol.l-1 (p less than 0.001) and blood glucose concentrations from 4.25 +/- 0.45 to 5.59 +/- 0.67 mmol.l-1 (p less than 0.001). The severe nature of the exercise is indicated by the fall in blood pH from 7.38 +/- 0.02 to 7.16 +/- 0.07 (p less than 0.001) and the estimated decrease in plasma volume of 11.5 +/- 3.4% (p less than 0.001). The plasma catecholamine concentrations increased from 2.2 +/- 0.6 to 13.4 +/- 6.4 nmol.l-1 (p less than 0.001) and 0.2 +/- 0.2 to 1.4 +/- 0.6 nmol.l-1 (p less than 0.001) for noradrenaline (NA) and adrenaline (AD) respectively. The plasma concentration of the opioid beta-endorphin increased in response to the exercise from less than 5.0 to 10.2 +/- 3.9 p mol.l-1. The post-exercise AD concentrations correlated with those for lactate as well as with changes in pH and the decrease in plasma volume. Post-exercise beta-endorphin levels correlated with the peak speed attained during the sprint and the subjects peak power to weight ratio. These results suggest that the increases in plasma adrenaline are related to those factors that reflect the stress of the exercise and the contribution of anaerobic metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
After overnight food and fluid restriction, nine healthy males were examined before, during, and after lower body positive pressure (LBPP) of 11 +/- 1 mmHg (mean +/- SE) for 30 min and before, during, and after graded lower body negative pressure (LBNP) of -10 +/- 1, -20 +/- 2, and -30 +/- 2 mmHg for 20 min each. LBPP and LBNP were performed with the subject in the supine position in a plastic box encasing the subject from the xiphoid process and down, thus including the splanchnic area. Central venous pressure (CVP) during supine rest was 7.5 +/- 0.5 mmHg, increasing to 13.4 +/- 0.8 mmHg (P less than 0.001) during LBPP and decreasing significantly at each step of LBNP to 2.0 +/- 0.5 mmHg (P less than 0.001) at 15 min of -30 +/- 2 mmHg LBNP. Plasma arginine vasopressin (AVP) did not change significantly in face of this large variation in CVP of 11.4 mmHg. Mean arterial pressure increased significantly during LBPP from 100 +/- 2 to 117 +/- 3 Torr (P less than 0.001) and only at one point during LBNP of -30 +/- 2 mmHg from 102 +/- 1 to 115 +/- 5 mmHg (P less than 0.05). Heart rate did not change during LBPP but increased slightly from 51 +/- 3 to 55 +/- 3 beats/min (P less than 0.05) only at 7 min of LBNP of -30 +/- 2 mmHg. Plasma osmolality, sodium, and potassium did not change during the experiment. Hemoglobin concentration increased during LBPP and LBNP, whereas hematocrit only increased during LBNP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Studies of the roles played by neurotransmitters in the development of hypertension in the spontaneously hypertensive (SHR) rat are complicated by the presence of genetic differences between SHR and normotensive control rats, which are not related to differences in blood pressure. One approach that may be used in an attempt to overcome this difficulty is to study the manner in which neurotransmitter and metabolite levels change with age, and to relate these changes to alterations in blood pressure with ageing. Noradrenaline (NA) levels in the brainstem and spinal cord of SHR and Wistar Kyoto rats fell with age, while 3,4-dihydroxyphenylethyleneglycol (DHPG) levels (a neuronal metabolite of noradrenaline) remained constant. Similar changes were seen when NA and DHPG levels were measured in the discrete brainstem A1, A2, and C2 region, and when adrenaline, NA, and DHPG levels were examined in the C1 region. Differences in age-related changes of neuropeptide Y (NPY) levels were also found in the ventromedial nucleus of the hypothalamus and the locus coeruleus, and of beta-endorphin in the anterior hypothalamic nucleus, the paragigantocellular nucleus of the brainstem, and the locus coeruleus. These changes may indicate either a progressive increase in the activity of neurons in the sympathoexcitatory C1 region or a progressive reduction in the activity of vasodepressor A1, A2, and C2 regions with ageing, or both. However, changes in catecholamines and metabolites with age were similar in both strains and therefore cannot readily explain the more rapid rise in blood pressure with ageing in SHR rats.  相似文献   

14.
Exercise training and hypertension induced cardiac hypertrophy but modulate differently left ventricle (LV) function. This study set out to evaluate cardiac adaptations induced by moderate exercise training in normotensive and untreated severe hypertensive rats. Four groups of animals were studied: normotensive (Ctl) and severe hypertensive (HT) Wistar rats were assigned to be sedentary (Sed) or perform a moderate exercise training (Ex) over a 10-wk period. Severe hypertension was induced in rat by a two-kidney, one-clip model. At the end of the training period, hemodynamic parameters and LV morphology and function were assessed using catheterism and conventional pulsed Doppler echocardiography. LV histology was performed to study fibrosis infiltrations. Severe hypertension increased systolic blood pressure to 202 +/- 9 mmHg and induced pathological hypertrophy (LV hypertrophy index was 0.34 +/- 0.02 vs. 0.44 +/- 0.02 in Ctl-Sed and HT-Sed groups, respectively) with LV relaxation alteration (early-to-atrial wave ratio = 2.02 +/- 0.11 vs. 1.63 +/- 0.12). Blood pressure was not altered by exercise training, but arterial stiffness was reduced in trained hypertensive rats (pulse pressure was 75 +/- 7 vs. 62 +/- 3 mmHg in HT-Sed and HT-Ex groups, respectively). Exercise training induced eccentric hypertrophy in both Ex groups by increasing LV cavity without alteration of LV systolic function. However, LV hypertrophy index was significantly decreased in normotensive rats only (0.34 +/- 0.02 vs. 0.30 +/- 0.02 in Ctl-Sed and Ctl-Ex groups, respectively). Moreover, exercise training improved LV passive filling in Ctl-Ex rats but not in Ht-Ex rats. In this study, exercise training did not reduce blood pressure and induced an additional physiological hypertrophy in untreated HT rats, which was slightly blunted when compared with Ctl rats. However, cardiac function was not worsened by exercise training.  相似文献   

15.
The chronic effect of two alpha-adrenergic receptor blockers, prazosin and yohimbine, on the renal noradrenaline (NA) content was investigated in two models of hypertensive rats, the DOCA-salt and the spontaneously hypertensive rats (SHR). In DOCA-salt rats an inversal relation exists between the level of blood pressure and renal NA content in all groups studied, except those treated with yohimbine and prazosin plus yohimbine. In SHR rats a decreased renal NA content has been detected with respect to their normotensive Wistar-Kyoto (WKY) rat controls. The administration of prazosin and/or yohimbine did not alter the renal NA content of the SHR rats, while on the contrary these agents produced an elevation of these levels in kidneys from normotensive WKY rats. These results suggest that the alpha-selective blocker agents used, demonstrate a different effect on the renal NA content in the two models of hypertension studied.  相似文献   

16.
In conscious animals, the response to hemorrhage is biphasic. During phase 1, arterial pressure is maintained. Phase 2 is characterized by profound hypotension. Despite allied roles, less is known about the integrated cardiovascular and respiratory response to blood loss in conscious animals. We evaluated cardiorespiratory changes during hemorrhage to test the hypotheses that 1) respiratory rate (RR) and blood gases do not change during phase 1; 2) RR increases during phase 2; and 3) RR and blood gas changes during hemorrhage are similar in males and females. We measured mean arterial pressure, RR, and blood gases during hemorrhage in 16 conscious, chronically prepared, male and female New Zealand white rabbits. We removed venous blood until mean arterial pressure was < or =40 mmHg. Sex did not affect mean arterial pressure, heart rate, Pa(O(2)), Pa(CO(2)), or pH during hemorrhage or the blood loss required to induce phase 2. Pa(CO(2)) decreased significantly from 37 +/- 1 to 33 +/- 1 and 29 +/- 1 mmHg (P < 0.001) during phase 1 and 2, respectively. Before hemorrhage, Pa(O(2)) was 87 +/- 2 mmHg. Pa(O(2)) was unchanged in phase 1 (92 +/- 2 mmHg) but increased in phase 2 (101 +/- 2 mmHg; P < 0.001). Body temperature, Pv(CO(2)) (thoracic vena cava), and ventilation-perfusion mismatch (A-a gradient) were unchanged during phases 1 and 2. Neither sex increased RR during phase 1. While males doubled RR during phase 2, RR in females did not change (P < 0.001). Thus, while Pa(CO(2)) decreases in phase 1 and phase 2, the decreases are achieved in different ways across the two phases and in the two sexes.  相似文献   

17.
Previous studies revealed that low calcium intake is related to high prevalence of cardiovascular diseases such as hypertension. However, the relationship between serum calcium and blood pressure was unclear. The prevalence of hypertension is high in China. Thus, the aim of this study was to evaluate the serum calcium level between hypertensive and normotensive groups and to investigate the correlation between serum calcium, blood pressure, and blood lipid parameters. A total of 1,135 adult subjects participated in this study and were divide into two study groups: a hypertensive group (n?=?316) who had 140 mmHg or higher in systolic blood pressure (SBP) or 90 mmHg or higher in diastolic blood pressure (DBP) and an age- and sex-matched normotensive group (n?=?819, 120 mmHg or less SBP and 80 mmHg or less DBP). Our results indicate a significant trend for men (60 years old or older) in the direction of decreasing blood pressure with increasing serum calcium level, but no trend for women was indicated. In the normotensive group, a significant positive correlation was found between DBP and total cholesterol (P?<?0.01) and triglyceride (P?<?0.01), Likewise, triglyceride was positively correlated with SBP (P?<?0.01). Overall, these data suggest that serum calcium may have an influence in the blood pressure of older male subjects with hypertension and in blood lipid profiles of normotensive subjects.  相似文献   

18.
The role of platelets in lung injury has not been well defined. In the present study of isolated perfused rat lungs, phorbol myristate acetate (PMA; 0.15 microgram/ml) or platelets (6.7 X 10(4)/ml) alone did not discernibly change the pulmonary arterial pressure (PAP) or lung weight (LW). However, the combination of platelets and PMA drastically increased the PAP and LW (delta PAP 26.2 +/- 1.0 mmHg, delta LW 2.7 +/- 0.4 g). delta PAP was positively correlated with the increase in thromboxane B2 produced by infusion of platelets and PMA (thromboxane B2 = 35.6 + 0.97 delta PAP, r = 0.67, P less than 0.01). The hypertension and edema formation induced by PMA and platelets were strongly attenuated by indomethacin, an inhibitor of platelet cyclooxygenase (delta PAP 5.6 +/- 2.0 mmHg, P less than 0.001; delta LW 0.0 +/- 0.1 g, P less than 0.001), and by imidazole, an inhibitor of thromboxane A2 synthase (PAP 8.0 +/- 2.5 mmHg, P less than 0.001; LW 0.0 +/- 0.3 g, P less than 0.01). Inactivation of platelet lipoxygenase with nordihydroguaiaretic acid mildly depressed pulmonary pressure but did not affect delta LW (delta PAP 18.9 +/- 1.6 mmHg, P less than 0.05; delta LW 3.1 +/- 0.3 g, P greater than 0.05). In vitro experiments showed that the capacity of platelets to release oxygen radicals was only 2.6% of that found for granulocytes. These results suggest that platelets may be activated by PMA to increase PAP and vascular permeability.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
E R Levin  S Mills  M A Weber 《Peptides》1986,7(6):977-981
Endogenous opioids have been implicated as modulators of the central nervous system regulation of blood pressure and heart rate. Whether these neuropeptides participate in blood pressure regulation in hypertension is unknown. To begin to study this question, we examined the response to opiate antagonists and agonists in the spontaneously hypertensive rat (SHR) and the normotensive Wistar-Kyoto (WKY) rat. The long-acting opiate antagonist naltrexone, 2.5 micrograms/kg, was injected into the lateral ventricle of the brain in awake, freely-moving SHR and produced a significant 19 mmHg decrease in mean arterial blood pressure compared to basal blood pressure (p less than 0.01); a decrease was not observed at a two logarithm lower dose. In contrast, naltrexone had no effect on the blood pressure of normotensive Wistar-Kyoto (WKY) rats. To evaluate a possible regulatory role for the predominantly kappa receptor active opioids, alpha- and beta-neo-endorphin, 10 micrograms each, was administered to SHR on separate days by intracerebroventricular injection. alpha- and beta-neo-endorphin caused significant decreases in mean arterial blood pressure of 11 and 9 mmHg respectively, effects reversed by pre-treatment with the opiate antagonist, naloxone. Heart rate was unaffected by any of the injected opioids or antagonists. Our naltrexone results support the hypothesis that an endogenous opioid(s) contributes to the hypertensive state of the SHR. Additionally, alpha- and beta-neo-endorphin can lower blood pressure in this model.  相似文献   

20.
Tissue concentrations of noradrenaline (NA), dopamine (DA) and adrenaline (A) were compared in spontaneously hypertensive (SHR) and normotensive (NCR) rats, aged 1, 3, 8, 14 and 24 weeks The organs analyzed included the brain, subdivided into prosencephalon and rhombencephalon, heart, adrenal glands and kidney. Brain catecholamines were significantly lower in SHR than in NCR, and the difference appeared already at the age of 3 weeks. Concomitant increase was found in the adrenal NA and A concentrations of the SHR. Concentration of NA in the heart decreased in the SHR following onset of hypertension. It is concluded that the diminished NA, DA and A concentrations in the brain as well as the augmented adrenal NA and A levels in the SHR may be causally related to the development of hypertension, while the heart NA level reflects the secondary, hypertension -- related changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号