首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To explore the significance of the ascorbate–glutathione cycle under drought stress, the leaves of 2-year-old potted apple (Malus domestica Borkh.) plants were used to investigate the changes of each component of the ascorbate–glutathione cycle as well as the gene expression of dehydroascorbate reductase (DHAR, EC 1.8.5.1), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) under drought stress. The results showed that the malondialdehyde (MDA) and H2O2 concentrations in apple leaves increased during drought stress and began to decrease after re-watering. The contents of total ascorbate, reduced ascorbic acid (AsA), total glutathione and glutathione (GSH) were obviously upregulated in apple leaves when the soil water content was 40–45%. With further increase of the drought level, the contents of the antioxidants and especially redox state of AsA and GSH declined. However, levels of them increased again after re-watering. Moreover, drought stress induced significant increase of the activities of enzymes such as APX, scavenging H2O2, and also of monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), DHAR and GR used to regenerate AsA and GSH, especially when the soil water content was above 40–45%. During severe drought stress, activities of the enzymes were decreased and after re-watering increased again. Gene expression of cytoplasmic DHAR, cytoplasmic APX and cytoplasmic GR showed similar changes as the enzyme activities, respectively. The results suggest that the ascorbate–glutathione cycle is up-regulated in response to drought stress, but cannot be regulated at severe drought stress conditions.  相似文献   

3.
γ-Glutamyltransferase ((5-glutamyl)-peptide:amino-acid 5-glutamyltransferase, EC 2.3.2.2) activity of WI-38 fibroblasts decreased only slightly in relation to a constant amount of cell-associated protein as the cells were carried in culture serially from middle to late passage numbers leading toward senescence, e.g., from population doubling level 27 through 41. Also, when the enzyme activity was expressed on the basis of a unit number of cells or unit amount of DNA, little change occurred over that range of PDLs. As the culture approached ‘phase-out’, the transferase activity rose sharply regardless of how the activity was expressed. The possibility is considered that the large increase in activity could be a reflection of a significant increase in size of cells and therefore changes in the membranes where the transferase is located.The occurrence of other enzymes of the ‘gg-glutamyl cycle’ in WI-38 and HeLa S3 cells also was demonstrated. These included γ-glutamylcyclotransferase ((γ-l-glutamyl)-l-amino-acid γ-glutamyltransferase (cyclizing), EC 2.3.2.4) and 5-oxoprolinase, whose actitivies showed no large increase comparable to that of the γ-glutamyltransferase, as the culture approached ‘phase-out’.  相似文献   

4.
Summary A method based on BrdU incorporation for analyzing in detail the kinetics of the cell cycle is described. The S phase has been subdivided into five subphases, each recognizable by their BrdU incorporation pattern at metaphase. The method can be useful for the study of abnormal cell cycles, and may have particular application in mutagenesis studies concerning the various subphases of the S phase, without using synchronization techniques. An application of the method is described, showing that -irradiation, during the course of the S phase, leads to a lack of cells which were in early S phase at the time of irradiation. This finding can be related either to a higher lethality at this stage of the cell cycle or to a delay in completion of DNA replication after irradiation.Hoider of a C.E.C. scholarship  相似文献   

5.
6.
Two inhibitors of the -glutamyl cycle, methionine sulfoximine (MSO) and 2-imidazolidone-4-carboxylic acid (ICA) were administered to C57BL/6J mice. Both agents resulted in a reduced rate of transport of tyrosine from blood to brain and a decreased rate of incorporation of tyrosine from plasma into brain protein. MSO administration also diminished the concentrations of brain tyrosine, dopamine, and norepinephrine. MSO decreased the transport rate of valine by brain as well as the rate of its incorporation into protein when expressed in relation to the plasma specific activity. The results demonstrate a significant role for the -glutamyl cycle in the transport of large neutral amino acids from blood to brain.Presented in part in the April 1977 meeting of the American Academy of Neurology, Atlanta, Georgia.  相似文献   

7.
Excess reactive oxygen species (ROS) generated in embryos during in vitro culture damage cellular macromolecules and embryo development. Glutathione (GSH) scavenges ROS and optimizes the culture system. However, how exogenous GSH influences intracellular GSH and improves the embryo developmental rate is poorly understood. In this study, GSH or GSX (a stable GSH isotope) was added to the culture media of bovine in vitro fertilization embryos for 7 days. The cleavage rate, blastocyst rate, and total cell number of blastocysts were calculated. Similarly to GSH, GSX increased the in vitro development rate and embryo quality. We measured intracellular ROS, GSX, and GSH for 0–32-hr postinsemination (hpi) in embryos (including zygotes at G1, S, and G2 phases and cleaved embryos) cultured in medium containing GSX. Intracellular ROS significantly decreased with increasing intracellular GSH in S-stage zygotes (18 hpi) and cleaved embryos (32 hpi). γ-Glutamyltranspeptidase ( GGT) and glutathione synthetase ( GSS) messenger RNA expression increased in zygotes (18 hpi) and cleaved embryos treated with GSH, consistent with the tendency of overall GSH content. GGT activity increased significantly in 18 hpi zygotes. GGT and GCL enzyme inhibition with acivicin and buthionine sulfoximine, respectively, decreased cleavage rate, blastocyst rate, total cell number, and GSH and GSX content. All results indicated that exogenous GSH affects intracellular GSH levels through the γ-glutamyl cycle and improves early embryo development, enhancing our understanding of the redox regulation effects and transport of GSH during embryo culture in vitro.  相似文献   

8.
Studies on the effect of the inhibitor of fatty acid oxidation (+)-octanoylcarnitine on the perfused liver of the 48–51 days fetal guinea pig indicate that the oxidation of endogenous fatty acids is a major source of carbon for the citric acid cycle and for synthesis of hexose. Consistent with this the liver can convert isocitrate to glyoxylate and glyoxylate to malate and may therefore operate a glyoxylate cycle allowing the net production of sugars from acetyl-CoA.  相似文献   

9.
2-Amino-4-{[3-(carboxymethyl)phenoxy](methoxy)phosphoryl}butanoic acid (GGsTop) is a potent, highly selective, nontoxic, and irreversible inhibitor of γ-glutamyl transpeptidase (GGT). GGsTop has been widely used in academic and medicinal research, and also as an active ingredient (Nahlsgen) in commercial anti-aging cosmetics. GGsTop consists of four stereoisomers due to the presence of two stereogenic centers, i.e., the α-carbon atom of the glutamate mimic (l/d) and the phosphorus atom (RP/SP). In this study, each stereoisomer of GGsTop was synthesized stereoselectively and their inhibitory activity against human GGT was evaluated. The l- and d-configurations of each stereoisomer were determined by a combination of a chiral pool synthesis and chiral HPLC analysis. The synthesis of the four stereoisomers of GGsTop used chiral synthetic precursors that were separated by chiral HPLC on a preparative scale. With respect to the configuration of the α-carbon atom of the glutamate mimic, the l-isomer (kon = 174 M?1 s?1) was ca. 8-fold more potent than the d-isomer (kon = 21.5 M?1 s?1). In contrast, the configuration of the phosphorus atom is critical for GGT inhibitory activity. Based on a molecular modeling approach, the absolute configuration of the phosphorus atom of the active GGsTop isomers was postulated to be SP. The SP-isomers inhibited human GGT (kon = 21.5–174 M?1 s?1), while the RP-isomers were inactive even at concentrations of 0.1 mM.  相似文献   

10.
The development of desiccation tolerance by vegetative tissues was an important step in the plants’ conquest of land. To counteract the oxidative stress generated under these conditions the xanthophyll cycle plays a key role. Recent reports have shown that desiccation itself induces de-epoxidation of xanthophyll cycle pigments, even in darkness. The aim of the present work was to study whether this trait is a common response of all desiccation-tolerant plants. The xanthophyll cycle activity and the maximal photochemical efficiency of PS II (F v/F m) as well as β-carotene and α-tocopherol contents were compared during slow and rapid desiccation and subsequent rehydration in six species pairs (with one desiccation-sensitive and one desiccation-tolerant species each) belonging to different taxa. Xanthophyll cycle pigments were de-epoxidised in darkness concomitantly with a decrease in F v/F m during slow dehydration in all the desiccation-tolerant species and in most of the desiccation-sensitive ones. De-epoxidation was reverted in darkness by re-watering in parallel with the recovery of the initial F v/F m. The stability of the β-carotene pool confirmed that its hydroxylation did not contribute to zeaxanthin formation. The α-tocopherol content of most of the species did not change during dehydration. Because it is a common mechanism present in all the desiccation-tolerant taxa and in some desiccation-sensitive species, and considering its role in antioxidant processes and in excess energy dissipation, the induction of the de-epoxidation of xanthophyll cycle pigments upon dehydration in the dark could be understood as a desiccation tolerance-related response maintained from the ancestral clades in the initial steps of land occupation by plants.  相似文献   

11.

Background

Although the majority of bacteria are innocuous or even beneficial for their host, others are highly infectious pathogens that can cause widespread and deadly diseases. When investigating the relationships between bacteria and other living organisms, it is therefore essential to be able to separate pathogenic organisms from non-pathogenic ones. Using traditional experimental methods for this purpose can be very costly and time-consuming, and also uncertain since animal models are not always good predictors for pathogenicity in humans. Bioinformatics-based methods are therefore strongly needed to mine the fast growing number of genome sequences and assess in a rapid and reliable way the pathogenicity of novel bacteria.

Methodology/Principal Findings

We describe a new in silico method for the prediction of bacterial pathogenicity, based on the identification in microbial genomes of features that appear to correlate with virulence. The method does not rely on identifying genes known to be involved in pathogenicity (for instance virulence factors), but rather it inherently builds families of proteins that, irrespective of their function, are consistently present in only one of the two kinds of organisms, pathogens or non-pathogens. Whether a new bacterium carries proteins contained in these families determines its prediction as pathogenic or non-pathogenic. The application of the method on a set of known genomes correctly classified the virulence potential of 86% of the organisms tested. An additional validation on an independent test-set assigned correctly 22 out of 24 bacteria.

Conclusions

The proposed approach was demonstrated to go beyond the species bias imposed by evolutionary relatedness, and performs better than predictors based solely on taxonomy or sequence similarity. A set of protein families that differentiate pathogenic and non-pathogenic strains were identified, including families of yet uncharacterized proteins that are suggested to be involved in bacterial pathogenicity.  相似文献   

12.
Summary Components of the -glutamyl cycle, including thiols, glutathione (GSH) and -glutamyl transpeptidase (-GT), were localized in the nasal mucosae of rats using histochemical and immunohistochemical methods. In olfactory mucosa, thiols were widely distributed, with intense staining in the mucociliary complex (MC), basal cells, acinar cells of Bowman's glands (BG), and olfactory nerve bundles, and with moderate staining in olfactory receptor neurons (ORNs). GSH was localized in MC, BG acinar cells, nerve bundles and, to a lesser extent, in ORNs. -GT immunoreactivity was restricted to the MC and to basolateral and apical membranes of BG acinar and duct cells. The basolateral membrane of BG acinar cells, located in close association with blood vessels and connective tissue, showed granule-like immunoreactivity. Inrespiratory mucosa, all three compounds were localized in the MC and acinar cells of respiratory glands (RG). In the MC, -GT immunoreactivity was associated primarily with brush borders of ciliated cells. Granular immunoreactivity was also apparent in the supranuclear region of RG acinar cells. These results demonstrate that components of the -glutamyl cycle are localized in olfactory and respiratory glands, and that they are secreted into the mucus, where they may mediate perireceptor events such as detoxification and/or solubilization of air-borne xenobiotics, toxicants and odorants.  相似文献   

13.
γ-Glutamyl arylamidase of Bacillus sp. strain No. 12, composed of two heavy (Mr 56 000) and two light (Mr 46 000) subunits, was dissociated and inactivated by mild SDS treatment. The activity was restored in the isolated heavy subunit but not in the light subunit when SDS was removed by dialysis. The restored activity of the heavy subunit was similar to that of the native enzyme with regard to substrate specificity and inhibition and activation by α- and γ-glutamyl compounds, free amino acids, peptides, enzyme inhibitors, and anti-native enzyme antibody.  相似文献   

14.
1. Cerebral-cortex slices prelabelled with gamma-amino[1-(14)C]butyrate (GABA) were incubated in a glucose-saline medium. After the initial rapid uptake there was no appreciable re-entry of (14)C into the GABA pool, either from the medium or from labelled metabolites formed in the tissue. The kinetic constants of GABA metabolism were determined by computer simulation of the experimental results by using mathematical procedures. The GABA flux was estimated to be 0.03mumol per min/g, or about 8% of the total flux through the tricarboxylic acid cycle. It was found that the assumption of compartmentation did not greatly affect the estimates of the GABA flux. 2. The time-course of incorporation of (14)C into amino acids associated with the tricarboxylic acid cycle was followed with [1-(14)C]GABA and [U-(14)C]-glucose as labelled substrates. The results were consistent with the utilization of GABA via succinate. This was confirmed by determining the position of (14)C in the carbon skeletons of aspartate and glutamate formed after the oxidation of [1-(14)C]GABA. These results also indicated that under the experimental conditions the reversal of reactions catalysed by alpha-oxoglutarate dehydrogenase and glutamate decarboxylase respectively was negligible. The conversion of [(14)C]GABA into gamma-hydroxybutyrate was probably also of minor importance, but decarboxylation of oxaloacetate did occur at a relatively slow rate. 3. When [1-(14)C]GABA was the labelled substrate there was evidence of a metabolic compartmentation of glutamate since, even before the peak of the incorporation of (14)C into glutamate had been reached, the glutamine/glutamate specific-radioactivity ratio was greater than unity. When [U-(14)C]glucose was oxidized this ratio was less than unity. The heterogeneity of the glutamate pool was indicated also by the relatively high specific radioactivity of GABA, which was comparable with that of aspartate during the whole incubation time (40min). The rates of equilibration of labelled amino acids between slice and medium gave evidence that the permeability properties of the glutamate compartments labelled as a result of oxidation of [1-(14)C]GABA were different from those labelled by the metabolism of [(14)C]glucose. The results showed therefore that in brain tissue incubated under the conditions used, the organization underlying metabolic compartmentation was preserved. The observed concentration ratios of amino acids between tissue and medium were also similar to those obtaining in vivo. These ratios decreased in the order: GABA>acidic acids>neutral amino acids>glutamine. 4. The approximate pool sizes of the amino acids in the different metabolic compartments were calculated. The glutamate content of the pool responsible for most of the labelling of glutamine during oxidation of [1-(14)C]GABA was estimated to be not more than 30% of the total tissue glutamate. The GABA content of the ;transmitter pool' was estimated to be 25-30% of the total GABA in the tissue. The structural correlates of metabolic compartmentation were considered.  相似文献   

15.
γ-Glutamyl transpeptidase (GGT) is a two-substrate enzyme that plays a central role in glutathione metabolism and is a potential target for drug design. GGT catalyzes the cleavage of γ-glutamyl donor substrates and the transfer of the γ-glutamyl moiety to an amine of an acceptor substrate or water. Although structures of bacterial GGT have revealed details of the protein-ligand interactions at the donor site, the acceptor substrate site is relatively undefined. The recent identification of a species-specific acceptor site inhibitor, OU749, suggests that these inhibitors may be less toxic than glutamine analogues. Here we investigated the donor and acceptor substrate preferences of Bacillus anthracis GGT (CapD) and applied computational approaches in combination with kinetics to probe the structural basis of the enzyme's substrate and inhibitor binding specificities and compare them with human GGT. Site-directed mutagenesis studies showed that the R432A and R520S variants exhibited 6- and 95-fold decreases in hydrolase activity, respectively, and that their activity was not stimulated by the addition of the l-Cys acceptor substrate, suggesting an additional role in acceptor binding and/or catalysis of transpeptidation. Rat GGT (and presumably HuGGT) has strict stereospecificity for L-amino acid acceptor substrates, while CapD can utilize both L- and D-acceptor substrates comparably. Modeling and kinetic analysis suggest that R520 and R432 allow two alternate acceptor substrate binding modes for L- and D-acceptors. R432 is conserved in Francisella tularensis, Yersinia pestis, Burkholderia mallei, Helicobacter pylori and Escherichia coli, but not in human GGT. Docking and MD simulations point toward key residues that contribute to inhibitor and acceptor substrate binding, providing a guide to designing novel and specific GGT inhibitors.  相似文献   

16.
There is an autonomous renin–angiotensin system (RAS) in the adult ovary. Renin is present in the primitive kidney, and the fetal ovary develops from the nephrogenic ridge. We hypothesised that components of the ovarian RAS would be present from early gestation, with potential roles in ovarian development. We studied fetal pig ovaries from approximately day 45 (~0.39 gestation) to term and measured mRNA (RT-PCR) for prorenin, angiotensinogen and the angiotensin II (AngII) Type 1 and 2 receptors (AT1 and AT2), and protein expression (Western blot) and localization (immunohistochemistry) of the AT1 and AT2 receptors. mRNA for prorenin was present in relatively low abundance from at least day 45 and rose to ~day 75 of gestation, whilst mRNA for angiotensinogen rose steadily. mRNA for the AT1 receptor was present from approximately day 45 and did not alter significantly with increasing gestation but AT2 receptor mRNA was initially high, falling sharply through pregnancy. The AT1 receptor protein abundance fell steadily to term, whereas the AT2 receptor protein did not change during gestation. Both receptors were localised in the surface epithelium and egg nests, the granulosa cells of primordial, primary and secondary follicles, and the oocytes of all except the secondary follicles. Collectively, our results support the hypothesis that there is a functional RAS in the fetal ovary from at least approximately day 45 of gestation until term and that it may have a paracrine role in ovarian growth and development.  相似文献   

17.
The defense-related plant metabolites known as glucosinolates play important roles in agriculture, ecology, and human health. Despite an advanced biochemical understanding of the glucosinolate pathway, the source of the reduced sulfur atom in the core glucosinolate structure remains unknown. Recent evidence has pointed toward GSH, which would require further involvement of a GSH conjugate processing enzyme. In this article, we show that an Arabidopsis thaliana mutant impaired in the production of the γ-glutamyl peptidases GGP1 and GGP3 has altered glucosinolate levels and accumulates up to 10 related GSH conjugates. We also show that the double mutant is impaired in the production of camalexin and accumulates high amounts of the camalexin intermediate GS-IAN upon induction. In addition, we demonstrate that the cellular and subcellular localization of GGP1 and GGP3 matches that of known glucosinolate and camalexin enzymes. Finally, we show that the purified recombinant GGPs can metabolize at least nine of the 10 glucosinolate-related GSH conjugates as well as GS-IAN. Our results demonstrate that GSH is the sulfur donor in the biosynthesis of glucosinolates and establish an in vivo function for the only known cytosolic plant γ-glutamyl peptidases, namely, the processing of GSH conjugates in the glucosinolate and camalexin pathways.  相似文献   

18.
Summary A peptide immunochemically related to -endorphin was detected in some LH-RH neurons of the fetal human hypothalamus by comparison of adjacent sections stained for -endorphin and for LH-RH. In the same section, by successive staining and after antibody elution, both peptides were again revealed in the same neuron. The significance of the presence of the -endorphin-like material in LH-RH neurons is discussed.  相似文献   

19.
γ-Glutamyl kinase (GK) is the rate-limiting enzyme in proline synthesis in microorganisms. Most microbial GKs contain an N-terminal kinase domain and a C-terminal pseudouridine synthase and archaeosine transglycosylase (PUA) domain. In contrast, higher eukaryotes possess a bifunctional Δ(1)-pyrroline-5-carboxylate synthetase, which consists of a PUA-free GK domain and a γ-glutamyl phosphate reductase (GPR) domain. Here, to examine the role of the C-terminal region, including the PUA domain of Saccharomyces cerevisiae GK, we constructed a variety of truncated yeast GK and GK/GPR fusion proteins from which the C-terminal region was deleted. A complementation test in Escherichia coli and S. cerevisiae and enzymatic analysis of recombinant proteins revealed that a 67-residue linker sequence between a 255-residue kinase domain and a 106-residue PUA domain is essential for GK activity. It also appeared that 67 or more residues of the C-terminal region, not the PUA domain itself, are required for the full display of GK activity. Further, the GK/GPR fusion protein was functional in E. coli, but decreased stability and Mg-binding ability as compared to wild-type GK. These results suggest that the C-terminal region of S. cerevisiae GK is involved in the folding and/or the stability of the kinase domain.  相似文献   

20.
Nipecotic acid is one of the most potent competitive inhibitors and alternative substrates for the high-affinity -aminobutyric acid transport system in neurons, but the structural basis of this potency is unclear. Because -aminobutyrate is a highly flexible molecule in solution, it would be expected to lose rotational entropy upon binding to the transport system, a change which does not favor binding. Nipecotic acid, in contrast, is a much less flexible molecule, and one would expect the loss of conformational entropy upon binding to be smaller thus favoring the binding of nipecotic acid over -aminobutyric acid. To investigate this possibility, the thermodynamic parameters, G°, H°, and S°, were determined for the binding of -aminobutyrate and nipecotic acid to the high affinity GABA transport system in synaptosomes. In keeping with expectations, the apparent entropy change for nipecotic acid binding (112±13 J·K–1) was more favorable than the apparent entropy change for -aminobutyric acid binding (61.3±6.6 J·K–1). The results suggest that restricted conformation per se is an important contributory factor to the affinity of nipecotic acid for the high-affinity transport system for -aminobutyric acid.This work was conducted when both authors were at the Department of Chemistry, University of Maryland, College Park.Special issue dedicated to Dr. Elling Kvamme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号