首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
A crystalline protein-proteinase inhibitor has been isolated from seeds of Pinto bean (Phaseolus vulgaris cultvar. Pinto). It has an average molecular weight of 19 000 as estimated by gel filtration. This crystalline inhibitor is highly active against both bovine pancreatic trypsin and alpha-chymotrypsin. Complexes of both trypsin-inhibitor and alpha-chymotrypsin-inhibitor have been isolated. The inhibitor which was derived from the dissociated trypsin-inhibitor complex was only 62% as effective as the original compound against either enzyme. In contrast, the inhibitor obtained from alpha-chymotrypsin-inhibitor complex retained its full original inhibitory activity for trypsin, but only 25% of its original activity against alpha-chymotrypsin. The dissociated inhibitor from alpha-chymotrypsin-inhibitor compex, despite its full inhibitory activity, had been modified to such an extent that it could no longer form any precipitable complex with trypsin. The crystalline protein-proteinase inhibitor is not homogeneous and has been resolved into two distinct inhibitors in terms of their physical and chemical properties. These two inhibitors are designated as Pinto bean proteinase inhibitor I and II and their respective minimum molecular weights are 9100 and 10 000. They differ most strikingly in their amino acid composition in that inhibitor II is void of both valine and methionine.  相似文献   

2.
The release of a peptide (molecular weight: about 3,600) was observed during complex formation between human alpha 1-antitrypsin (alpha 1-AT) and bovine alpha-chymotrypsin, when monitored by gel-electrophoresis in the presence of sodium lauryl sulfate. Release of the peptide was proportional to the extent of complex formation. Peptides of the same molecular weight were also released during the complex formation of alpha 1-AT with bovine trypsin or porcine elastase. The peptide released from the complex with bovine alpha-chymotrypsin was composed of 32 amino acid residues, which did not correspond to the composition of any 32 amino acid segment in the bovine alpha-chymotrypsin sequence. The N- and C-terminal sequences of the peptide were determined to be H-(Ser)-Ile-Pro-Pro-Glu- and -Gln-Lys-OH, respectively. Though there was some uncertainty as to the N-terminal sequence, it is quite different from that of the original alpha-AT molecule, and showed a similarity to the sequences of the leaving group sides of the reactive sites in some legume proteinase inhibitors. The C-terminal 2 residues were identical with those of native alpha 1-AT. These results suggest that the peptide was released from the C-terminal region of alpha 1-AT uon interaction with alpha-chymotrypsin. It is tempting to suggest that alpha 1-AT inhibits a serine proteinase by the acyl enzyme mechanism at a residue adjacent to the amino group of the N-terminus of this peptide and that this peptide is liberated as a leaving group in the enzymic process.  相似文献   

3.
Three major serine proteinase inhibitors (SBI-1, -2, and -3) were purified from the seeds of white sword bean (Canavalia gladiata) by FPLC and reversed-phase HPLC. The sequences of these inhibitors were established by automatic Edman degradation and TOF-mass spectrometry. SBI-1, -2, and -3 consisted of 72, 73, and 75 amino acid residues, with molecular masses of 7806.5, 7919.8, and 8163.4, respectively. The sequences of SBI-1 and -2 coincided with those of CLT I and II [Terada et al. (1994) Biosci. Biotech. Biochem., 58, 376-379] except only N- or C-terminal amino acid residues. Analysis of the amino acid sequences showed that the active sites of the inhibitors contained a Lys21-Ser22 against trypsin and Leu48-Ser49 against chymotrypsin, respectively. Further, it became apparent that about seven disulfide bonds were present. These results suggest that sword bean inhibitors are members of the Bowman-Birk proteinase inhibitor family.  相似文献   

4.
Preparations of new low molecular weight protein inhibitors of serine proteinases have been obtained from buckwheat Fagopyrum esculentum seeds by chromatography of seed extracts on trypsin-Sepharose 4B, Mono-Q and Mono-S ion-exchangers. Their molecular masses, determined by mass spectrometry, were equal to 5203 (BWI-1c), 5347 (BWI-2c), 7760 (BWI-3c) and 6031 daltons (BWI-4c). All inhibitors possessed high pH-stability in the pH range 2-12 and thermostability. In addition to trypsin, BWI-3c and BWI-4c inhibitors inhibited chymotrypsin and subtilisin-like proteases. The inhibition constants (Ki) for trypsin, chymotrypsin and subtilisin by the studied inhibitors were determined. The N-terminal sequences of all inhibitors were established: BWI-1c (23 residues), BWI-2c (33 residues), BWI-3c (18 residues) and BWI-4c (20 residues). According to the physicochemical properties and N-terminal amino acid sequences, buckwheat seed protease inhibitors BWI-3c and BWI-4c are suggested to belong to the potato proteinase inhibitor I family.  相似文献   

5.
With the primers designed basing on the terminal amino acid sequences of rice proteinase inhibitors and the preferred codons of rice genes, a new gene coding for a rice proteinase inhibitor has been amplified and cloned from Oryza sativa var. japonica (cv. Zhonghua 8) using PCR technique. The gene contains 408 basepairs and encodes 133 amino acid residues. The deduced amino acid sequence with duplicated Bowman-Birk type structure and active sites specific to trypsin has relatively high homology with that of proteinase inhibitors from wheats, beans etc. As for rice, the new gene shares 74.8% homology with a rice bran trypsin inhibitor reported previously. The evolutionary characteristics of the proteinase inhibitor family has also been discussed.  相似文献   

6.
一种水稻蛋白酶抑制剂基因的克隆及其结构分析   总被引:3,自引:0,他引:3  
参照水稻蛋白酶抑制剂部分氨基酸序列 ,利用水稻偏爱密码子设计引物 ,经 PCR扩增 ,从我国水稻 (Oryza sativa)品种“中花 8号”中克隆到一个长 40 8bp的基因。序列测定和分析表明 ,克隆到的是一个未见报道的新的水稻蛋白酶抑制剂基因 ,该基因编码了一个由 1 33个氨基酸组成 ,具有重复双功能结构域和以抑制胰蛋白酶为主的活性中心的包曼 -伯克 (Bowman- Birk)型蛋白酶抑制剂 ,该基因推导的氨基酸序列与大麦、小麦、豆类等的某些蛋白酶抑制剂的氨基酸序列具有较高的同源性 ,与该家族的水稻的一种胰蛋白酶抑制剂氨基酸全序列同源性高达 75%。  相似文献   

7.
Cationic Inhibitors of Serine Proteinases from Buckwheat Seeds   总被引:2,自引:0,他引:2  
Preparations of low molecular weight protein inhibitors of serine proteinases have been obtained from buckwheat (Fagopyrum esculentum) seeds by chromatography of seed extract on trypsin-Sepharose 4B, Mono-Q, and Mono-S ion exchangers (FPLC regime). Their molecular masses, determined by mass spectrometry, were 5203 (BWI-1c), 5347 (BWI-2c), 7760 (BWI-3c), and 6031 daltons (BWI-4c). All of the inhibitors possess high pH- and thermal stability in the pH range 2-12. In addition to trypsin, BWI-3c and BWI-4c inhibited chymotrypsin and subtilisin-like bacterial proteases. The N-terminal sequences of all of the inhibitors were determined: BWI-1c (23 residues), BWI-2c (33 residues), BWI-3c (18 residues), and BWI-4c (20 residues). In their physicochemical properties and N-terminal amino acid sequences, the buckwheat seed trypsin inhibitors BWI-3c and BWI-4c appear to belong to potato proteinase inhibitor I family.  相似文献   

8.
Two proteinase inhibitors, designated as inhibitors I and II, were purified from adzuki beans (Phaseolus angularis) by chromatographies on DEAE- and CM-cellulose, and gel filtration on a Sephadex G-100 column. Each inhibitor shows unique inhibitory activities. Inhibitor I was a powerful inhibitor of trypsin [EC 3.4.21.4], but essentially not of chymotrypsin ]EC 3.4.21.1]. On the other hand, inhibitor II inhibited chymotrypsin more strongly than trypsin. The molecular weights estimated from the enzyme inhibition were 3,750 and 9,700 for inhibitors I and II, respectively, assuming that the inhibitions were stoichiometric and in 1 : 1 molar ratio. The amino acid compositions of both inhibitors closely resemble those of low molecular weight inhibitors of other leguminous seeds: they contain large amounts of half-cystine, aspartic acid and serine, and little or no hydrophobic and aromatic amino acids. Inhibitor I lacks both tyrosine and tryptophan residues. The molecular weights were calculated to be 7,894 and 8,620 for inhibitors I and II, respectively. The reliability of these molecular weights was confirmed by the sedimentation equilibrium and 6 M guanidine gel filtration methods. On comparison with the values obtained from enzyme inhibition, it was concluded that inhibitor I and two trypsin inhibitory sites on the molecule, whereas inhibitor II had one chymotrypsin and one trypsin inhibitory sites on the molecule.  相似文献   

9.
Seminal plasma of rainbow trout (Oncorhynchus mykiss, Salmonidae) contains an inhibitory system consisting of three fractions (I-III) characterized by different electrophoretic migration rates. Using a two-step isolation procedure we purified (20- and 43-fold to homogeneity) and characterized the two subforms of inhibitor I (Ia and Ib). On the basis of the homology alignment of the amino acid sequences, inhibitor I was classified to the family of cysteine proteinase inhibitors - fetuins. The molecular masses were determined to be 61,146.5Da and 63,096.0Da, and the isoelectric points were estimated to be 6.04 and 6.22 for inhibitor Ia and Ib. Both inhibitors were glycoproteins with a carbohydrate content about 13% for inhibitor Ia and 19% for inhibitor Ib. The equilibrium association constant of inhibitor Ib with cod trypsin was determined to be 7.1×10(8)M(-1). Except for the cod trypsin inhibition, the inhibitor Ib effectively inhibited papain belonging to the cysteine proteainases. Comparative studies of the distribution of inhibitor I and the previously described inhibitor II were performed. The presence of inhibitor I in the seminal plasma was a common feature of several Salmoniformes, which was contrary to inhibitor II detected in seminal plasma of other fish families. Inhibitors I and II showed different expression patterns in the testes and spermatic duct of the rainbow trout.  相似文献   

10.
The primary structure of the cholesterol side-chain cleavage cytochrome P-450 (P-450scc) from bovine adrenocortical mitochondria has been determined. At the initial stage an exhaustive chymotryptic digestion of carboxymethylated P-450scc was performed, and the amino acid sequence of 66 peptides was determined. At the second stage an investigation of the amino acid sequence of individual fragments I (Mr 29 800) and II (Mr 26 600) of the limited trypsinolysis of P-450scc was carried out. Fragment I was digested with trypsin, Staphylococcus aureus V8 proteinase and thermolysin; fragment II was cleaved with trypsin and S. aureus V8 proteinase. In addition, the amino acid sequence of some CNBr peptides of P-450scc has been investigated. The primary structure of cytochrome P-450scc determined with protein chemistry methods proved the multistage cholesterol transformation to pregnenolone to be catalyzed by a single species of cytochrome P-450scc which consists of 481 amino acids. The results from protein sequencing of P-450scc are in good agreement with those obtained recently from nucleotide sequencing. The localization of peptide bonds cleaved under limited proteolysis of P-450 with trypsin to fragments I and II, I and III (Mr 16 800) is presented. It is shown that the transformation of P-450scc to P-420 is accompanied by the appearance of an additional trypsin-sensitive peptide bond in the N-terminal part of P-450scc.  相似文献   

11.
The primary structure of the broad specificity proteinase inhibitor from dog submandibular glands was elucidated. The inhibitor consists of a single polypeptide chain of 117 amino acids which is folded into two domains (heads) connected by a peptide of three amino acid residues. Both domains I and II show a clear structural homology to each other as well as to the single-headed pancreatic secretory trypsin inhibitors (Kazal type). The trypsin reactive site (-Cys-Pro-Arg-Leu-His-Glx-Pro-Ile-Cys-) is located in domain I and the chymotrypsin reactive center (-Cys-Thr-Met-Asp-Tyr-Asx-Arg-Pro-Leu-Tyr-Cys-) in domain II, cf. the Figure. The inhibitor is thus double-headed with two independent reactive sites. Whereas head I is responsible for the inhibition of trypsin and plasmin, head II is responsible for the inhibition of chymotrypsin, subtilisin, elastase and probably also Aspergillus oryzae protease and pronase. Remarkably, the structural homology exists also to the single-headed acrosin-trypsin inhibitors from seminal plasma[12] and the Japanese quail inhibitor composed of three domains[13].  相似文献   

12.
Three serine proteinase inhibitors, MCTI-I, MCTI-II, and MCEI-I, were isolated from bitter gourd (Momordica charantia LINN.) seeds. MCTI-I and MCTI-II were inhibitors for trypsin and MCEI-I was an elastase inhibitor. Their amino acid sequences and the positions of disulfide bridges of MCTI-II were determined to be as follows. (sequence; see text)  相似文献   

13.
The amino acid sequences of trypsin inhibitors I and II from the hemolymph of a solitary ascidian, Halocynthia roretzi, were determined after reduction and S-pyridylethylation. The results indicated that inhibitor I consists of a single polypeptide chain with 55 amino acid residues and four intramolecular disulfide bridges, whereas inhibitor II is composed of two polypeptide chains corresponding to a form derived from inhibitor I by cleavage at the Lys16-Met17 bond. Lys16 may be the reactive-site residue of these inhibitors, because carboxypeptidase B treatment destroys most of the inhibitory activity of inhibitor II but not that of inhibitor I.  相似文献   

14.
Three major serine proteinase inhibitors (SBI-1, -2, and -3) were purified from the seeds of white sword bean (Canavalia gladiata) by FPLC and reversed-phase HPLC. The sequences of these inhibitors were established by automatic Edman degradation and TOF-mass spectrometry. SBI-1, -2, and -3 consisted of 72, 73, and 75 amino acid residues, with molecular masses of 7806.5, 7919.8, and 8163.4, respectively. The sequences of SBI-1 and -2 coincided with those of CLT I and II [Terada et al. (1994) Biosci. Biotech. Biochem., 58, 376-379] except only N- or C-terminal amino acid residues. Analysis of the amino acid sequences showed that the active sites of the inhibitors contained a Lys21-Ser22 against trypsin and Leu48-Ser49 against chymotrypsin, respectively. Further, it became apparent that about seven disulfide bonds were present. These results suggest that sword bean inhibitors are members of the Bowman-Birk proteinase inhibitor family.  相似文献   

15.
The trypsin inhibitor (WTI-1) purified from winged bean seeds is a Kunitz type protease inhibitor having a molecular weight of 19,200. WTI-1 inhibits bovine trypsin stoichiometrically, but not bovine alpha-chymotrypsin. The approximate Ki value for the trypsin-inhibitor complex is 2.5 X 10(-9) M. The complete amino acid sequence of WTI-1 was determined by conventional methods. Comparison of the sequence with that of soybean trypsin inhibitor (STI) indicated that the sequence of WTI-1 had 50% homology with that of STI. WTI-1 was separated into 2 homologous inhibitors, WTI-1A and WTI-1B, by isoelectric focusing. The isoelectric points of WTI-1A and WTI-1B were 8.5 and 9.4, respectively, and their sequences were presumed from their amino acid compositions.  相似文献   

16.
The complete amino acid sequence of barley trypsin inhibitor   总被引:5,自引:0,他引:5  
The amino acid sequence of barley trypsin inhibitor has been determined. The protein is a single polypeptide consisting of 121 amino acid residues and has Mr = 13,305. No free sulfhydryl groups were detected by Ellman's reagent, which indicates the presence of five disulfide bridges in the molecule. The primary site of interaction with trypsin was tentatively assigned to the arginyl-leucyl residues at positions 33 and 34. On comparison of the sequence of this inhibitor with those of other proteinase inhibitors, we found that the barley trypsin inhibitor could not be classified into any of the established families of proteinase inhibitors (Laskowski, M., Jr., and Kato, I. (1980) Annu. Rev. Biochem. 49, 593-626) and that this inhibitor should represent a new inhibitor family. On the other hand, this trypsin inhibitor showed a considerable similarity to wheat alpha-amylase inhibitor (Kashlan, N., and Richardson, M. (1981) Phytochemistry (Oxf.) 20, 1781-1784) throughout the whole sequence, suggesting a common ancestry for both proteins. This is the first case of a possible evolutionary relationship between two inhibitors directed to totally different enzymes, a proteinase and a glycosidase.  相似文献   

17.
Double-headed protease inhibitors I, IIa, and IIc (AB I, AB IIa, and AB IIc) have been purified from azuki beans "Takara" (Vigna angularis) by conventional chromatographic methods and their amino acid sequences have been determined. AB I, AB IIa, and AB IIc had molecular weights of 9,166, 8,661, and 8,756 daltons, consisting of 82, 78, 79 amino acid residues, respectively. The molecular weights of these inhibitors, determined by gel filtration at pH 8.0, were 18,000 for AB I and 17,000 for both AB IIa and AB IIc, indicating that the inhibitors are dimers. The inhibitors had isoelectric points of 4.7 (AB I), 6.8 (AB IIa), and 6.2 (AB IIc). AB I stoichiometrically inhibited both trypsin and chymotrypsin at a molar ratio of 1 : 1. On the other hand, AB IIa and AB IIc both inhibited trypsin at a molar ratio of about 1 : 2 and also inhibited chymotrypsin, though only weakly. Sequence comparison with other double-headed inhibitors indicated the reactive sites of AB IIa and AB IIc for trypsin to be Lys26-Ser27 and Arg53-Ser54, and those of AB I for trypsin and chymotrypsin to be Lys26-Ser27 and Tyr53-Ser54, respectively. The differences between AB IIa and AB IIc were that AB IIa lacked the C-terminal aspartic acid residue, and that Glu10 and Arg60 in AB IIa were replaced by Gln10 and His60 in AB IIc. A comparison between AB IIa and AB I revealed 25 variant amino acids among the 78 residues of AB IIa; further, Ab IIa lacked 4 amino acid residues in the C-terminal region of AB I.  相似文献   

18.
The amino acid sequences of four presynaptically active toxins from mamba snake venom (termed 'dendrotoxins') were compared systematically with homologous sequences of members of the proteinase inhibitor family (Kunitz). A comparison based on the complete sequences revealed that relatively few amino acid changes are necessary to abolish antiprotease activity and convert a proteinase inhibitor into a dendrotoxin. When comparison centred only on the sequence segments known to comprise the antiprotease site of bovine pancreatic trypsin inhibitor, the dendrotoxins were clearly classified apart from all the known inhibitors. Since the mode of action of the bovine pancreatic trypsin/kallikrein inhibitor involves beta sheet formation with the enzyme, predictions were obtained for this secondary structure in the region of the 'antiprotease site' throughout the homologues. Again, the dendrotoxins were clearly distinguished from the inhibitors. Structure/activity analyses, based on the crystal structures of inhibitor/enzyme complexes, suggest that unlike proteinase inhibitors, dendrotoxins might specifically co-ordinate the active-site 'catalytic' histidine residues of serine proteases. Although the significance of this remains to be studied, the presynaptic target is expected to involve an as yet uncharacterised member of the serine protease family.  相似文献   

19.
Canine submandibular glands contain 3 polyvalent, double-headed proteinase inhibitors. The amino acid sequences of the two main inhibitors were determined. They differ only in the substitution of one Lys for a Glu residue. The inhibitor molecules are composed of two halves (domains), one antitryptic and one antichymotryptic. The two domains are covalently linked by 3 amino acid residues. The domains are structurally related to each other and to the sequenced monovalent secretory pancreatic trypsin inhibitors.  相似文献   

20.
Three different serine proteinase inhibitors were isolated from rat serum and purified to apparent homogeneity. One of the inhibitors appears to be homologous to alpha 1-proteinase inhibitor isolated from man and other species, but the other two, designated rat proteinase inhibitor I and rat proteinase inhibitor II, seem to have no human counterpart. alpha 1-Proteinase inhibitor (Mr 55000) inhibits trypsin, chymotrypsin and elastase, the three serine proteinases tested. Rat proteinase inhibitor I (Mr 66000) is active towards trypsin and chymotrypsin, but is inactive towards elastase. Rat proteinase inhibitor II (Mr 65000) is an effective inhibitor of trypsin only. Their contributions to the trypsin-inhibitory capacity of rat serum are about 68, 14 and 18% for alpha 1-proteinase inhibitor, rat proteinase inhibitor I and rat proteinase inhibitor II respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号