首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annexins are a major family of intracellular Ca2+-binding proteins which have been implicated in a variety of cellular functions. In this paper the authors have used confocal microscopy to compare the distribution of annexin VI in vibratome sections of the rat adult left ventricle and striated muscle of the rat oesophagus. It is shown that in rat cardiac myocytes annexin VI is associated with only the sarcolemma and intercalated discs. In contrast, it is demonstrated that in rat skeletal muscle annexin VI is associated with the sarcoplasmic reticulum, in addition to the plasma membrane, suggesting that annexin VI is regulating different processes in these tissues. Also shown is that in vibratome sections of the neonatal rat left ventricle, annexin VI has a different subcellular location to that observed in the terminally differentiated adult myocyte. In these differentiating neonatal cells annexins VI is also associated with specific subcellular structures. Furthermore, using confocal microscopy of isolated myocytes the authors demonstrate that the association of annexin VI with the sarcolemma is stable even after cells are treated with the intracellular calcium chelator BAPTA-AM, to greatly deplete cytosolic calcium levels. This demonstrates that annexin VI associates tightly with the sarcolemma, and suggests that components in addition to phospholipid are involved in binding annexin VI to the membrane. These results demonstrate that the subcellular location of annexin VI is differentially regulated, and suggest that annexin VI is required for a process or processes characteristic of the sarcolemma, and of the sarcoplasmic reticulum of skeletal but not of heart muscle.  相似文献   

2.

Objective

We evaluated the postmortem changes of striated muscle by comparing computed tomography (CT) images obtained postmortem and antemortem in the same patients.

Materials and Methods

We studied 33 consecutive patients who underwent antemortem CT, postmortem CT, and pathological autopsy in our tertiary care hospital between April 2009 and December 2010. Postmortem CT was performed within 20 h after death and was followed by pathological autopsy. Pathological autopsy confirmed the absence of muscular diseases such as amyotrophic lateral sclerosis, muscular dystrophy, myositis, and myasthenia, in all of the patients. The CT attenuation values of four cardiac muscle sites (anterior wall of the left ventricle, left ventricular free wall, posterior wall of the left ventricle, and the ventricular septum) and two skeletal muscle sites (the pectoralis major muscle and the erector spinae muscle) were compared between antemortem and postmortem CT using paired t test.

Results

Striated muscle had significantly greater attenuation on postmortem CT than on antemortem CT (P<0.001) in all six tissue sites. No significant association was found between postmortem change in the CT attenuation of striated muscle and gender, age, or elapsed time since death.

Conclusion

This is the first longitudinal study to show hyperattenuation of striated muscle on postmortem CT images compared with antemortem CT images in the same patients.  相似文献   

3.
Beta adrenergic receptors were identified in rat myocardial left ventricle and human papillary muscle by using the antagonist radioligand 3H-dihydroalprenolol. The number (37.3 and 44.5 fmol/mg of protein, respectively in rat and man), and the KD (1.6 and 2.8 nM, respectively in rat and man) of beta receptors were not significantly different. Adrenergic receptors of both beta 1 and beta 2 subtypes were found to coexist in the left ventricle. The relative proportions of the two beta receptor subtypes were determined by the use of competition radioligand selective binding and computer modelling techniques employing the subtype selective antagonists ICI 118,551 (beta 2 selective) and atenolol (beta 1 selective) in rat or metoprolol (beta 1 selective) in man. The rat left ventricle contained about 74% beta 1 and 26% beta 2 adrenergic receptors, human left ventricle papillary muscles contained about 69% beta 1 and 31% beta 2. Human and rat left ventricles contain both beta 1 and beta 2 adrenergic receptors with similar affinities. Rat might be a model for the study of human myocardial beta adrenergic receptors.  相似文献   

4.
Assuming a spherical geometry for the left ventricle, passive elastic stiffness-stress relations have been obtained on the basis of linear elasticity theory and large deformation theory. Employing pressure-volume aata taken from rat hearts of various age groups, it is shown that young rat heart muscle (1 month) is stiffer than either adult (7 months) or old rat heart muscle (17 months). Although the qualitative results are similar for both elasticity theories, the large deformation theory gave results in closer agreement with those obtained from papillary muscle studies. These results imply that stiffness of muscleper se can be assessed from left ventricular pressure-volume data.  相似文献   

5.
1. Myosin light chains of guinea-pig striated muscles have been screened by two-dimensional gel electrophoresis and compared to rat myosin light chains. 2. The fast type light chains 1F and 3F, slow type light chains 1S and 2S, and embryonic type light chain 1E are shown to differ in the two rodents; only the fast type light chains 2F co-electrophorese on the gel. 3. In guinea-pig, as in rat, ventricle muscle light chains appear the same as the 1S and 2S light chains and atrial light chain type 1 the same as the 1E light chain. We show that this embryonic light chain of guinea-pig myosin is difficult to identify and may be confused with the adult 1F light chain.  相似文献   

6.
Abnormalities in intracellular calcium (Ca(i)(2+)) handling have been implicated as the underlying mechanism in a large number of pathologies in the heart. Study into the relation between Ca(i)(2+) behavior and performance of the whole heart function could provide detailed information into the cellular basis of heart function. In this study we describe an optical ratio imaging setup and an analysis method for the beat-to-beat Ca(i)(2+) videofluorescence images of an indo-1 loaded, isolated Tyrode-perfused beating rat heart. The signal-to-noise ratio and the spatiotemporal resolution (with an optimum of 1 ms and 0.6 mm, respectively) made it possible to register different temporal Ca(i)(2+) transients together with left ventricle pressure changes. The Ca(i)(2+) transients showed that Ca(i)(2+) activation propagates horizontally from left to right during sinus rhythm or from the stimulus site during direct left ventricle stimulation. The indo-1 ratiometric video technique developed allows the imaging of ratio changes of Ca(i)(2+) with a high temporal (1 ms) and spatial (0.6 mm) resolution in the isolated Tyrode-perfused beating rat heart.  相似文献   

7.
The present study proposed procedure for predicting an optimal left and right ventricular pacing interval delay (V-V interval). In 16 patients (heart failure, left bundle branch block, biventricular pacing) two methods (A and B) identifying optimal V-V interval were tested. Method A: predicted optimal V-V interval A (POVV-A) = electromechanical delay of the segment paced by left ventricle lead minus electromechanical delay of the segment paced by right ventricle lead. Method B: predicted optimal V-V interval B (POVV-B) = difference in the onset of aortic and pulmonary flows. Both methods were validated using echocardiography and right-sided heart catheterization. Cardiac output during POVV-A (4.6 l.min(-1)) was significantly better than that during POVV-A minus 20 ms (4.3 l.min(-1), p<0.01) and POVV-A plus 20 ms (4.3 l.min(-1), p<0.01), and than that during POVV-B (4.4 l.min(-1), p<0.05). LV dP/dt during POVV-A (818 mm Hg.s(-1), exceeded that during POVV-A plus 20 ms (717 mm Hg.s(-1),, p<0.05) and POVV-A minus 20 ms (681 mm Hg.s(-1), p<0.05), and that during POVV-B (727 mm Hg.s(-1), p<0.01). The time difference in onsets of myocardial deformation of left ventricle segment paced by the left ventricle and right ventricle lead allows identifying the optimal V-V interval and improves left ventricle performance.  相似文献   

8.
High Na+ + Ca2+ exchange rates comparable with those reported for crayfish striated muscle, rat heart and rat brain, were observed in locust striated muscle homogenates and membrane preparations. The Na(+)-Ca2+ exchange followed the 1st order kinetics with a Km value of 18 mumol.l-1 for Ca, the pH optimum was at 8, the temperature optimum at 30 degrees C, and the exchange was inhibited in the presence of sodium in the incubation medium, with a KiNa of approx. 25 mmol.l-1. The present results suggest a high Na(+)-Ca2+ exchange in locust striated muscles which operate on the calcium electrogenesis principle.  相似文献   

9.
Summary In a total of 96 rat pineals studied 31 were found to contain striated muscle fibers or their precursors. The muscle fibers were most frequently present in the stalk region and more frequently found in the left than in the right hemisphere. Size measurements revealed that the lengths of pineal muscle cell nuclei differ only slightly from those of the sphincter muscle of the iris. However, the yellowish appearance of pineal muscle cell nuclei under darkfield investigation, a phenomenon observed in all muscular tissues of mesenchymal origin and connective tissue cells, may support the hypothesis that pineal musculature is of mesenchymal rather than ectodermal origin.Supported by a grant (Vo 135/4) of the Deutsche Forschungsgemeinschaft within the Schwerpunktprogramm Neuroendokrinologie  相似文献   

10.
The RING domain is a conserved zinc finger motif, which serves as a protein-protein interaction interface. Searches of a human heart expressed sequence tag data base for genes encoding the RING domain identified a novel cDNA, named striated muscle RING zinc finger protein (SMRZ). The SMRZ cDNA is 1.9 kilobase pairs in length and encodes a polypeptide of 288 amino acid residues; analysis of the peptide sequence demonstrated an N-terminal RING domain. Fluorescence in situ hybridization localized SMRZ to chromosome 1p33-34. Northern blots demonstrated that SMRZ is expressed exclusively in striated muscle. In the cardiovascular system, SMRZ is more highly expressed in the fetal heart than in the adult heart (slightly higher expression in the ventricle than in the atrium), suggesting that SMRZ is developmentally regulated. SMRZ was found to interact with SMT3b, a ubiquitin-like protein, through the SMRZ-RING domain. This interaction was abolished by mutagenesis of conserved RING domain residues. Transient transfection of SMRZ into C2C12 myoblasts showed localization of SMRZ to the nucleus. These data suggest that SMRZ may play an important role in striated muscle cell embryonic development and perhaps in cell cycle regulation.  相似文献   

11.
12.
In vivo biotelemetry studies have demonstrated that heart rate (HR) is progressively and rapidly reduced after administration of streptozotocin (STZ) and that the reduction in HR can be partially normalized with insulin replacement. Reductions in HR have also been reported in isolated perfused heart and superfused right atrial preparations suggesting that intrinsic defects in the heart are at least partly responsible for the bradycardia. The regional effects of STZ-induced diabetes mellitus (DM) on action potentials (APs) in the sinoatrial node (SAN), right and left atria and ventricles have been compared in the spontaneously beating Langendorff perfused rat heart 10–12 weeks after treatment. HR was significantly reduced in STZ-induced diabetic rat heart (174 ± 9 BPM) compared to controls (241 ± 12 BPM). The duration of AP repolarization at 50% and 70% from peak AP was significantly prolonged in SAN, right atrium and right ventricle from STZ-induced diabetic rat compared to age-matched controls. In the SAN AP duration (APD) at 50% and 70% were 51.7 ± 2.2 and 59.5 ± 2.3 ms in diabetic rat heart compared to 45.2 ± 1.7 and 50.0 ± 1.6 ms in controls, respectively. In contrast APD at 50% and 70% were not significantly altered in the left atrium and left ventricle. Regional defects in the expression and/or electrophysiology of SAN ion channels, and in particular those involved in AP repolarization, might underlie heart rhythm disturbances in the STZ-induced DM rat.  相似文献   

13.
It is generally assumed that the myofilament lattice in intact (i.e., nonskinned) striated muscle obeys constant volume. However, whether such is the case during the myocardial contraction is unknown. Accordingly, we measured interfilament spacing by x-ray diffraction in ultra-thin isolated rat right ventricular trabeculae during a short 10 ms shuttered exposure either just before electrical stimulation (diastole), or at the peak of the contraction (systole); sarcomere length (SL) was held constant throughout the contraction using an iterative feedback control system. SL was thus varied in a series of SL-clamped contractions; the relationship between SL and interfilament spacing was not different between diastole and systole within 1%; this was true also over a wide range of inotropic states induced by varied [Ca(2+)](o). We conclude that the cardiac myofilament lattice maintains constant volume, and thus constant interfilament spacing, during contraction.  相似文献   

14.
Striated muscle tropomyosin is classically described as consisting of 10 exons, 1a, 2b, 3, 4, 5, 6b, 7, 8, and 9a/b, in both skeletal and cardiac muscle. A novel isoform found in embryonic axolotl heart maintains exon 9a/b of striated muscle but also has a smooth muscle exon 2a instead of exon 2b. Translation and subsequent incorporation into organized myofibrils, with both isoforms, was demonstrated with green fluorescent protein fusion protein construct. Mutant axolotl hearts lack sufficient tropomyosin in the ventricle and this smooth/straited chimeric tropomyosin was sufficient to replace the missing tropomyosin and form organized myofibrils.  相似文献   

15.
Isomyosin distributions in rodent muscles: effects of altered thyroid state   总被引:1,自引:0,他引:1  
In this study we examined the effects of 6-8 wk of thyroid hormone manipulation on striated muscle isomyosin expression in adult female rats. Animals were randomly assigned to one of three groups: 1) euthyroid controls, 2) thyroid deficient (propylthiouracil treated), and 3) hyperthyroid (triiodothyronine treated). Thyroid deficiency resulted in a marked increase in the low-adenosinetriphosphatase V3 isoform by 20- and 49-fold in the left and right ventricle, respectively. Conversely, hyperthyroidism induced a modest (3-11%) but significant increase in the high-adenosinetriphosphatase V1 isoform in both ventricles. The thyroid-deficient rats exhibited significant increases in slow myosin in both soleus (8%) and red gastrocnemius (24%), with concomitant reductions in intermediate myosin in both muscles. Interestingly, while the slow-myosin isoform was decreased in both the soleus (-19%) and the red gastrocnemius (-43%) of the hyperthyroid group, the intermediate-myosin isoform was affected differentially in the two muscles, with a fivefold increase in the former vs. a 16% decrease in the latter. Furthermore, hyperthyroidism increased the fast myosins in the red gastrocnemius while exerting no effect on the same isoforms in the white gastrocnemius. Collectively these data suggest both different specificity and sensitivity among the myosin genes of different striated muscle types in response to thyroid hormone.  相似文献   

16.
The effects of environmental hypoxia on cardiac and skeletal muscle metabolism are dependent on the duration and severity of hypoxic exposure, though factors which dictate the nature of the metabolic response to hypoxia are poorly understood. We therefore set out to investigate the time-dependence of metabolic acclimatisation to hypoxia in rat cardiac and skeletal muscle. Rats were housed under normoxic conditions, or exposed to short-term (2 d) or sustained (14 d) hypoxia (10% O2), after which samples were obtained from the left ventricle of the heart and the soleus for assessment of metabolic regulation and mitochondrial function. Mass-corrected maximal oxidative phosphorylation was 20% lower in the left ventricle following sustained but not short-term hypoxia, though no change was observed in the soleus. After sustained hypoxia, the ratio of octanoyl carnitine- to pyruvate- supported respiration was 11% and 12% lower in the left ventricle and soleus, respectively, whilst hexokinase activity increased by 33% and 2.1-fold in these tissues. mRNA levels of PPARα targets fell after sustained hypoxia in both tissues, but those of PPARα remained unchanged. Despite decreased Ucp3 expression after short-term hypoxia, UCP3 protein levels and mitochondrial coupling remained unchanged. Protein carbonylation was 40% higher after short-term but not sustained hypoxic exposure in the left ventricle, but was unchanged in the soleus at both timepoints. Our findings therefore demonstrate that 14 days, but not 2 days, of hypoxia induces a loss of oxidative capacity in the left ventricle but not the soleus, and a substrate switch away from fatty acid oxidation in both tissues.  相似文献   

17.
18.
Nakamori C  Shiina T  Shimizu Y 《Life sciences》2012,90(13-14):495-501
AimsReplacement of smooth muscles by striated muscles occurs in the esophagus during the early postnatal period. The aim of this study was to clarify postnatal changes in vagal control of esophageal muscle contractions in rats.Main methodsAn isolated segment of the neonatal rat esophagus was placed in an organ bath and the contractile responses were recorded using a force transducer.Key findingsElectrical stimulation of the vagus trunk evoked a biphasic contractile response in the neonatal esophageal segment. The first and second components of the contractions were inhibited by α-bungarotoxin and atropine, respectively. Ganglion blockers, hexamethonium and mecamylamine, did not affect vagally mediated contractions. The first component gradually enlarged with age in days, whereas the second component declined during the first week after birth. Application of d-tubocurarine or acetylcholine caused an apparent contraction in the esophageal striated muscle at postnatal day 0, but responses to these drugs were not observed at 1 week after birth. The neonatal esophagus expressed the γ-subunit of nicotinic acetylcholine receptors. In contrast, the ε-subunit was dominantly expressed in the adult esophagus.SignificanceThe vagus nerves directly innervate both the esophageal striated muscles and smooth muscles in the early neonatal period. During the process of muscle rearrangement, the property of the striated muscles is altered substantially. The specific features of striated muscles in the neonatal rat esophagus might compensate for immature formation of neuromuscular junctions. Unsuccessful conversion of the striated muscle property during postnatal muscle rearrangement would be related to disorders of esophageal motility.  相似文献   

19.
Excitation-contraction (EC) coupling in striated muscles is mediated by the cardiac or skeletal muscle isoform of voltage-dependent L-type Ca(2+) channel (Ca(v)1.2 and Ca(v)1.1, respectively) that senses a depolarization of the cell membrane, and in response, activates its corresponding isoform of intracellular Ca(2+) release channel/ryanodine receptor (RyR) to release stored Ca(2+), thereby initiating muscle contraction. Specifically, in cardiac muscle following cell membrane depolarization, Ca(v)1.2 activates cardiac RyR (RyR2) through an influx of extracellular Ca(2+). In contrast, in skeletal muscle, Ca(v)1.1 activates skeletal muscle RyR (RyR1) through a direct physical coupling that negates the need for extracellular Ca(2+). Since airway smooth muscle (ASM) expresses Ca(v)1.2 and all three RyR isoforms, we examined whether a cardiac muscle type of EC coupling also mediates contraction in this tissue. We found that the sustained contractions of rat ASM preparations induced by depolarization with KCl were indeed partially reversed ( approximately 40%) by 200 mum ryanodine, thus indicating a functional coupling of L-type channels and RyRs in ASM. However, KCl still caused transient ASM contractions and stored Ca(2+) release in cultured ASM cells without extracellular Ca(2+). Further analyses of rat ASM indicated that this tissue expresses as many as four L-type channel isoforms, including Ca(v)1.1. Moreover, Ca(v)1.1 and RyR1 in rat ASM cells have a similar distribution near the cell membrane in rat ASM cells and thus may be directly coupled as in skeletal muscle. Collectively, our data implicate that EC-coupling mechanisms in striated muscles may also broadly transduce diverse smooth muscle functions.  相似文献   

20.
R Wade  R Eddy  T B Shows  L Kedes 《Genomics》1990,7(3):346-357
Troponin I (TnI) is a myofibrillar protein involved in the calcium-mediated regulation of striated muscle contraction. Three isoforms of TnI are known and each is expressed in a muscle fiber-type-specific manner. TnI-fast and TnI-slow are expressed exclusively in fast-twitch and slow-twitch skeletal muscle myofibers, respectively, while a third isoform, TnI-card, is expressed in both the atrium and the ventricle of the heart. An explanation of the myofiber-type-restricted expression of the troponin I multigene family will further aid in understanding how various types of striated muscle fibers are established. To initiate the study of TnI isoform gene expression, we have isolated a full-length cDNA representing the human slow-twitch skeletal muscle isoform of troponin I. Sequence comparisons demonstrate that the TnI-slow protein is highly conserved between species. Therefore, the cDNA was used as a probe to investigate the tissue-specific and developmental regulation of the TnI-slow gene in both rodent and human myogenic cells. TnI-slow message appears to be restricted to muscle tissue containing slow-twitch skeletal muscle myofibers. TnI-slow gene expression is induced in differentiated cultures of primary human muscle cells and several (but not all) myogenic cell lines. In addition, a human-specific probe prepared from the 3' untranslated region of the cDNA has been used to probe a panel of human/mouse somatic cell hybrid lines, resulting in the assignment of the human TnI-slow gene to the q12----qter region of chromosome 1. The locus is designated TNNI1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号