共查询到20条相似文献,搜索用时 15 毫秒
1.
Monica Y. Burgos Zepeda Kevin Alessandri Dorothée Murat Chahrazade El Amri Elie Dassa 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(4):755-761
The Uup protein belongs to a subfamily of soluble ATP-binding cassette (ABC) ATPases that have been implicated in several processes different from transmembrane transport of molecules, such as transposon precise excision. We have demonstrated previously that Escherichia coli Uup is able to bind DNA. DNA binding capacity is lowered in a truncated Uup protein lacking its C-terminal domain (CTD), suggesting a contribution of CTD to DNA binding. In the present study, we characterize the role of CTD in the function of Uup, on its overall stability and in DNA binding. To this end, we expressed and purified isolated CTD and we investigated the structural and functional role of this domain. The results underline that CTD is essential for the function of Uup, is stable and able to fold up autonomously. We compared the DNA binding activities of three versions of the protein (Uup, UupΔCTD and CTD) by an electrophoretic mobility shift assay. CTD is able to bind DNA although less efficiently than intact Uup and UupΔCTD. These observations suggest that CTD is an essential domain that contributes directly to the DNA binding ability of Uup. 相似文献
2.
Orelle C Dalmas O Gros P Di Pietro A Jault JM 《The Journal of biological chemistry》2003,278(47):47002-47008
ATP-binding cassette (ABC) proteins constitute one of the widest families in all organisms, whose P-glycoprotein involved in resistance of cancer cells to chemotherapy is an archetype member. Although three-dimensional structures of several nucleotide-binding domains of ABC proteins are now available, the catalytic mechanism triggering the functioning of these proteins still remains elusive. In particular, it has been postulated that ATP hydrolysis proceeds via an acid-base mechanism catalyzed by the Glu residue adjacent to the Walker-B motif (Geourjon, C., Orelle, C., Steinfels, E., Blanchet, C., Deléage, G., Di Pietro, A., and Jault, J. M. (2001) Trends Biochem. Sci. 26, 539-544), but the involvement of such residue as the catalytic base in ABC transporters was recently questioned (Sauna, Z. E., Muller, M., Peng, X. H., and Ambudkar, S. V. (2002) Biochemistry, 41, 13989-14000). The equivalent glutamate residue (Glu504) of a half-ABC transporter involved in multidrug resistance in Bacillus subtilis, BmrA (formerly known as YvcC), was therefore mutated to Asp, Ala, Gln, Ser, and Cys residues. All these mutants were fully devoid of ATPase activity, yet they showed a high level of vanadate-independent trapping of 8-N3-alpha-32P-labeled nucleotide(s), following preincubation with 8-N3-[alpha-32P]ATP. However, and in contrast to the wild-type enzyme, the use of 8-N3-[gamma-32P]ATP unequivocally showed that all the mutants trapped exclusively the triphosphate form of the analogue, suggesting that they were not able to perform even a single hydrolytic turnover. These results demonstrate that Glu504 is the catalytic base for ATP hydrolysis in BmrA, and it is proposed that equivalent glutamate residues in other ABC transporters play the same role. 相似文献
3.
Légaré D Richard D Mukhopadhyay R Stierhof YD Rosen BP Haimeur A Papadopoulou B Ouellette M 《The Journal of biological chemistry》2001,276(28):26301-26307
The Leishmania ATP-binding cassette (ABC) transporter PGPA is involved in metal resistance (arsenicals and antimony), although the exact mechanism by which PGPA confers resistance to antimony, the first line drug against Leishmania, is unknown. The results of co-transfection experiments, transport assays, and the use of inhibitors suggest that PGPA recognizes metals conjugated to glutathione or trypanothione, a glutathione-spermidine conjugate present in Leishmania. The HA epitope tag of the influenza hemagglutinin as well as the green fluorescent protein were fused at the COOH terminus of PGPA. Immunofluorescence, confocal, and electron microscopy studies of the fully functional tagged molecules clearly indicated that PGPA is localized in membranes that are close to the flagellar pocket, the site of endocytosis and exocytosis in this parasite. Subcellular fractionation of Leishmania tarentolae PGPAHA transfectants was performed to further characterize this ABC transporter. The basal PGPA ATPase activity was determined to be 115 nmol/mg/min. Transport experiments using radioactive arsenite-glutathione conjugates clearly showed that PGPA recognizes and actively transports thiol-metal conjugates. Overall, the results are consistent with PGPA being an intracellular ABC transporter that confers arsenite and antimonite resistance by sequestration of the metal-thiol conjugates. 相似文献
4.
The ATP hydrolysis cycle of the nucleotide-binding domain of the mitochondrial ATP-binding cassette transporter Mdl1p 总被引:4,自引:0,他引:4
Janas E Hofacker M Chen M Gompf S van der Does C Tampé R 《The Journal of biological chemistry》2003,278(29):26862-26869
The ABC transporter Mdl1p, a structural and functional homologue of the transporter associated with antigen processing (TAP) plays an important role in intracellular peptide transport from the mitochondrial matrix of Saccharomyces cerevisiae. To characterize the ATP hydrolysis cycle of Mdl1p, the nucleotide-binding domain (NBD) was overexpressed in Escherichia coli and purified to homogeneity. The isolated NBD was active in ATP binding and hydrolysis with a turnover of 25 ATP per minute and a Km of 0.6 mm and did not show cooperativity in ATPase activity. However, the ATPase activity was non-linearly dependent on protein concentration (Hill coefficient of 1.7), indicating that the functional state is a dimer. Dimeric catalytic transition states could be trapped either by incubation with orthovanadate or beryllium fluoride, or by mutagenesis of the NBD. The nucleotide composition of trapped intermediate states was determined using [alpha-32P]ATP and [gamma-32P]ATP. Three different dimeric intermediate states were isolated, containing either two ATPs, one ATP and one ADP, or two ADPs. Based on these experiments, it was shown that: (i) ATP binding to two NBDs induces dimerization, (ii) in all isolated dimeric states, two nucleotides are present, (iii) phosphate can dissociate from the dimer, (iv) both nucleotides are hydrolyzed, and (v) hydrolysis occurs in a sequential mode. Based on these data, we propose a processive-clamp model for the catalytic cycle in which association and dissociation of the NBDs depends on the status of bound nucleotides. 相似文献
5.
Many substrates for P-glycoprotein, an ABC transporter that mediates multidrug resistance in mammalian cells, have been shown to stimulate its ATPase activity in vitro. In the present study, we used this property as a criterion to search for natural and artificial substrates and/or allosteric regulators of ABCR, the rod photoreceptor-specific ABC transporter responsible for Stargardt disease, an early onset macular degeneration. ABCR was immunoaffinity purified to apparent homogeneity from bovine rod outer segments and reconstituted into liposomes. All-trans-retinal, a candidate ligand, stimulates the ATPase activity of ABCR 3-4-fold, with a half-maximal effect at 10-15 microM. 11-cis- and 13-cis-retinal show similar activity. All-trans-retinal stimulates the ATPase activity of ABCR with Michaelis-Menten behavior indicative of simple noncooperative binding that is associated with a rate-limiting enzyme-substrate intermediate in the pathway of ATP hydrolysis. Among 37 structurally diverse non-retinoid compounds, including nine previously characterized substrates or sensitizers of P-glycoprotein, only four show significant ATPase stimulation when tested at 20 microM. The dose-response curves of these four compounds are indicative of multiple binding sites and/or modes of interaction with ABCR. Two of these compounds, amiodarone and digitonin, can act synergistically with all-trans-retinal, implying that they interact with a site or sites on ABCR different from the one with which all-trans-retinal interacts. Unlike retinal, amiodarone appears to interact with both free and ATP-bound ABCR. Together with clinical observations on Stargardt disease and the localization of ABCR to rod outer segment disc membranes, these data suggest that retinoids, and most likely retinal, are the natural substrates for transport by ABCR in rod outer segments. These observations have significant implications for understanding the visual cycle and the pathogenesis of Stargardt disease and for the identification of compounds that could modify the natural history of Stargardt disease or other retinopathies associated with impaired ABCR function. 相似文献
6.
7.
Orelle C Gubellini F Durand A Marco S Lévy D Gros P Di Pietro A Jault JM 《Biochemistry》2008,47(8):2404-2412
ATP-binding cassette (ABC) transporters are involved in the transport of a wide variety of substrates, and ATP-driven dimerization of their nucleotide binding domains (NBDs) has been suggested to be one of the most energetic steps of their catalytic cycle. Taking advantage of the propensity of BmrA, a bacterial multidrug resistance ABC transporter, to form stable, highly ordered ring-shaped structures [Chami et al. (2002) J. Mol. Biol. 315, 1075-1085], we show here that addition of ATP in the presence of Mg2+ prevented ring formation or destroyed the previously formed rings. To pinpoint the catalytic step responsible for such an effect, two classes of hydrolysis-deficient mutants were further studied. In contrast to hydrolytically inactive glutamate mutants that behaved essentially as the wild-type, lysine Walker A mutants formed ring-shaped structures even in the presence of ATP-Mg. Although the latter mutants still bound ATP-Mg, and even slowly hydrolyzed it for the K380R mutant, they were most likely unable to undergo a proper NBD dimerization upon ATP-Mg addition. The ATP-driven dimerization step, which was still permitted in glutamate mutants and led to a stable conformation suitable to monitor the growth of 2D crystals, appeared therefore responsible for destabilization of the BmrA ring structures. Our results provide direct visual evidence that the ATP-induced NBD dimerization triggers a conformational change large enough in BmrA to destabilize the rings, which is consistent with the assumption that this step might constitute the "power stroke" for ABC transporters. 相似文献
8.
Yuan YR Blecker S Martsinkevich O Millen L Thomas PJ Hunt JF 《The Journal of biological chemistry》2001,276(34):32313-32321
The crystal structure of the MJ0796 ATP-binding cassette, a member of the o228/LolD transporter family, has been determined at 2.7-A resolution with MgADP bound at its active site. Comparing this structure with that of the ATP-bound form of the HisP ATP-binding cassette (Hung, L. W., Wang, I. X., Nikaido, K., Liu, P. Q., Ames, G. F., and Kim, S. H. (1998) Nature 396, 703-707) shows a 5-A withdrawal of a phylogenetically invariant glutamine residue from contact with the gamma-phosphate of ATP in the active site. This glutamine is located in a protein segment that links the rigid F(1)-type ATP-binding core of the enzyme to an ABC transporter-specific alpha-helical subdomain that moves substantially away from the active site in the MgADP-bound structure of MJ0796 compared with the ATP-bound structure of HisP. A similar conformational effect is observed in the MgADP-bound structure of MJ1267 (Karpowich, N., et al. (2001) Structure, in press), establishing the withdrawal of the glutamine and the coupled outward rotation of the alpha-helical subdomain as consistent consequences of gamma-phosphate release from the active site of the transporter. Considering this subdomain movement in the context of a leading model for the physiological dimer of cassettes present in ABC transporters indicates that it produces a modest mechanical change that is likely to play a role in facilitating nucleotide exchange out of the ATPase active site. Finally, it is noteworthy that one of the intersubunit packing interactions in the MJ0796 crystal involves antiparallel beta-type hydrogen bonding interactions between the outermost beta-strands in the two core beta-sheets, leading to their fusion into a single extended beta-sheet, a type of structural interaction that has been proposed to play a role in mediating the aggregation of beta-sheet-containing proteins. 相似文献
9.
ATP-binding cassette (ABC) proteins have two nucleotide-binding domains (NBDs) that work as dimers to bind and hydrolyze ATP, but the molecular mechanism of nucleotide hydrolysis is controversial. In particular, it is still unresolved whether hydrolysis leads to dissociation of the ATP-induced dimers or opening of the dimers, with the NBDs remaining in contact during the hydrolysis cycle. We studied a prototypical ABC NBD, the Methanococcus jannaschii MJ0796, using spectroscopic techniques. We show that fluorescence from a tryptophan positioned at the dimer interface and luminescence resonance energy transfer between probes reacted with single-cysteine mutants can be used to follow NBD association/dissociation in real time. The intermonomer distances calculated from luminescence resonance energy transfer data indicate that the NBDs separate completely following ATP hydrolysis, instead of opening. The results support ABC protein NBD association/dissociation, as opposed to constant-contact models. 相似文献
10.
11.
Specific binding of plant nuclear proteins to GGTAAA-like motifs in the terminal regions of the transposable elements Ac and Mu1 has been detected in several laboratories. However, the role of these proteins in transposition remains unknown. To test
the hypothesis that this binding activity is necessary for transposition, we identified and mutagenized all the binding motifs
within the Ds1 element. This analysis enabled us to define more precisely the requirements for binding of the host protein. We then tested
the ability of the mutated elements to excise from the maize streak virus (MSV) genome. We found that mutated Ds1 elements that do not bind the host proteins, as determined by gel-shift competition assay, are still capable of undergoing
excision in maize, although for one of the maize lines the rate of excision was reduced. Excision of mutated Ds1 elements generated typical excision footprints. These data indicate that binding of host protein(s) to the GGTAAA-like motifs
is not essential for Ds1 excision; however, it may contribute to the efficiency of the process.
Received: 30 September 1999 / Accepted: 17 January 2000 相似文献
12.
Daus ML Landmesser H Schlosser A Müller P Herrmann A Schneider E 《The Journal of biological chemistry》2006,281(7):3856-3865
We have studied cofactor-induced conformational changes of the maltose ATP-binding cassette transporter by employing limited proteolysis in detergent solution. The transport complex consists of one copy each of the transmembrane subunits, MalF and MalG, and of two copies of the nucleotide-binding subunit, MalK. Transport activity further requires the periplasmic maltose-binding protein, MalE. Binding of ATP to the MalK subunits increased the susceptibility of two tryptic cleavage sites in the periplasmic loops P2 of MalF and P1 of MalG, respectively. Lys(262) of MalF and Arg(73) of MalG were identified as probable cleavage sites, resulting in two N-terminal peptide fragments of 29 and 8 kDa, respectively. Trapping the complex in the transition state by vanadate further stabilized the fragments. In contrast, the tryptic cleavage profile of MalK remained largely unchanged. ATP-induced conformational changes of MalF-P2 and MalG-P1 were supported by fluorescence spectroscopy of complex variants labeled with 2-(4'-maleimidoanilino)naphthalene-6-sulfonic acid. Limited proteolysis was subsequently used as a tool to study the consequences of mutations on the transport cycle. The results suggest that complex variants exhibiting a binding protein-independent phenotype (MalF500) or containing a mutation that affects the "catalytic carboxylate" (MalKE159Q) reside in a transition state-like conformation. A similar conclusion was drawn for a complex containing a replacement of MalKQ140 in the signature sequence by leucine, whereas substitution of lysine for Gln(140) appears to lock the transport complex in the ground state. Together, our data provide the first evidence for conformational changes of the transmembrane subunits of an ATP-binding cassette import system upon binding of ATP. 相似文献
13.
A P Markov E V Nechaeva V L Motin G B Smirnov 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1985,(5):7-13
Plasmid pNM1, the derivative of R100.1, has been constructed by insertion of transposon Tn5 into structural tet genet (Tn10) of the parental plasmid. The frequency of precise excision of Tn5 from plasmidic genome is 10(-5). The high frequency of precise excision obtained in this system permits one, to use it for isolation of mutants having low frequencies of precise excision. Two mutants were isolated in which the frequencies of precise excision of Tn5 were decreased for two orders. The pex1 and pex2 mutations responsible for the effect decrease the precise excision of Tn5 from R100.1 as well as from RP4 genomes. 相似文献
14.
Kim IW Peng XH Sauna ZE FitzGerald PC Xia D Müller M Nandigama K Ambudkar SV 《Biochemistry》2006,45(24):7605-7616
Each nucleotide-binding domain (NBD) of mammalian P-glycoproteins (Pgps) and human ATP-binding cassette (ABC) B subfamily members contains a tyrosine residue approximately 25 residues upstream of the Walker A domain. To assess the role of the conserved Y401 and Y1044 residues of human Pgp, we substituted these residues with F, W, C, or A either singly or together. The mutant proteins were expressed in a Vaccinia virus-based transient expression system as well as in baculovirus-infected HighFive insect cells. The Y401F, Y401W, Y1044F, Y1044W, or Y401F/Y1004F mutants transported fluorescent substrates similar to the wild-type protein. On the other hand, Y401L and Y401C exhibited partial (30-50%) function, and transport was completely abolished in Y401A, Y1044A, and Y401A/Y1044A mutant Pgps. Similarly, in Y401A, Y1044A, and Y401A/Y1044A mutants, TNP-ATP binding, vanadate-induced trapping of nucleotide, and ATP hydrolysis were completely abolished. Thus, an aromatic residue upstream of the Walker A motif in ABC transporters is critical for binding of ATP. Additionally, the crystal structures of several NBDs in the nucleotide-bound form, data mining, and alignment of 18,514 ABC domains with the consensus conserved sequence in a database of all nonredundant proteins indicate that an aromatic residue is highly conserved in approximately 85% of ABC proteins. Although the role of this aromatic residue has previously been studied in a few ABC proteins, we provide evidence for a near-universal structural and functional role for this residue and recognize its presence as a conserved subdomain approximately 25 amino acids upstream of the Walker A motif that is critical for ATP binding. We named this subdomain the "A-loop" (aromatic residue interacting with the adenine ring of ATP). 相似文献
15.
ATP-binding cassette (ABC) transport proteins catalyze the translocation of substrates at the expense of hydrolysis of ATP, but the actual ATP/substrate stoichiometry is still controversial. In the osmoregulated ABC transporter (OpuA) from Lactococcus lactis, ATP hydrolysis and substrate translocation are tightly coupled, and the activity of right-side-in and inside-out reconstituted OpuA can be determined accurately. Although the ATP/substrate stoichiometry determined from the uptake of glycine betaine and intravesicular ATP hydrolysis tends to increase with decreasing average size of the liposomes, the data from inside-out reconstituted OpuA indicate that the mechanistic stoichiometry is 2. Moreover, the two orientations of OpuA in proteoliposomes allowed possible contributions from substrate (glycine betaine) inhibition on the trans-side of the membrane and inhibition by ADP to be determined. Here we show that OpuA is not inhibited by up to 400 mm glycine betaine on the trans-side of the membrane. ADP is an inhibitor, but accumulation of ADP was negligible in the assays with inside-out-oriented OpuA, and potential effects of the ATP/ADP ratio on the ATP/substrate stoichiometry determinations could be eliminated. 相似文献
16.
The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis 下载免费PDF全文
Footitt S Dietrich D Fait A Fernie AR Holdsworth MJ Baker A Theodoulou FL 《Plant physiology》2007,144(3):1467-1480
COMATOSE (CTS) encodes a peroxisomal ATP-binding cassette transporter required not only for beta-oxidation of storage lipids during germination and establishment, but also for biosynthesis of jasmonic acid and conversion of indole butyric acid to indole acetic acid. cts mutants exhibited reduced fertilization, which was rescued by genetic complementation, but not by exogenous application of jasmonic acid or indole acetic acid. Reduced fertilization was also observed in thiolase (kat2-1) and peroxisomal acyl-Coenzyme A synthetase mutants (lacs6-1,lacs7-1), indicating a general role for beta-oxidation in fertility. Genetic analysis revealed reduced male transmission of cts alleles and both cts pollen germination and tube growth in vitro were impaired in the absence of an exogenous carbon source. Aniline blue staining of pollinated pistils demonstrated that pollen tube growth was affected only when both parents bore the cts mutation, indicating that expression of CTS in either male or female tissues was sufficient to support pollen tube growth in vivo. Accordingly, abundant peroxisomes were detected in a range of maternal tissues. Although gamma-aminobutyric acid levels were reduced in flowers of cts mutants, they were unchanged in kat2-1, suggesting that alterations in gamma-aminobutyric acid catabolism do not contribute to the reduced fertility phenotype through altered pollen tube targeting. Taken together, our data support an important role for beta-oxidation in fertility in Arabidopsis (Arabidopsis thaliana) and suggest that this pathway could play a role in the mobilization of lipids in both pollen and female tissues. 相似文献
17.
N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion 总被引:18,自引:2,他引:16 下载免费PDF全文
《The Journal of cell biology》1994,126(4):945-954
The NEM-sensitive fusion protein, NSF, together with SNAPs (soluble NSF attachment proteins) and the SNAREs (SNAP receptors), is thought to be generally used for the fusion of transport vesicles to their target membranes. NSF is a homotrimer whose polypeptide subunits are made up of three distinct domains: an amino-terminal domain (N) and two homologous ATP-binding domains (D1 and D2). Mutants of NSF were produced in which either the order or composition of the three domains were altered. These mutants could not support intra-Golgi transport, but they indicated that the D2 domain was required for trimerization of the NSF subunits. Mutations of the first ATP-binding site that affected either the binding (K266A) or hydrolysis (E329Q) of ATP completely eliminated NSF activity. The hydrolysis mutant was an effective, reversible inhibitor of Golgi transport with an IC50 of 125 ng/50 microliters assay. Mutants in the second ATP-binding site (binding, K549A; hydrolysis, D604Q) had either 14 or 42% the specific activity of the wild-type protein, respectively. Using coexpression of an inactive mutant with wild-type subunits, it was possible to produce a recombinant form of trimeric NSF that contained a mixture of subunits. The mixed NSF trimers were inactive, even when only one mutant subunit was present, suggesting that NSF action requires each of the three subunits in a concerted mechanism. These studies demonstrate that the ability of the D1 domain to hydrolyze ATP is required for NSF activity and, therefore is required for membrane fusion. The D2 domain is required for trimerization, but its ability to hydrolyze ATP is not absolutely required for NSF function. 相似文献
18.
Studies on ATP hydrolysis in medium for histochemical demonstration of ATPase activity 总被引:1,自引:0,他引:1
K. Miętkiewski F. Domka L. Malendowicz J. Malendowicz 《Histochemistry and cell biology》1970,24(4):343-353
Summary Nonenzymatic ATP hydrolysis in medium of Wachstein and Meisel for histochemical demonstration of ATPase activity was investigated. In this medium considerable amounts of phosphorus are released without the participation of the enzyme. ATP hydrolysis in Wachstein-Meisel's medium increase with the concentration of Pb++ and decrease at its small concentrations. The degree of ATP hydrolysis appeared to increase with increase both temperature and pH. At high concentration of ATP (5.76 mM) the degree of ATP hydrolysis in Wachstein-Meisel's medium is lower than at 1.44 mM ATP. 10.0 mM Ca++ or 3.6 mM Fe++ speed up ATP hydrolysis after 30- and 60-minute incubation. In the presence of 3.6 mM Co++ or 2.6 mM Cu++ ATP hydrolysis in Wachstein-Meisel's medium increased throughout the whole period examined. On the contrary, 3.6 mM Fe+++ decreases ATP hydrolysis in this medium.10.0 mM F– raises the degree of ATP hydrolysis which is, however, lowered in the presence of 2.5 mM pCMB or 3.6 mM KCN. 2.0 mM cysteine highly inhibits the process of nonenzymatic ATP hydrolysis in Wachstein-Meisel's medium.These data show that the histochemical reaction for ATPase activity in Wachstein-Meisel's medium does not originate exclusively from the hydrolysis of ATP in the presence of Pb++, but take rise, above all, as a result of an enzymatic reaction. 相似文献
19.
Wei Hong Linfeng Chen Weizhen Gao 《Biochemical and biophysical research communications》2009,390(1):77-303
The 70-kDa heat shock protein (Hsp70) is involved in providing the appropriate conformation of various nuclear hormone receptors, including the glucocorticoid receptor (GR). The Bcl-2 associated athanogene 1M (Bag-1M) is known to downregulate the DNA binding by the GR. Also, Bag-1M interacts with the ATPase domain of Hsp70 to modulate the release of the substrate from Hsp70. In this study, we demonstrate that ATP hydrolysis enhances Bag-1M-mediated inhibition of the DNA binding by the GR. However, the inhibitory effect of Bag-1M was abolished when the intracellular ATP was depleted. In addition, a Bag-1M mutant lacking the interaction with Hsp70 did not influence the GR to bind DNA, suggesting the interaction of Bag-1M with Hsp70 in needed for its negative effect. These results indicate that ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the GR and Hsp70 is a mediator for this process. 相似文献
20.
Lamers MH Georgijevic D Lebbink JH Winterwerp HH Agianian B de Wind N Sixma TK 《The Journal of biological chemistry》2004,279(42):43879-43885
MutS is the key protein of the Escherichia coli DNA mismatch repair system. It recognizes mispaired and unpaired bases and has intrinsic ATPase activity. ATP binding after mismatch recognition by MutS serves as a switch that enables MutL binding and the subsequent initiation of mismatch repair. However, the mechanism of this switch is poorly understood. We have investigated the effects of ATP binding on the MutS structure. Crystallographic studies of ATP-soaked crystals of MutS show a trapped intermediate, with ATP in the nucleotide-binding site. Local rearrangements of several residues around the nucleotide-binding site suggest a movement of the two ATPase domains of the MutS dimer toward each other. Analytical ultracentrifugation experiments confirm such a rearrangement, showing increased affinity between the ATPase domains upon ATP binding and decreased affinity in the presence of ADP. Mutations of specific residues in the nucleotide-binding domain reduce the dimer affinity of the ATPase domains. In addition, ATP-induced release of DNA is strongly reduced in these mutants, suggesting that the two activities are coupled. Hence, it seems plausible that modulation of the affinity between ATPase domains is the driving force for conformational changes in the MutS dimer. These changes are driven by distinct amino acids in the nucleotide-binding site and form the basis for long-range interactions between the ATPase domains and DNA-binding domains and subsequent binding of MutL and initiation of mismatch repair. 相似文献