首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present a model of the macrophage T lymphocyte interactions that generate an anti-tumor immune response. The model specifies i) induction of cytotoxic T lymphocytes, ii) antigen presentation by macrophages, which leads to iii) activation of helper T cells, and iv) production of lymphoid factors, which induce a) cytotoxic macrophages, b) T lymphocyte proliferation, and c) an inflammation reaction. Tumor escape mechanisms (suppression, antigenic heterogeneity) have been deliberately omitted from the model. This research combines hitherto unrelated or even contradictory data within the range of behavior of one model. In the model behavior, helper T cells play a crucial role: Tumors that differ minimally in antigenicity (i.e., helper reactivity) can differ markedly in rejectability. Immunization yields protection against tumor doses that would otherwise be lethal, because it increases the number of helper T cells. The magnitude of the cytotoxic effector cell response depends on the time at which helper T cells become activated: early helper activity steeply increases the magnitude of the immune response. The type of cytotoxic effector cells that eradicates the tumor depends on tumor antigenicity: lowly antigenic tumors are attacked mainly by macrophages, whereas large highly antigenic tumors can be eradicated by cytotoxic T lymphocytes only.  相似文献   

2.
In a mathematical model of the cellular immune response we investigate immune reactions to tumors that are introduced in various doses. The model represents macrophage T-lymphocyte interactions that generate cytotoxic macrophages and cytotoxic T-lymphocytes. In this model antigens (tumors) can induce infinitely large T-lymphocyte effector populations because effector T-lymphocytes are capable of repeated proliferation and we have omitted immunosuppression. In this (proliferative) model small doses of weakly antigenic tumors grow infinitely large (i.e. sneak through) eliciting an immune response of limited magnitude. Intermediate doses of the same tumor induce larger immune responses and are hence rejected. Large doses of the tumor break through, but their progressive growth is accompanied by a strong immune response involving extensive lymphocyte proliferation. Similarly a more antigenic tumor is rejected in intermediate doses and breaks through in large doses. Initially small doses however lead to tumor dormancy. Thus although the model is devoid of explicit regulatory mechanisms that limit the magnitude of its response (immunosuppression is such a mechanism), the immune response to large increasing tumors may either be a stable reaction of limited magnitude (experimentally known as tolerance or unresponsiveness) or a strong and ever increasing reaction. Unresponsiveness can evolve because in this model net T-lymphocyte proliferation requires the presence of a minimum number of helper T cells (i.e. a proliferation threshold). Unresponsiveness is caused by depletion of helper T cell precursors.  相似文献   

3.
Summary We have studied the rather paradoxical phenomenon of the growth of an antigenic tumor in an immunocomponent host. This phenomenon was studied by comparing (a) the lymphocyte reactivity and (b) the macrophage cytotoxicity, during SL2 growth in DBA/2 mice (SL2-bearing mice) and in DBA/2 mice immunized against SL2 tumor cells (SL2-immune mice). Immune mice rejected a challenge of tumor cells. The immune T-lymphocytes rendered macrophages cytotoxic (arming) and were able to transfer tumor resistance to naive animals. Nonimmunized mice did not reject a challenge of SL2 cells. In these tumor-bearing mice various forms of immune reactivity were tested. Lymphocytes with the capacity to arm macrophages could not be found in the lymphoid organs. However, lymphocytes isolated from the tissue directly surrounding the subcutaneous SL2 tumor could arm macrophages in vitro.Shortly after subcutaneous tumor grafting cytotoxic macrophages were found in the peritoneal cavity. In the serum macrophage arming factors were detected that rendered macrophages cytotoxic in vitro. This cytotoxicity of the peritoneal macrophages and the presence of macrophage arming factors in the serum showed a similar biphasic pattern. The first phase of cytotoxicity between day 3 and 8 after tumor grafting was tumor (SL2) specific. The second phase from day 12 and onwards was not tumor specific. During the first 4 days after SL2 grafting the DBA/2 mice expressed a specific concomitant immunity to a second tumor graft. Then 7 or more days after grafting the first SL2 tumor, the concomitant immunity was nonspecific as the growth of a second SL2 tumor graft and a L5178Y (DBA/2) tumor graft were inhibited. In addition, the immune suppressive activity of serum and lymphocytes was tested. Neither serum nor lymphocytes from SL2-bearing mice suppressed the macrophage arming capacity of SL2 immune lymphocytes. Lymphocytes from tumor-bearing mice did not inhibit the capacity of SL2-immune lymphocytes to transfer resistance to naive animals. On the contrary, lymphocytes obtained from SL2-bearing mice 14 days after SL2 grafting transfered tumor resistance in a Winn-type assay. These data suggest that the growth of an antigenic tumor is due to the inability of the immune system to mount an effective antitumor effector cell population during tumor growth, rather than an immune suppression of the antitumor reactivity, as a limited immune reactivity could be detected in tumor-bearing mice, whereas immune suppression could not be detected.  相似文献   

4.
Modern cancer therapies often involve the combination of tumor-directed cytotoxic strategies and generation of a host antitumor immune response. The latter is unleashed by immunotherapies that activate the immune system generating a more immunostimulatory tumor microenvironment and a stronger tumor antigen-specific immune response. Studying the interaction between antitumor cytotoxic therapies, dying cancer cells, and the innate and adaptive immune system requires appropriate experimental tumor models in mice. In this review, we discuss the immunostimulatory and immunosuppressive properties of cancer cell lines commonly used in immunogenic cell death (ICD) studies being apoptosis or necroptosis. We will especially focus on the antigenic component of immunogenicity. While in several cancer cell lines the epitopes of endogenously expressed tumor antigens are known, these intrinsic epitopes are rarely determined in experimental apoptotic or necroptotic ICD settings. Instead by far the most ICD research studies investigate the antigenic response against exogenously expressed model antigens such as ovalbumin or retroviral epitopes (e.g., AH1). In this review, we will argue that the immune response against endogenous tumor antigens and the immunopeptidome profile of cancer cell lines affect the eventual biological readouts in the typical prophylactic tumor vaccination type of experiments used in ICD research, and we will propose additional methods involving immunopeptidome profiling, major histocompatibility complex molecule expression, and identification of tumor-infiltrating immune cells to document intrinsic immunogenicity following different cell death modalities.Subject terms: Cancer models, Antigen-presenting cells, Immune cell death  相似文献   

5.
自然杀伤细胞是机体固有免疫系统重要组成部分,在肝脏等免疫器官中含量丰富,而且免疫表型、功能等表现出器官特异性。在正常情况下,靶细胞表面的配体与自然杀伤细胞表面的活化性受体直接结合并释放细胞毒性物质,诱导活化靶细胞凋亡程序,从而发挥抗感染、抗肿瘤作用。然而肿瘤细胞仍能够通过多种途径逃逸机体的免疫监视功能,研究认为肿瘤细胞抗原异常表达、肿瘤微环境中细胞因子及其他免疫细胞相互作用等因素所引起的自然杀伤细胞活性降低对于诱导肿瘤免疫逃逸起重要作用。本文综述了自然杀伤细胞在肝脏恶性肿瘤发生过程中参与免疫逃逸的机制及研究进展,以期为临床抗肿瘤免疫治疗的研究提供参考。  相似文献   

6.
BACKGROUND: The notion that a deficit in immune cell functions permits tumor growth has received experimental support with the discovery of several different biochemical defects in T lymphocytes that infiltrate cancers. Decreased levels of enzymes involved with T-cell signal transduction have been reported by several laboratories, suggesting that tumors or host cells recruited to the tumor site actively down-regulate antitumor T-cell immune response. This permits tumor escape from immune-mediated killing. The possibility that defects in T-cell signal transduction can be reversed, which would potentially permit successful vaccination or adoptive immunotherapy, motivates renewed interest in the field. Summarizing the literature concerning tumor-induced T-cell dysfunction, we focus on the end stage of immune response to human cancer, that of defective cytotoxic T lymphocyte killing function. Based on the data from several laboratories, we hypothesize a biochemical mechanism that accounts for the unusual phenotype of antitumor T-cell accumulation in tumors, but with defective killing function.  相似文献   

7.
Cancer antigen-specific cytotoxic T lymphocytes (CTL) are the major effectors against cancer cells. However, large established tumors are usually not fully controlled by CTL for at least two reasons. First, large established tumors have immune suppressive networks that not only suppress CTL effector function but also permit tumor progression. Second, the genetic instability of cancer cells often results in the selection of antigenic variants by CTL, which allow cancer cells to escape destruction. Simply enhancing T cell capacity may not fully control large established tumors. Other measures, such as enhancing local costimulation, inhibiting angiogenesis and down-regulating functions of tumor associated myeloid cells should also be considered. In this paper we will review some of the progress from animal studies.  相似文献   

8.
 The anticancer drug taxol (paclitaxel) inhibits tumors through multiple cytotoxic and cytostatic mechanisms. Independently of these mechanisms, taxol induces distinct immunological efficacy when it acts as a second signal for activation of tumoricidal activity by interferon-γ(IFNγ)-primed murine normal host macrophages. We reported that tumor-distal macrophages, which mediate immunosuppression through dysregulated nitric oxide (NO) and tumor necrosis factor α (TNFα) production, are differentially regulated by taxol. Because taxol influences tumor cell growth dynamics and activates immune cell populations, we assessed the ex vivo immunosuppressive and antitumor activities of taxol-treated normal host and tumor-bearing host (TBH) macrophages. Pretreatment of such cells with taxol partly reconstituted T cell alloantigen reactivity, suggesting that taxol mediates a limited reversal of TBH macrophage immunosuppressive activity. Taxol-treated TBH macrophages significantly suppressed the growth of fibrosarcoma cells (Meth-KDE) through soluble effector molecules and promoted direct cell-mediated cytotoxicity, indicating that taxol enhanced tumor-induced macrophage antitumor activities. Tumor-induced helper T cells, however, showed a higher sensitivity to direct taxol-induced suppression. These data demonstrate that taxol exerts pleiotropic effects on antitumor immune responses with the capacity to abate the immunosuppressive activities of macrophages and promote macrophage-mediated antitumor activities simultaneously, but also directly modulating T cell reactivity. Collectively, these studies suggest that the antineoplastic drug taxol may impart antitumor activity through an immunotherapeutic capacity. Received: 31 December 1996 / Accepted: 1 July 1997  相似文献   

9.
We had shown previously that progression of MOPC-315 plasmacytoma growth is associated with an increase in the percentage of macrophages in the spleen as well as a decrease in the ability of tumor-bearer spleen cells to mount an antitumor cytotoxic response upon in vitro immunization. Here we provide evidence that macrophages in the MOPC-315 tumor-bearer spleen are responsible at least in part for the suppression of the generation of antitumor cytotoxicity. Accordingly, removal of most macrophages by depletion of phagocytic cells or Sephadex G-10-adherent cells from spleens of mice bearing a large tumor resulted in augmented antitumor immune potential. Also, Sephadex G-10-adherent spleen cells from tumor-bearing (but not normal) mice drastically suppressed the in vitro generation of antitumor cytotoxicity by normal spleen cells. The suppressive activity of these adherent cells did not reside in contaminating suppressor T cells, since it was not reduced by treatment with monoclonal anti-Thy 1.2 antibody plus complement. The Sephadex G-10-adherent cell population from the tumor-bearer spleen suppressed the in vitro generation of antitumor cytotoxicity against autochthonous tumor cells but not against allogeneic EL4 tumor cells, and hence the suppression was apparently specific. The suppressive activity of the Sephadex G-10-adherent cell population from tumor-bearer spleens was overcome by treatment of the tumor-bearing mice with a low curative dose of cyclophosphamide. This immunomodulatory effect of a low dose of the drug in overcoming the suppression mediated by the Sephadex G-10-adherent cell population enables the effector arm of the immune system of tumor-bearing mice to cooperate effectively with the drug's tumoricidal activity in tumor eradication.  相似文献   

10.
A variety of mechanisms have been proposed to explain how tumors evade immune destruction. This work has identified one such mechanism that determines susceptibility to immune lysis; membrane phospholipid composition altered susceptibility to antibody plus complement (Ab+C)-mediated lysis. Effects on antibody plus complement-mediated lysis were correlated with levels of major histocompatibility complex (MHC) molecules but not inherent resistance to complement damage. This cellular mechanism could be a means by which tumor cells escape immune detection and destruction.  相似文献   

11.
Albino rat macrophages and neutrophils in the presence of immune serum adhered to and promoted killing of Brugia malayi infective larvae in vitro. At a similar cell-target ratio, macrophages were more potent than neutrophils in inducing cytotoxic response to the larvae. Eosinophils were also effective in killing but only at a high cell-target ratio. The activity in the immune serum could be absorbed to and eluted from a Protein A-Sepharose column suggesting involvement of IgG antibody in the reaction. An indirect fluorescent antibody test confirmed the presence of IgG on the surface of larvae incubated in immune serum. Infective larvae were attacked by host cells within micropore chambers 16-24 h after implantation into immunized rats. Further, a strong cytotoxic response to the larvae was seen when they were introduced intraperitoneally into immune rats indicating the role of antibody and cells in vivo. We suggest that antibody-dependent cellular cytotoxicity may represent an important mechanism of parasite killing in an immune host.  相似文献   

12.
The macrophages belong to the effector cells of both nonspecific and specific immune response. These cells generally express little cytotoxicity unless activated. The present work was intended to determine if peritoneal macrophages collected from patients on Continuous Ambulatory Peritoneal Dialysis (CAPD) during episodes of peritonitis were active against human tumor cell lines without further in vitro stimulation. We also compared macrophage antitumor potential with effectiveness of drugs used in cancer therapy (taxol and suramin). Conditioned medium (CM) of macrophages collected during inflammation-free periods did not exhibit cytostatic and cytotoxic activity against both tumor (A549 and HTB44) and non-transformed (BEAS-2B and CRL2190) cells. Exposure of tumor cells to CM of macrophages harvested during peritonitis resulted in significant suppression of proliferation, impairment of viability and induction of apoptosis, in contrast to non-transformed cells, which remained unaffected. The efficacy of CM of inflammatory macrophages as an antitumor agent appeared to be comparable to cytostatic and cytotoxic potency of taxol and suramin or, in the case of HTB44 cells, even higher. The results obtained suggest that activated human macrophages might represent a useful tool for cancer immunotherapy.  相似文献   

13.
Small concentrations of recombinant murine interferon-gamma (MuIFN-gamma), recombinant human interleukin 1 (HuIL-1), and recombinant murine tumor necrosis factor (MuTNF), added separately to cultures of thioglycolate-elicited peritoneal macrophages, produced no cytotoxic activity against L5178Y cells, a tumor cell line which is resistant to the direct toxic effects of these cytokines, either alone or in combination. However, small concentrations of MuIFN-gamma when combined with small concentrations of either HuIL-1 or MuTNF activated these macrophages to produce cytotoxic effects against L5178Y cells; small concentrations of HuIL-1 and MuTNF in combination had no macrophage activating activity. Specific antibody to MuTNF blocked the macrophage-activating synergistic effects of MuIFN-gamma + HuIL-1, and specific antibody to HuIL-1 blocked the macrophage-activating activity of MuIFN-gamma + MuTNF, indicating that MuTNF was induced in macrophage cultures treated with MuIFN-gamma + HuIL-1, and that murine IL-1 was induced in macrophage cultures treated with MuIFN-gamma + MuTNF. These results indicate that all three cytokines are required for induction of antitumor cytotoxic activation of macrophages. Experiments with a concentration of MuIFN-gamma which alone could activate macrophages revealed that both MuTNF and murine IL-1 were required for this activation. The demonstration that small concentrations of these three cytokines can act synergistically, but not separately, to activate macrophages indicates the importance of cytokine combinations in immunoregulation and in anti-tumor cell-mediated immune responses.  相似文献   

14.
We investigated the nature of deficient antibody responses to SRBC in stable, fully allogeneic bone marrow chimeras. No evidence for a suppressor cell-mediated mechanism was found. Chimera spleens possessed adequate numbers of antigen-reactive B cells to produce a normal antibody response. Using separated chimera cell populations and soluble helper factors, we assessed the functional capabilities of chimera B cells, T cells, and macrophages. Our data suggest that the failure of allogeneic chimeras to produce antibody is not the result of impaired B cell, T cell, or macrophage function, but rather that it is due in ineffective cellular interactions that normally result in the generation of helper factors. In vitro stimulation of chimera macrophages with LPS, and of chimera spleen cells with Con A, resulted in the release of soluble helper factors that were capable of fully restoring chimera B cell responses.  相似文献   

15.
Modulation of human leukocyte antigen (HLA) was attempted by treating leukocytes with specific anti-HLA antiserum or by their passage through columns coated with anti-HLA or a double layer of HLA-anti-HLA. The modulated cells were resistant to the cytotoxic effects of the anti-HLA, and they were poor stimulators and good responders to allogeneic cells in the unidirectional mixed leukocyte reaction. Modulated cells regained their HLA 16 hr after modulation if kept in cell suspension alone. The proliferative responses of modulated cells to mitogens were as good as non-modulated cells, indicating that modulation was probably not caused by depletion of lymphoid cells. Supernatants of modulated cells that were incubated overnight or preformed HLA-anti-HLA complexes were capable of suppressing and enhancing the MLR of specific cells depending on the dose used. The similarities of modulation of HLA to other lymphocyte receptors and the limitation of application of the modulation phenomenon to transplantation of allogeneic cells are discussed.  相似文献   

16.
The antitumor activity and arachidonic acid metabolism of operationally defined macrophage populations was examined. Macrophages from mice injected with Mycobacterium bovis (strain BCG) or with pyran-copolymer were cytotoxic for tumor cells. The major arachidonic acid metabolite of these cells was PGE2. Neither resident nor elicited macrophages were cytotoxic. However, elicited macrophages as well as macrophages from BCG injected mice inhibited tumor cell growth. The production of arachidonic acid metabolites by elicited cells, while low initially, was followed by a rapid increase in PGE2. The major metabolites of resident cells were PGE2 and prostacyclin. The cAMP:cGMP ratio correlated with the metabolic activity of the cells.  相似文献   

17.
p53 mutations are frequently found in human cancers and are often associated with the overexpression of wild-type (WT) protein or peptide sequences, supporting the notion that WT p53 epitopes may serve as potential targets for tumor immunotherapy. We have developed a cytotoxic T lymphocyte (CTL)/p53 tumor-associated antigen (TAA) model, based on immune recognition of a WT p53 determinant. WT p53-peptide-specific, major histocompatibility complex (MHC) classI-restricted CTL were produced from immunocompetent C57BL/6 (H-2b) mice after immunization with a previously defined WT p53 peptide (p53(232-240)) Epitope-specific CTL were then employed to identify syngeneic tumor cell populations expressing that antigenic determinant. Two syngeneic tumor cell lines, MC38 colon carcinoma and MC57G fibrosarcoma, were demonstrated to express the endogenous WT p53(232-240) determinant naturally, as defined by CD8 + CTL recognition. Cold-target inhibition assays confirmed that CTL-mediated lysis was due to immune recognition of the p53(232-240) peptide epitope. The p53(232-240)-specific CTL line did not lyse syngeneic normal cells (i.e., mitogen-activated splenocytes) in the absence of exogenous peptide, suggesting that the WT-p53-specific CTL could distinguish between tumor cells expressing self-TAA and normal host cells. We have demonstrated, for the first time, that the adoptive transfer of WT-p53-specific CTL to mice with established pulmonary metastasis resulted in antitumor activity in vivo. The ability to generate MHC-class-I-restricted CD8- CTL lines specific for a non-mutated p53 determinant from normal, immunocompetent mice, which display antitumor activity both in vitro and in vivo (by adoptive transfer), may have implications for the immunotherapy of certain p53-expressing malignancies.  相似文献   

18.
我们运用抗人肺癌单抗LC-1结合胶体金免疫电镜技术研究了人肺腺癌SPC-A-1细胞表面抗原抗体复合物被内吞的全过程,发现该细胞表面抗原抗体复合物是通过受体介导内吞途径被内化,经多泡体富集后至溶酶体消化降解。此外我们还用流式细胞仪分析了内吞前后该细胞表面抗原量的变化和短期内的恢复情况。LC-1在诱发该细胞表面抗原内化的同时还诱发了它对该核糖体的自噬。  相似文献   

19.
Spontaneous regression of AK-5 tumor in syngeneic hosts reported earlier involves the interplay of Th1-type cytokines and cell-mediated immunity. Upon subcutaneous transplantation of AK-5 cells, there was accumulation of immune cells in the peritoneum, of which macrophages were the predominant type and were found to be in a hyperactive state. They released macrophage-derived tumoricidal mediators like NO, O2(-), and ONOO(-) which exhibited potent cytotoxic activity against AK-5 cells in vitro. Interestingly, there was a dramatic disappearance of these hyperactive cells from the peritoneal cavity which correlated well with the onset of tumor regression at the subcutaneous site. Direct labeling of these cells in the peritoneum by the tracking dye PKH26 showed their migration to the tumor site. Similarly, frozen tumor sections when scanned under confocal microscope clearly exhibited fluorescent macrophages embedded into the tumor. Immunohistochemical sections of these intratumoral macrophages showed nitrotyrosine residues, indicating their contribution in the free-radical-mediated AK-5 cell death, thereby leading to successful tumor remission. These observations suggest a directional migration of the hyperactivated peritoneal population to the tumor site. We have also confirmed the influx of macrophages and other immune cells into the peritoneum after sc transplantation of Meth A tumor cells in Balb/c mice. Our studies suggest a role for the peritoneal compartment in imparting appropriate stimulus to the immune cells prior to their participation in the antitumor immune response. These studies suggest a novel route of macrophage trafficking via the peritoneum.  相似文献   

20.
Virulizin, a novel biological response modifier, has demonstrated significant antitumor efficacy in a variety of human tumor xenograft models including melanoma, pancreatic cancer, breast cancer, ovarian cancer and prostate cancer. The significant role of macrophages and NK (Natural killer) cells was implicated in the antitumor mechanism of Virulizin where expansion as well as increased activity of macrophages and NK cells were observed in mice treated with Virulizin. Depletion of macrophages compromised Virulizin-induced NK1.1+ cell infiltration into xenografted tumors and was accompanied by reduced antitumor efficacy. In the present study, involvement of macrophages in NK cell activation was investigated further. We found that depletion of NK cells in CD-1 nude mice by anti-ASGM1 antibody significantly compromised the antitumor activity of Virulizin. Cytotoxicity of NK cells isolated from Virulizin-treated mice was enhanced against NK-sensitive YAC-1 cells and C8161 human melanoma cells, but not against NK-insensitive P815 cells. An increased level of IL-12 was observed in the serum of mice treated with Virulizin. IL-12 mRNA and protein levels were also increased in peritoneal macrophages isolated from Virulizin-treated mice. Moreover, Virulizin-induced cytotoxic activity of NK cells isolated from the spleen was abolished when an IL-12 neutralizing antibody was co-administered. In addition, depletion of macrophages in mice significantly impaired Virulizin-induced NK cell cytotoxicty. Taken together, the results suggest that Virulizin induces macrophage IL-12 production, which in turn stimulates NK cell-mediated antitumor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号