首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combined hepatocellular-cholangiocarcinoma (CHC) of transitional subtype and the surrounding cirrhotic liver tissue were investigated immunocytochemically by monoclonal antibodies specific for each of the keratin polypeptides 7, 8, 18 and 19. Different keratin subsets were found in different parts of the tumour. The hepatocellular component reveals keratins 8 and 18, with the bordering cells of trabecular formations additionally expressing keratins 7 and 19. The same keratins i.e. 7, 8, 18, 19 were found in normal bile duct epithelium as well as in cholangiocarcinomatous and transitional areas of hepatocellular and cholangiocellular differentiation. Normal hepatocytes express only keratin 8 and 18. In cirrhotic liver some modified hepatocytes additionally express keratin 7. When ductal transformation is observed in the marginal parts of portal tracts and fibrous septa the keratin polypeptide pattern mimics that of bile duct epithelium. The cholangiocellular metaplasia of hepatocytes observed here correlates well with findings in hepato-organogenesis and hepatocarcinogenesis and suggests that the transitional subtype of combined hepatocellular-cholangiocarcinoma is a variant of hepatocellular carcinoma.  相似文献   

2.
Tissue distribution of keratin 7 as monitored by a monoclonal antibody   总被引:23,自引:0,他引:23  
Monoclonal antibody (RCK 105) directed against keratin 7 was obtained after immunization of BALB/c mice with cytoskeletal preparations from T24 cells and characterized by one- (1D) and two-dimensional (2D) immunoblotting. In cultured epithelial cells, known from gel electrophoretic studies to contain keratin 7, this antibody gives a typical keratin intermediate filament staining pattern, comparable to that obtained with polyclonal rabbit antisera to skin keratins or with other monoclonal antibodies, recognizing for example keratins 5 and 8 or keratin 18. Using RCK 105, the distribution of keratin 7 throughout human epithelial tissues was examined and correlated with expression patterns of other keratins. Keratin 7 was found to occur in the columnar and glandular epithelium of the lung, cervix, breast, in bile ducts, collecting ducts in the kidney and in mesothelium, but to be absent from gastrointestinal epithelium, hepatocytes, proximal and distal tubules of the kidney and myoepithelium. Nor could it be detected in the stratified epithelia of the skin, tongue, esophagus, or cervix but strongly stained all cell layers of the urinary bladder transitional epithelium. When applied to carcinomas derived from these different tissue types it became obvious that an antibody to keratin 7 may allow an immunohistochemical distinction between certain types of adenocarcinomas.  相似文献   

3.
Summary The receptors of peanut agglutinin (PNA),Dolichos biflorus agglutinin (DBA) andUlex europaeus agglutinin I (UEA-I) were localized in intrahepatic cholangiocellular carcinoma, hepatocellular carcinoma, intrahepatic bile ducts and normal, cirrhotic and pericarcinomatous liver using the avidin—biotin—peroxidase complex method. It was found that epithelial cells of normal bile ducts had many UEA-I receptors, fewer DBA receptors and no PNA receptors. The positive rates of PNA, UEA-I and DBA receptors in 18 cases of intrahepatic cholangiocellular carcinoma were 88.9%, 61.1% and 33.3% respectively, which were significantly higher than those in hepatocellular carcinoma (16.0%, 4.0% and 4.0% respectively). Hepatocytes in normal, cirrhotic and pericarcinomatous liver had no receptors for these three lectins. It is suggested that lectin receptor distribution in intrahepatic cholangiocellular carcinoma is obviously different from that in normal bile duct cells and in hepatocellular carcinoma, and might be used as an auxiliary index in its clinical diagnosis.  相似文献   

4.
Because of the broad clinical interest which tissue polypeptide antigen (TPA) has attracted as a tumor marker, human cell lines and human tissues have been analyzed for TPA expression using immunofluorescence microscopy. Epithelial cell lines including HeLa, MCF-7, and A-431 are recognized by TPA antibodies whereas human lines of non-epithelial origin are not. The positive staining patterns coincide with keratin-type intermediate filaments of the cytoskeleton. On tissue sections a subset of epithelial cells including uterine epithelium, bile duct cells in liver and tumor cells in breast carcinoma are strongly positive; cells of the squamous epithelia of skin and tongue as well as cells of non-epithelial origin are negative. In immunoblots of human epidermis, human tongue mucosa, human hair follicles, Detroit 562 cells, HeLa cells, MCF-7 and RT-4 cells, only keratins 8, 18 and 19 show TPA antigenicity. Conversely a TPA preparation is recognized by various antibodies known to react with keratins, including alpha-IFA, KG 8.13.2 and two antibodies which recognize keratins 18 (CK2) and 19, respectively. Our results thus relate TPA to human keratins 8, 18 and 19 which are known cytoskeletal components in both normal and malignant epithelial cells of simple and non-squamous origin. We speculate that the elevated levels of circulating TPA antigenicity present in the sera of patients with carcinoma, which are often used to monitor tumor progression, correspond to soluble proteolytic fragments originating from this particular keratin subgroup.  相似文献   

5.
Pancreatic acinar cells express keratins 8 and 18 (K8/18), which form cytoplasmic filament (CF) and apicolateral filament (ALF) pools. Hepatocyte K8/18 CF provide important protection from environmental stresses, but disruption of acinar cell CF has no significant impact. We asked whether acinar cell ALF are important in providing cytoprotective roles by studying keratin filaments in pancreata of K8- and K18-null mice. K8-null pancreas lacks both keratin pools, but K18-null pancreas lacks only CF. Mouse but not human acinar cells also express apicolateral keratin 19 (K19), which explains the presence of apicolateral keratins in K18-null pancreas. K8- and K18-null pancreata are histologically normal, and their acini respond similarly to stimulated secretion, although K8-null acini viability is reduced. Absence of total filaments (K8-null) or CF (K18-null) does not increase susceptibility to pancreatitis induced by caerulein or a choline-deficient diet. In normal and K18-null acini, K19 is upregulated after caerulein injury and, unexpectedly, forms CF. As in hepatocytes, acinar injury is also associated with keratin hyperphosphorylation. Hence, K19 forms ALF in mouse acinar cells and helps define two distinct ALF and CF pools. On injury, K19 forms CF that revert to ALF after healing. Acinar keratins appear to be dispensable for cytoprotection, in contrast to hepatocyte keratins, despite similar hyperphosphorylation patterns after injury.  相似文献   

6.
We analysed the expression of intermediate-filament proteins in the developing mesonephric duct (the precursor of the male genital ducts) and the paramesonephric duct (the precursor of the female genital ducts) of golden-hamster embryos using immunohistochemical methods. Embryos were investigated from the early stages of duct development, i.e. at 9.5 days post conceptionem (dpc), through sexual differentiation, until birth (15.5 dpc). Monospecific antibodies to vimentin or keratins 7, 8, 18 or 19 as well as two keratin antibodies that are pan-epithelial in human tissues were tested. Both ducts expressed vimentin to some degree from their early stages (mesonephric duct from 9.5 dpc onwards; paramesonephric duct from 10.5 dpc onwards) until birth. No keratins were detectable at these earliest stages. In the mesonephric duct, keratins 7, 18 and 19 appeared simultaneously at 10.5 dpc and persisted until birth. In the paramesonephric duct, only keratin 18 was detectable at first (at 12.0 dpc), with the expression of keratins 7 and 19 being delayed until 14.5 dpc. This feature was irrespective of sexual differentiation, which begins at 11.0 dpc, so that, in males, these keratins appeared on cue, even though the paramesonephric duct was regressing at this time. The expression of keratin 8 could not be demonstrated in either duct using the antibodies tested in our study. By 14.5 dpc, the differentiated male mesonephric duct and the differentiated female paramesonephric duct exhibited the same intermediate-filament protein pattern (weak vimentin expression and strong expression of keratins 7, 18 and 19), in spite of differences in the intermediate-filament protein patterns exhibited by the two ducts during early development. These different programmes of intermediate-filament protein regulation do not support the concept that the mesonephric duct makes a cellular contribution to the paramesonephric duct during the development of the latter.  相似文献   

7.
Keratin polypeptide 8 (K8) associates noncovalently with its partners K18 and/or K19 to form the intermediate filament cytoskeleton of hepatocytes and other simple-type epithelial cells. Human K8, K18, and K19 variants predispose to liver disease, whereas site-specific keratin phosphorylation confers hepatoprotection. Because stress-induced protein phosphorylation regulates sumoylation, we hypothesized that keratins are sumoylated in an injury-dependent manner and that keratin sumoylation is an important regulatory modification. We demonstrate that K8/K18/K19, epidermal keratins, and vimentin are sumoylated in vitro. Upon transfection, K8, K18, and K19 are modified by poly-SUMO-2/3 chains on Lys-285/Lys-364 (K8), Lys-207/Lys-372 (K18), and Lys-208 (K19). Sumoylation affects filament organization and stimulus-induced keratin solubility and is partially inhibited upon mutation of one of three known K8 phosphorylation sites. Extensive sumoylation occurs in cells transfected with individual K8, K18, or K19 but is limited upon heterodimerization (K8/K18 or K8/K19) in the absence of stress. In contrast, keratin sumoylation is significantly augmented in cells and tissues during apoptosis, oxidative stress, and phosphatase inhibition. Poly-SUMO-2/3 conjugates are present in chronically injured but not normal, human, and mouse livers along with polyubiquitinated and large insoluble keratin-containing complexes. Notably, common human K8 liver disease-associated variants trigger keratin hypersumoylation with consequent diminished solubility. In contrast, modest sumoylation of wild type K8 promotes solubility. Hence, conformational changes induced by keratin natural mutations and extensive tissue injury result in K8/K18/K19 hypersumoylation, which retains keratins in an insoluble compartment, thereby limiting their cytoprotective function.  相似文献   

8.
We have characterized the cells that form the human oral epithelia by analyzing their patterns of keratin expression in culture and in transplants. Keratinocytes of all oral regions synthesized high levels of keratins K5/K14 and K6/K16,K17, as expressed by cells of all stratified squamous epithelia in culture. However, cells from different regions varied in their expression in culture of retinoid-inducible (K19 and K13) and simple epithelial (K7, K8 and K18) keratins. By these criteria, all oral cells could be classified as belonging to one of three intrinsically distinct subtypes: "keratinizing" (gingiva, hard palate), "typical nonkeratinizing" (inner cheek, floor of mouth, ventral tongue) and "special non-keratinizing" (soft palate), all of which differed from the epidermal keratinocyte subtype. Cells from fetal floor of mouth expressed a pattern of keratins in culture markedly different from that of adult floor of mouth cells but identical to that of the adult "special nonkeratinizing" subtype and similar to that of several oral squamous cell carcinoma lines. When cultures of oral keratinocytes were grafted to the dermis of nude mice, they formed stratified epithelial structures after 10 days. In some areas of the stratified structures, the basal layer recapitulated the K19 expression pattern of the oral region from which they had originated. Thus, regional differentiation of the oral epithelium is based on an intrinsic specialization of regional keratinocyte stem cells. Additionally, oral cell transformation either frequently involves reversion to the fetal keratin program or else oral cells that express this keratin program are especially susceptible to transformation.  相似文献   

9.
Keratins 8 and 18 belong to the keratin family of intermediate filament (IF) proteins and constitute a hallmark for all simple epithelia, including the liver. Hepatocyte IFs are made solely of keratins 8 and 18 (K8/K18). In these cells, the loss of one partner via a targeted null mutation in the germline results in hepatocytes lacking K8/K18 IFs, thus providing a model of choice for examining the function(s) of simple epithelium keratins. Here, we report that K8-null mouse hepatocytes in primary culture and in vivo are three- to fourfold more sensitive than wild-type (WT) mouse hepatocytes to Fas-mediated apoptosis after stimulation with Jo2, an agonistic antibody of Fas ligand. This increased sensitivity is associated with a higher and more rapid caspase-3 activation and DNA fragmentation. In contrast, no difference in apoptosis is observed between cultured K8-null and WT hepatocytes after addition of the Fas-related death-factors tumor necrosis factor (TNF) alpha or TNF-related apoptosis-inducing ligand. Analyses of the Fas distribution in K8-null and WT hepatocytes in culture and in situ demonstrate a more prominent targeting of the receptor to the surface membrane of K8-null hepatocytes. Moreover, altering Fas trafficking by disrupting microtubules with colchicine reduces by twofold the protection generated against Jo2-induced lethal action in K8-null versus WT hepatocytes. Together, the results strongly suggest that simple epithelium K8/K18 provide resistance to Fas-mediated apoptosis and that this protection occurs through a modulation of Fas targeting to the cell surface.  相似文献   

10.
Summary The expression of vimentin and keratins is analysed in the early postimplantation embryo of the rabbit at 11 days post conceptionem (d.p.c.) using a panel of monoclonal antibodies specific for single intermediate filament polypeptides (keratins 7, 8, 18, 19 and vimentin) and a pan-epithelial monoclonal keratin antibody. Electrophoretic separation of cytoskeletal preparations obtained from embryonic tissues, in combination with immunoblotting of the resulting polypeptide bands, demonstrates the presence of the rabbit equivalents of human keratins 8, 18, and vimentin in 11-day-old rabbit embryonic tissues. Immunohistochemical staining shows that several embryonic epithelia such as notochord, surface ectoderm, primitive intestinal tube, and mesonephric duct, express keratins, while others (neural tube, dermomyotome) express vimentin, and a third group (coelomic epithelia) can express both. Similarly, of the mesenchymal tissues sclerotomal mesenchyme expresses vimentin, while somatopleuric mesenchyme (abdominal wall) expresses keratins, and splanchnopleuric mesenchyme (dorsal mesentery) expresses both keratins and vimentin. While these results are in accordance with most results of keratin and vimentin expression in embryos of other species, they stand against the common concept of keratin and vimentin specificity in adult vertebrate tissues. Furthermore, keratin and vimentin are not expressed in accordance with germ layer origin of tissues in the mammalian embryo; rather the expression of these proteins seems to be related to cellular function during embryonic development.Supported by the Deutsche Forschungsgemeinschaft and by the Netherlands Cancer Foundation  相似文献   

11.
Hesse M  Franz T  Tamai Y  Taketo MM  Magin TM 《The EMBO journal》2000,19(19):5060-5070
It has been reported previously that keratin 8 (K8)-deficient mice of one strain die from a liver defect at around E12.5, while those of another strain suffer from colorectal hyperplasia. These findings have generated considerable confusion about the function of K8, K18 and K19 that are co-expressed in the mouse blastocyst and internal epithelia. To resolve this issue, we produced mice doubly deficient for K18 and K19 leading to complete loss of keratin filaments in early mouse development. These embryos died at around day E9.5 with 100% penetrance. The absence of keratins caused cytolysis restricted to trophoblast giant cells, followed by haematomas in the trophoblast layer. Up to that stage, embryonic development proceeded unaffected in the absence of keratin filaments. K18/19-deficient mouse embryos die earlier than any other intermediate filament knockouts reported so far, suggesting that keratins, in analogy to their well established role in epidermis, are essential for the integrity of a specialized embryonic epithelium. Our data also offer a rationale to explore the involvement of keratin mutations in early abortions during human pregnancies.  相似文献   

12.
Monoclonal antibodies specific for vimentin (V9), keratin 7 (CK 7) and keratin 18 (CK5) have been microinjected into three human epithelial cell lines: HeLa, MCF-7 and RT-4. The effect of the injection on other keratin polypeptides and vimentin filaments has been observed by double label immunofluorescence and in some instances by immunoelectron microscopy using gold labels of different sizes. Microinjection of V9 into HeLa cells causes the vimentin to collapse into a perinuclear cap leaving the keratin filaments unaffected. Injection of CK5 does not affect the vimentin filaments but disrupts the keratin filaments revealing keratin aggregates similar to those seen in some epithelial cell lines during mitosis. The keratin aggregates obtained after microinjection in HeLa contain the keratins 8 and 18 and probably also other keratins, as no residual keratin filaments are observed with a keratin polyclonal antibody of broad specificity. Aggregates in mitotic HeLa cells contain at least the keratins 7, 8, and 18. In MCF-7 cells keratins 8, 18, and 19 are observed in the aggregates seen 3 h after microinjection which, however, show a different morphology from those seen in HeLa cells. In MCF-7 cells a new keratin filament is built within 6 h after the injection which is composed mainly of keratin 8 and 19. The antibody-complexed keratin 18 remains in spherical aggregates of different size. The results suggest that in HeLa cells vimentin and keratin form independent networks, and that individual 10 nm filaments in epithelial cell lines can contain more than two keratins.  相似文献   

13.
Simple epithelia express keratins 8 (K8) and 18 (K18) as their major intermediate filament (IF) proteins. One important physiologic function of K8/18 is to protect hepatocytes from drug-induced liver injury. Although the mechanism of this protection is unknown, marked K8/18 hyperphosphorylation occurs in association with a variety of cell stresses and during mitosis. This increase in keratin phosphorylation involves multiple sites including human K18 serine-(ser)52, which is a major K18 phosphorylation site. We studied the significance of keratin hyperphosphorylation and focused on K18 ser52 by generating transgenic mice that overexpress a human genomic K18 ser52→ ala mutant (S52A) and compared them with mice that overexpress, at similar levels, wild-type (WT) human K18. Abrogation of K18 ser52 phosphorylation did not affect filament organization after partial hepatectomy nor the ability of mouse livers to regenerate. However, exposure of S52A-expressing mice to the hepatotoxins, griseofulvin or microcystin, which are associated with K18 ser52 and other keratin phosphorylation changes, resulted in more dramatic hepatotoxicity as compared with WT K18-expressing mice. Our results demonstrate that K18 ser52 phosphorylation plays a physiologic role in protecting hepatocytes from stress-induced liver injury. Since hepatotoxins are associated with increased keratin phosphorylation at multiple sites, it is likely that unique sites aside from K18 ser52, and phosphorylation sites on other IF proteins, also participate in protection from cell stress.  相似文献   

14.
15.
16.
Keratin 8 and 18 are commonly used as tumorigenic markers for various types of carcinomas. They are known to be involved in cell migration, cell invasiveness, plasminogen activity and drug and radiation resistance. To ascertain a potential function for simple epithelium keratins in mammary adenocarcinoma in vivo, keratin-8-deficient mice (mK8) were mated with transgenic mice carrying the middle T oncogene driven by the MMTV promoter. The resulting mK8 knockout and control progeny carrying the middle T transgene developed mammary gland tumours with the same incidence. However, the onset of palpable mammary gland tumours occurred earlier in mK8 mutant than in control mice. This effect was prominent in males where the onset in control animals is delayed overall, because of the lower hormonal inducibility of the MMTV promoter. Metastatic foci were observed in the lungs of all females and of a few males, idependently of the genotype. Histological analysis revealed no morphological differences of the tumorigenic cells in primary tumours nor in metastatic foci. As expected, keratin 8 was absent in the mK8 tumours. Keratin 7 (mK7), keratin 18 (mK18) and keratin 19 (mK19) protein were observed in both primary and metastatic foci. These results constitute the first in vivo analysis of the role of simple epithelium keratins in mammary carcinogenesis. It demonstrates that the latency, but not the incidence nor the morphological features, of PyV middle T-induced mammary gland tumours is affected by keratin 8 deficiency  相似文献   

17.
Keratins, the intermediate filament proteins of epithelial cells, connect to desmosomes, the cell-cell adhesion structures at the surface membrane. The building elements of desmosomes include desmoglein and desmocollin, which provide the actual cell adhesive properties, and desmoplakins, which anchor the keratin intermediate filaments to desmosomes. In the work reported here, we address the role of keratin 8 in modulating desmoplakin deposition at surface membrane in mouse hepatocytes. The experimental approach is based on the use of keratin 8- and keratin 18-null mouse hepatocytes as cell models. In wild-type mouse hepatocytes, desmoplakin is aligned with desmoglein and keratin 8 at the surface membrane. In keratin 8-null hepatocytes, the intermediate filament loss leads to alterations in desmoplakin distribution at the surface membrane, but not of desmoglein. Intriguingly, a significant proportion of keratin 18-null hepatocytes express keratin 8 at the surface membrane, associated with a proper desmoplakin alignment with desmoglein at desmosomes. A Triton treatment of the monolayer reveals that most of the desmoplakin present in either wild-type, keratin 8- or keratin 18-null hepatocytes is insoluble. Deletion analysis of keratin 8 further suggests that the recovery of desmoplakin alignment requires the keratin 8 rod domain. In addition, similarly to other works revealing a key role of desmoplakin phosphorylation on its interaction with intermediate filaments, we find that the phosphorylation status of the keratin 8 head domain affects desmoplakin distribution at desmosomes. Together, the data indicate that a proper alignment/deposition of desmoplakin with keratins and desmoglein in hepatocytes requires keratin 8, through a reciprocal phosphoserine-dependent process.  相似文献   

18.
Intermediate filament cytoskeleton of the liver in health and disease   总被引:6,自引:3,他引:3  
Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising approximately 70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation.  相似文献   

19.
In this paper we present keratin expression data that lend strong support to a model of corneal epithelial maturation in which the stem cells are located in the limbus, the transitional zone between cornea and conjunctiva. Using a new monoclonal antibody, AE5, which is highly specific for a 64,000-mol-wt corneal keratin, designated RK3, we demonstrate that this keratin is localized in all cell layers of rabbit corneal epithelium, but only in the suprabasal layers of the limbal epithelium. Analysis of cultured corneal keratinocytes showed that they express sequentially three major keratin pairs. Early cultures consisting of a monolayer of "basal" cells express mainly the 50/58K keratins, exponentially growing cells synthesize additional 48/56K keratins, and postconfluent, heavily stratified cultures begin to express the 55/64K corneal keratins. Cell separation experiments showed that basal cells isolated from postconfluent cultures contain predominantly the 50/58K pair, whereas suprabasal cells contain additional 55/64K and 48/56K pairs. Basal cells of the older, postconfluent cultures, however, can become AE5 positive, indicating that suprabasal location is not a prerequisite for the expression of the 64K keratin. Taken together, these results suggest that the acidic 55K and basic 64K keratins represent markers for an advanced stage of corneal epithelial differentiation. The fact that epithelial basal cells of central cornea but not those of the limbus possess the 64K keratin therefore indicates that corneal basal cells are in a more differentiated state than limbal basal cells. These findings, coupled with the known centripetal migration of corneal epithelial cells, strongly suggest that corneal epithelial stem cells are located in the limbus, and that corneal basal cells correspond to "transient amplifying cells" in the scheme of "stem cells----transient amplifying cells----terminally differentiated cells."  相似文献   

20.
Keratin protein expression during the development of Rhesus monkey conducting airway epithelium was investigated by both biochemical and immunohistochemical methods. Keratin proteins were extracted from tracheal and intrapulmonary airway tissues of fetal (at 80- and 140-day gestational ages), neonatal, and adult animals. Using immunoblot analyses and immunohistochemistry with various monoclonal (AE1, AE3, AE8, 6.01 and 6.11) and monospecific antibodies (anti-50/55 and anti-40 kDa), the presence of keratins 5, 6, 8, 13, 14, and 19 in adult airway epithelium were demonstrated. Except for keratin 13 (51 kDa), the remaining keratins could be immunologically detected in fetal and neonatal tissues. To further understand the nature of the synthesis of keratin 13 during development, airway epithelial cells from different ages were isolated and cultured in vitro. Cultured cells were labeled with 35S-methionine, and the patterns of keratin protein were analyzed by one- and two-dimensional sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Results indicated that the cultured airway cells synthesized additional keratins including 7, 15, 16, 17, and 18. However, consistent with the in vivo finding, fetal cells synthesized less or no keratin 13. These in vivo and in vitro studies strongly suggest that the synthesis of the keratin 13 in monkey conducting airway epithelium is developmentally regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号